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Abstract. Let k and n be two nonnegative integers with n ≡ 0 (mod 2), and let G be a graph of order n with
a perfect matching. Then G is said to be k-extendable for 0 ≤ k ≤ n−2

2 if every matching in G of size k can
be extended to a perfect matching. In this paper, we first establish a lower bound on the signless Laplacian
spectral radius of G to ensure that G is k-extendable. Then we create some extremal graphs to claim that all
the bounds derived in this article are sharp.

1. Introduction

Graphs discussed in this paper are simple, undirected and connected. Let G be a graph with vertex
set V(G) = {v1, v2, . . . , vn} and edge set E(G), where |V(G)| = n and G be the complement of G. Denote by
NG(v) the neighbor set of the vertex v in G. The degree of the vertex v is dG(v) = |NG(v)|. For S ⊆ V(G),
G[S] denotes the subgraph of G induced by S and G − S is the subgraph of G induced by V(G) \ S. Given
two vertex-disjoint graphs G1 and G2, the union of G1 and G2 is denoted by G1 ∪ G2 and the join G1 ∨ G2 is
obtained from G1 ∪ G2 by joining each vertex of G1 with each vertex of G2 by an edge. Let Kn denote the
complete graph of order n.

Let A(G) denote the (0, 1)-adjacency matrix of G and D(G) = diag(d1, d2, . . . , dn) denote the diagonal
degree matrix of G, where di = dG(vi) for 1 ≤ i ≤ n. The signless Laplacian matrix Q(G) of G is defined as
Q(G) = D(G) + A(G). Obviously, A(G) and Q(G) are real symmetric matrices. The largest eigenvalues of
A(G) and Q(G), denoted by ρ(G) and q(G), are called the spectral radius and the signless Laplacian spectral
radius of G, respectively.

For two positive integers a and b with a ≤ b, a spanning subgraph F of G is called an [a, b]-factor if
a ≤ dF(v) ≤ b for any v ∈ V(G). If a = b = 1, then an [a, b]-factor is a 1-factor (or a perfect matching). Let G
be a graph of order n with a perfect matching. Then G is said to be k-extendable for 0 ≤ k ≤ n−2

2 if every
matching in G of size k can be extended to a perfect matching. In particular, G is 0-extendable if and only if
G contains a perfect matching.

Many researchers have attempted to find sufficient conditions for the existence of perfect matchings
by utilizing various graphic parameters. Tutte [32] obtained a characterization for a graph with a perfect
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matching. Anderson [3, 4] investigated the relationships between binding numbers and perfect matchings
in graphs and presented two binding number conditions for the existence of perfect matchings in graphs.
Sumner [31] showed a sufficient condition for a graph to possess a perfect matching. Niessen [24] provided
a neighborhood union condition for the existence of perfect matchings in graphs. Enomoto [12] derived a
toughness condition for a graph to admit a perfect matching. Plummer [28] first introduced the concept
of k-extendable graph and posed some properties of k-extendable graphs. Up to now, much attention
has been paid on various graphic parameters of k-extendable graphs, such as binding number [6, 29],
connectivity [20, 26], minimum degree [2], independence number [1, 8, 22], distance-regular graph [7],
genus [27], eigenvalues [36] and spectral radius [13]. Much effort has been devoted to finding sufficient
conditions for the existence of [1, 2]-factors (see [10, 11, 14, 16, 17, 19, 40, 41, 46–48, 51]) and [a, b]-factors
(see [15, 21, 23, 33, 34, 39, 42–45, 49, 50]) in graphs.

The main goal of this paper is to study the existence of k-extendable graphs from a spectral perspective.
Recall that G is 0-extendable if and only if G has a perfect matching. In the past few years, lots of researchers
focused on finding the connections between the spectral radius and perfect matchings in graphs. O [25]
provided a spectral radius condition to guarantee that a connected graph has a perfect matching. By
imposing the minimum degree of a graph as a parameter, Liu, Liu and Feng [18] extended O’s result [25] in
a connected graph. Zhang and Lin [37] presented a distance spectral condition to guarantee the existence
of a perfect matching in a graph. Zhou [38] established a relationship between signless Laplacian spectral
radius and Hamiltonian cycles in graphs. Motivated by O [25], Liu, Liu and Feng [18], Zhang and Lin [37]
and Zhou [38], directly, it is natural and interesting to give other sufficient spectral conditions to guarantee
that a graph has a perfect matching. Note that the concept of k-extendable graph is a generalization of the
notation of perfect matching. In this paper, we study the existence of k-extendable graphs and obtain a
signless Laplacian spectral radius condition for a graph to be k-extendable.

Theorem 1.1. Let k and n be two positive integers with n ≡ 0 (mod 2), and let G be a connected graph of
order n with n ≥ 2k + 4. Assume that one of the following three conditions holds:

(i) q(G) > θ(k,n) for n < {2k + 6, 2k + 8}, where θ(k,n) is the largest root of x3
− (3n + 2k − 7)x2 + (2n2 +

6kn − 7n − 24k)x − 2(2k + 1)(n − 3)(n − 4) = 0;
(ii) q(G) > 3k + 4 +

√

k2 + 12k + 12 for n = 2k + 6;
(iii) q(G) > 3k + 6 +

√

k2 + 16k + 24 for n = 2k + 8.
Then G is k-extendable unless G = K2k ∨ (Kn−2k−1 ∪ K1).

The proof of Theorem 1.1 will be provided in Section 3.

2. Preliminary lemmas

In this section, we put forward some necessary preliminary lemmas, which are very important to the
proofs of our main results.

Chen [6] established a necessary and sufficient condition for the existence of k-extendable graphs.

Lemma 2.1 ([6]). Let k ≥ 1 be an integer. Then a graph G is k-extendable if and only if

o(G − S) ≤ |S| − 2k

for any S ⊆ V(G) such that G[S] contains k independent edges, where o(G − S) denotes the number of odd
components in G − S.

Lemma 2.2 ([30]). Let G be a connected graph. If H is a subgraph of G, then q(H) ≤ q(G). If H is a proper
subgraph of G, then q(H) < q(G).

Lemma 2.3 ([9]). Let n ≥ 2 be an integer, and Kn be a complete graph of order n. Then q(Kn) = 2n − 2.

In what follows, we explain the concepts of equitable matrices and equitable partitions.
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Definition 2.4 ([5]). Let M be a real matrix of order n described in the following block form

M =


M11 · · · M1r
...

. . .
...

Mr1 · · · Mrr

 ,
where the blocks Mi j are ni × n j matrices for any 1 ≤ i, j ≤ r and n = n1 + n2 + · · · + nr. For 1 ≤ i, j ≤ r, let bi j
denote the average row sum of Mi j, that is, bi j is the sum of all entries in Mi j divided by the number of rows.
Then B(M) = (bi j) (simply by B) is called a quotient matrix of M. If for every pair i, j, Mi j admits constant
row sum, then B is called an equitable quotient matrix of M and the partition is called equitable.

Lemma 2.5 ([35]). Let B be an equitable matrix of M as defined in Definition 2.4, and M be a nonnegative
matrix. Then ρ1(B) = ρ1(M), where ρ1(B) and ρ1(M) denote the largest eigenvalues of the matrices B and M.

3. The proof of Theorem 1.1

In this section, we prove Theorem 1.1, which provides a sufficient condition via the signless Laplacian
spectral radius of a connected graph to ensure that the graph is k-extendable.

Proof of Theorem 1.1. Suppose, to the contrary, that G is not k-extendable. Then, according to Lemma 2.1,
there exists some nonempty subset S of V(G) such that |S| ≥ 2k and o(G − S) > |S| − 2k. Since n is even,
o(G − S) and |S| possess the same parity. Thus, we deduce

o(G − S) ≥ |S| − 2k + 2.

Select such a connected graph G of order n so that its signless Laplacian spectral radius is as large as possible.
Together with Lemma 2.2 and the choice of G, the induced subgraph G[S] and every connected compo-

nent of G− S are complete graphs, respectively. Furthermore, all components of G− S are odd and G is just
the graph G[S] ∨ (G − S).

For convenience, let o(G − S) = q and |S| = s. Then q ≥ s − 2k + 2. Assume that G1,G2, . . . ,Gq are all the
components of G − S with ni = |V(Gi)| and n1 ≥ n2 ≥ · · · ≥ nq. Then G = Ks ∨ (Kn1 ∪ Kn2 ∪ · · · ∪ Knq ).

Claim 1. n2 = n3 = · · · = nq = 1.
Proof. If n2 ≥ 3, then we let G′ = Ks∨(Kn1+2∪Kn2−2∪Kn3∪· · ·∪Knq ). Note that o(G′−S) = o(G−S) = q ≥ s−2k+2.
Denote the vertex set of G by V(G) = V(Ks) ∪ V(Kn1 ) ∪ V(Kn2 ) ∪ · · · ∪ V(Knq ). Let Y be the Perron vector of
Q(G), and let Y(v) be the entry of Y corresponding to the vertex v ∈ V(G). By symmetry, it is obvious that
all vertices of Ks (resp. Kn1 ,Kn2 , · · · ,Knq ) have the same entries in Y. Hence, we can suppose Y(v0) = y0 for
every v0 ∈ V(Ks), Y(v1) = y1 for every v1 ∈ V(Kn1 ), Y(v2) = y2 for every v2 ∈ V(Kn2 ), · · · ,Y(vq) = yq for every
vq ∈ V(Knq ). Thenq(G)y1 = sy0 + (s + 2n1 − 2)y1,

q(G)y2 = sy0 + (s + 2n2 − 2)y2.
(1)

It follows from (1) that

(q(G) − s − 2n1 + 2)y1 = (q(G) − s − 2n2 + 2)y2. (2)

Note that Ks+n1 and Ks+n2 are two proper subgraphs of G. Using Lemmas 2.2 and 2.3, we get

q(G) >max{q(Ks+n1 ), q(Ks+n2 )}
=max{2(s + n1) − 2, 2(s + n2) − 2}
>max{s + 2n1 − 2, s + 2n2 − 2}.
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Together with (2) and n1 ≥ n2, we infer y1 ≥ y2. According to the Rayleigh quotient, we derive

q(G′) − q(G) ≥YT(Q(G′) −Q(G))Y

=2n1y1(y1 + y2) + 2n1y2(y1 + y2) − 8(n2 − 2)y2
2

≥8n1y2
2 − 8(n2 − 2)y2

2

=8y2
2(n1 − n2 + 2)

>0.

Hence, q(G′) > q(G), which is a contradiction to the choice of G. Thus, we deduce n2 = 1.
Recall that n2 ≥ n3 ≥ · · · ≥ nq ≥ 1. Combining this with n2 = 1, we infer n2 = n3 = · · · = nq = 1. Claim 1

is proved. □
In what follows, we are to verify q = s − 2k + 2. Note that q ≥ s − 2k + 2, and q and s have the same

parity. Consequently, we can suppose q ≥ s− 2k+ 4. We construct a new graph G′′ = Ks∨ (Kn1+2∪ (q− 3)K1).
Clearly, G is a proper subgraph of G′′ and o(G′′ −S) = o(G−S)− 2 = q− 2 ≥ s− 2k+ 2. Together with Lemma
2.2, q(G′′) > q(G), which is a contradiction to the choice of G. Thus, we infer q ≤ s − 2k + 2. On the other
hand, q ≥ s − 2k + 2. Hence, we obtain

q = s − 2k + 2. (3)

By virtue of (3), Claim 1, n = s + n1 + n2 + · · · + nq and G = Ks ∨ (Kn1 ∪ Kn2 ∪ · · · ∪ Knq ), we have
G = Ks ∨ (Kn1 ∪ (q− 1)K1) = Ks ∨ (Kn1 ∪ (s− 2k+ 1)K1) and n1 = n− s− (q− 1) = n− 2s+ 2k− 1. If s = 2k, then
G = K2k ∨ (Kn−2k−1 ∪ K1), which is a contradiction to the condition of this theorem. Hence, s ≥ 2k + 1. The
following proof will be divided into two cases by the value of n1.
Case 1. n1 ≥ 3.

In this case, n = n1+2s−2k+1 ≥ 2s−2k+4. Recall that G = Ks∨(Kn1∪(s−2k+1)K1) and n1 = n−2s+2k−1.
Consider the partition V(G) = V(Ks)∪V(Kn1 )∪V((s−2k+1)K1). The corresponding quotient matrix of Q(G)
equals

B1 =

 n + s − 2 n − 2s + 2k − 1 s − 2k + 1
s 2n − 3s + 4k − 4 0
s 0 s

 .
Then the characteristic polynomial of B1 is

f1(x) =x3
− (3n − s + 4k − 6)x2 + (2n2 + sn + 4kn − 8n − 4s2

− 4s + 8ks − 8k + 8)x

− 2sn2 + 4s2n − 8ksn + 10sn − 2s3 + 8ks2
− 10s2

− 8k2s + 20ks − 12s.

In view of Lemma 2.5, the largest root, say q1, of f1(x) = 0 equals the signless Laplacian spectral radius of
G. Consequently, we possess f1(q1) = 0 and q(G) = q1.

Note that Ks∨ (n−s)K1 is a proper subgraph of G. From Lemma 2.2, we infer q1 = q(G) > q(Ks∨ (n−s)K1).
Consider the partition V(Ks ∨ (n − s)K1) = V(Ks) ∪ V((n − s)K1). The corresponding quotient matrix of
Q(Ks ∨ (n − s)K1) has the following form

B2 =

(
n + s − 2 n − s

s s

)
.

Then the characteristic polynomial of B2 equals

f2(x) = x2
− (n + 2s − 2)x + 2s(s − 1).

In terms of Lemma 2.5, the largest root, say q2, of f2(x) = 0 equals q(Ks ∨ (n − s)K1). And so

q(Ks ∨ (n − s)K1) = q2 =
n + 2s − 2 +

√
(n + 2s − 2)2 − 8s(s − 1)

2
. (4)
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Together with q1 = q(G) > q(Ks ∨ (n − s)K1), we get

q1 > q2 =
n + 2s − 2 +

√
(n + 2s − 2)2 − 8s(s − 1)

2
. (5)

Let φ(x) = x3
− (3n + 2k − 7)x2 + (2n2 + 6kn − 7n − 24k)x − 2(2k + 1)(n − 3)(n − 4) and let θ(k,n) be the largest

root of φ(x) = 0. Note that f1(q1) = 0. By a direct calculation, we have

φ(q1) = φ(q1) − f1(q1) = (s − 2k − 1)11(q1), (6)

where 11(q1) = −q2
1+(−n+4s+8)q1+2n2

−4sn−14n+2s2
−4ks+12s+24. Utilizing (5) and n ≥ 2s−2k+4 ≥ s+5,

we derive

−
−n + 4s + 8

2 × (−1)
< n + s − 2 <

n + 2s − 2 +
√

(n + 2s − 2)2 − 8s(s − 1)
2

< q1.

Consequently, we deduce

11(q1) <11

n + 2s − 2 +
√

(n + 2s − 2)2 − 8s(s − 1)
2


=n2
− 5sn − 7n + 6s2

− 4ks + 18s + 14

− (n − s − 5)
√

(n + 2s − 2)2 − 8s(s − 1)

≤n2
− 5sn − 7n + 6s2

− 4ks + 18s + 14 − n(n − s − 5)

= − 4sn − 2n + 6s2
− 4ks + 18s + 14

≤ − 4s(2s − 2k + 4) − 2(2s − 2k + 4) + 6s2
− 4ks + 18s + 14

= − 2s2 + 4ks − 2s + 4k + 6. (7)

For s ≥ 2k + 2, it follows from (7) that

11(q1) < − 2s2 + 4ks − 2s + 4k + 6
≤ − 2s(2k + 2) + 4ks − 2s + 4k + 6
= − 6s + 4k + 6
<0. (8)

Recall that s ≥ 2k + 1. According to (6) and (8), we infer

φ(q1) = (s − 2k − 1)11(q1) ≤ 0,

which yields
q(G) = q1 ≤ θ(k,n),

which is a contradiction to q(G) > θ(k,n) for n < {2k + 6, 2k + 8}.
Let φ′(x) denote the derivative of φ(x). As for n = 2k + 6, one has φ(x) = x3

− (8k + 11)x2 + (20k2 +
46k + 30)x − 16k3

− 48k2
− 44k − 12 and φ′(x) = 3x2

− 2(8k + 11)x + 20k2 + 46k + 30. By a direct calculation,
we obtain φ(3k + 4 +

√

k2 + 12k + 12) = 6k + 8 + 2
√

k2 + 12k + 12 > 0 and φ′(3k + 4 +
√

k2 + 12k + 12) =
2k2 + 24k + 26 + 2(k + 1)

√

k2 + 12k + 12 > 0, and so q(G) = q1 ≤ θ(k, 2k + 6) < 3k + 4 +
√

k2 + 12k + 12, which
contradicts q(G) > 3k + 4 +

√

k2 + 12k + 12 for n = 2k + 6.
As for n = 2k+ 8, one has φ(x) = x3

− (8k+ 17)x2 + (20k2 + 74k+ 72)x− 16k3
− 80k2

− 116k− 40 and φ′(x) =
3x2
−2(8k+17)x+20k2+74k+72. By a direct computation, we derive φ(3k+6+

√

k2 + 16k + 24) = 8k+20 > 0
and φ′(3k+ 6+

√

k2 + 16k + 24) = 2k2+ 32k+ 48+ 2(k+ 1)
√

k2 + 16k + 24 > 0, and so q(G) = q1 ≤ θ(k, 2k+ 8) <
3k + 6 +

√

k2 + 16k + 24, which is a contradiction to q(G) > 3k + 6 +
√

k2 + 16k + 24 for n = 2k + 8.
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Case 2. n1 = 1.
In this case, we possess G = Ks ∨ (s − 2k + 2)K1 = Ks ∨ (n − s)K1 and n = 2s − 2k + 2. By virtue of (4), we

obtain

q(G) = q(Ks ∨ (n − s)K1) = q2 =
n + 2s − 2 +

√
(n + 2s − 2)2 − 8s(s − 1)

2
.

Note that f2(q2) = 0. By a direct computation, we possess

φ(q2) =φ(q2) − q2 f2(q2)

= − (2n − 2s + 2k − 5)q2
2 + (2n2 + 6kn − 7n − 24k − 2s2 + 2s)q2

− 2(2k + 1)n2 + 14(2k + 1)n − 24(2k + 1)

= − (s + 2k + 1)n2 + (3s + 2k + 4)sn + 7(2k + 1)n − 2s3
− (20k + 8)s − 14(2k + 1)

+ (−sn + 2kn + n + s2
− 2ks + 4s − 10k − 5)

√
(n + 2s − 2)2 − 8s(s − 1). (9)

Recall that s ≥ 2k + 1. If s = 2k + 1, then n = 2k + 4 and q(G) = 3k + 2 +
√

k2 + 8k + 4 = θ(k, 2k + 4), which
contradicts q(G) > θ(k,n) for n = 2k + 4. If s = 2k + 2, then n = 2k + 6 and q(G) = 3k + 4 +

√

k2 + 12k + 12,
which contradicts q(G) > 3k + 4 +

√

k2 + 12k + 12 for n = 2k + 6. If s = 2k + 3, then n = 2k + 8 and
q(G) = 3k + 6 +

√

k2 + 16k + 24, which contradicts q(G) > 3k + 6 +
√

k2 + 16k + 24 for n = 2k + 8. In what
follows, we consider s ≥ 2k + 4.

Recall that n = 2s − 2k + 2. According to s ≥ 2k + 4, we easily see

(n + 2s − 2)2
− 8s(s − 1) =8s2

− 8(2k − 1)s + 4k2

≥4s2 + 4(2k + 4)s − 8(2k − 1)s + 4k2

=4s2
− 8(k − 3)s + 4k2

≥4s2
− 8(k − 2)s + 8(2k + 4) + 4k2

=(2s − 2k + 4)2 + 32k + 16

>(2s − 2k + 4)2

=(n + 2)2

and
−sn + 2kn + n + s2

− 2ks + 4s − 10k − 5 = −(s − 2k − 1)(s − 2k − 3) < 0.

Combining these with (9), s ≥ 2k + 4 and n = 2s − 2k + 2, we deduce

φ(q2) = − (s + 2k + 1)n2 + (3s + 2k + 4)sn + 7(2k + 1)n − 2s3
− (20k + 8)s − 14(2k + 1)

+ (−sn + 2kn + n + s2
− 2ks + 4s − 10k − 5)

√
(n + 2s − 2)2 − 8s(s − 1)

< − (s + 2k + 1)n2 + (3s + 2k + 4)sn + 7(2k + 1)n − 2s3
− (20k + 8)s − 14(2k + 1)

− (s − 2k − 1)(s − 2k − 3)(n + 2)

= − 2s3 + (8k + 6)s2
− (8k2 + 4k − 12)s − (2k + 1)(8k + 16)

:=p(s). (10)

Let p′(s) and p′′(s) denote the derivative and the second derivative of p(s), respectively. We easily see

p′(s) = −6s2 + 2(8k + 6)s − 8k2
− 4k + 12

and
p′′(s) = −12s + 2(8k + 6).
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Recall that s ≥ 2k + 4. Then p′′(s) = −12s + 2(8k + 6) ≤ −12(2k + 4) + 2(8k + 6) = −8k − 36 < 0, which implies
that p′(s) is decreasing in the interval [2k + 4,+∞). Thus, p′(s) ≤ p′(2k + 4) = −6(2k + 4)2 + 2(8k + 6)(2k +
4) − 8k2

− 4k + 12 = −12k − 36 < 0, which yields that p(s) is decreasing in the interval [2k + 4,+∞). Thus,
p(s) ≤ p(2k + 4) = −2(2k + 4)3 + (8k + 6)(2k + 4)2

− (8k2 + 4k − 12)(2k + 4) − (2k + 1)(8k + 16) = 0. Together
with (10), we infer φ(q2) < p(s) ≤ 0, which implies q(G) = q2 < θ(k,n), a contradiction to the condition. This
completes the proof of Theorem 1.1. □

4. Concluding remark

In this section, we claim that the bounds derived in Theorem 1.1 are best possible.

Theorem 4.1. Let k and n be two nonnegative integers with n ≡ 0 (mod 2), and let θ(k,n) be the largest root
of x3

− (3n + 2k − 7)x2 + (2n2 + 6kn − 7n − 24k)x − 2(2k + 1)(n − 3)(n − 4) = 0. Then:
(i) For n ≥ 2k+4 and n < {2k+6, 2k+8}, we have q(K2k+1∨(Kn−2k−3∪2K1)) = θ(k,n) and K2k+1∨(Kn−2k−3∪2K1)

is not k-extendable.
(ii) For n = 2k+6, we possess q(K2k+2∨4K1) = 3k+4+

√

k2 + 12k + 12 and K2k+2∨4K1 is not k-extendable.
(iii) For n = 2k+ 8, we admit q(K2k+3 ∨ 5K1) = 3k+ 6+

√

k2 + 16k + 24 and K2k+3 ∨ 5K1 is not k-extendable.

Proof. (i) Consider the partition V(K2k+1∨(Kn−2k−3∪2K1)) = V(K2k+1)∪V(Kn−2k−3)∪V(2K1). The corresponding
quotient matrix of Q(K2k+1 ∨ (Kn−2k−3 ∪ 2K1)) is equal to

B1 =

 n + 2k − 1 n − 2k − 3 2
2k + 1 2n − 2k − 7 0
2k + 1 0 2k + 1

 .
Then the characteristic polynomial of the matrix B1 is equal to x3

− (3n+ 2k− 7)x2 + (2n2 + 6kn− 7n− 24k)x−
2(2k+ 1)(n− 3)(n− 4). In terms of Lemma 2.5, the largest root θ(k,n) of x3

− (3n+ 2k− 7)x2 + (2n2 + 6kn− 7n−
24k)x−2(2k+1)(n−3)(n−4) = 0 equals q(K2k+1∨ (Kn−2k−3∪2K1)). Namely, q(K2k+1∨ (Kn−2k−3∪2K1)) = θ(k,n).
Write S = V(K2k+1). Then o(K2k+1 ∨ (Kn−2k−3 ∪ 2K1)− S) = 3 > 1 = (2k+ 1)− 2k = |S| − 2k. By virtue of Lemma
2.1, the graph K2k+1 ∨ (Kn−2k−3 ∪ 2K1) is not k-extendable.

(ii) Consider the partition V(K2k+2 ∨ 4K1) = V(K2k+2) ∪ V(4K1). The corresponding quotient matrix of
Q(K2k+2 ∨ 4K1) equals

B2 =

(
4k + 6 4
2k + 2 2k + 2

)
.

Then the characteristic polynomial of the matrix B2 is x2
− (6k + 8)x + (2k + 2)(4k + 2). It follows from

Lemma 2.5 that the largest root of x2
− (6k+ 8)x+ (2k+ 2)(4k+ 2) = 0 equals q(K2k+2 ∨ 4K1). Thus, we possess

q(K2k+2∨4K1) = 3k+4+
√

k2 + 12k + 12. Let S = V(K2k+2). Then o(K2k+2∨4K1−S) = 4 > 2 = (2k+2)−2k = |S|−2k.
Applying Lemma 2.1, the graph K2k+2 ∨ 4K1 is not k-extendable.

(iii) Consider the partition V(K2k+3 ∨ 5K1) = V(K2k+3) ∪ V(5K1). The corresponding quotient matrix of
Q(K2k+3 ∨ 5K1) is equal to

B3 =

(
4k + 9 5
2k + 3 2k + 3

)
.

Then the characteristic polynomial of the matrix B3 equals x2
− (6k+ 12)x+ (2k+ 3)(4k+ 4). Utilizing Lemma

2.5, the largest root of x2
− (6k + 12)x + (2k + 3)(4k + 4) = 0 is equal to q(K2k+3 ∨ 5K1). Thus, we deduce

q(K2k+3 ∨ 5K1) = 3k+ 6+
√

k2 + 16k + 24. Write S = V(K2k+3). Then o(K2k+3 ∨ 5K1 −S) = 5 > 3 = (2k+ 3)− 2k =
|S| − 2k. It follows from Lemma 2.1 that the graph K2k+3 ∨ 5K1 is not k-extendable. □
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[16] M. Kano, G. Y. Katona, Z. Király, Packing paths of length at least two, Discrete Math. 283(2004)129–135.
[17] A. Kelmans, Packing 3-vertex paths in claw-free graphs and related topics, Discrete Appl. Math. 159(2011)112–127.
[18] W. Liu, M. Liu, L. Feng, Spectral conditions for graphs to be β-deficient involving minimum degree, Linear Multilinear Algebra

66(4)(2018)792–802.
[19] H. Liu, X. Pan, Independence number and minimum degree for path-factor critical uniform graphs, Discrete Appl. Math.

359(2024)153–158.
[20] D. Lou, Q. Yu, Connectivity of k-extendable graphs with large k, Discrete Appl. Math. 136(2004)55–61.
[21] X. Lv, A degree condition for graphs being fractional (a, b, k)-critical covered, Filomat 37(10)(2023)3315–3320.
[22] P. Maschlanka, L. Volkmann, Independence number for n-extendable graphs, Discrete Math. 154(1996)167–178.
[23] H. Matsuda, Fan-type results for the existence of [a, b]-factors, Discrete Math. 306(2006)688–693.
[24] T. Niessen, Neighborhood unions and regular factors, J. Graph Theory (19)(1)(1995)45–64.
[25] S. O, Spectral radius and matchings in graphs, Linear Algebra Appl. 614(2021)316–324.
[26] M. Plummer, Extending matchings in claw-free graphs, Discrete Math. 125(1994)301–307.
[27] M. Plummer, Matching extension and the genus of a graph, J. Combin. Theory Ser. B 44(1988)329–337.
[28] M. Plummer, On n-extendable graphs, Discrete Math. 31(1980)201–210.
[29] A. Robertshaw, D. Woodall, Binding number conditions for matching extension, Discrete Math. 248(2002)169–179.
[30] Y. Shen, L. You, M. Zhang, S. Li, On a conjecture for the signless Laplacian spectral radius of cacti with given matching number,

Linear Multilinear Algebra 65(2017)457–474.
[31] D. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42(1974)8–12.
[32] W. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107–111.
[33] J. Wu, A sufficient condition for the existence of fractional (1, f ,n)-critical covered graphs, Filomat 38(6) (2024) 2177–2183.
[34] J. Wu, Characterizing spanning trees via the size or the spectral radius of graphs, Aequationes Math. 98(6) (2024) 1441–1455.
[35] L. You, M. Yang, W. So, W. Xi, On the spectrum of an equitable quotient matrix and its application, Linear Algebra Appl. 577

(2019) 21–40.
[36] W. Zhang, Matching extendability and connectivity of regular graphs from eigenvalues, Graphs Combin. 36(1) (2020) 93–108.
[37] Y. Zhang, H. Lin, Perfect matching and distance spectral radius in graphs and bipartite graphs, Discrete Appl. Math. 304 (2021)

315–322.



S. Zhou, Y. Zhang / Filomat 39:2 (2025), 649–657 657

[38] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010) 566–570.
[39] S. Zhou, A neighborhood union condition for fractional (a, b, k)-critical covered graphs, Discrete Appl. Math. 323 (2022) 343–348.
[40] S. Zhou, Degree conditions and path factors with inclusion or exclusion properties, Bull. Math. Soc. Sci. Math. Roumanie 66(1)

(2023) 3–14.
[41] S. Zhou, Some results on path-factor critical avoidable graphs, Discuss. Math. Graph Theory 43(1) (2023) 233–244.
[42] S. Zhou, Q. Bian, Z. Sun, Two sufficient conditions for component factors in graphs, Discuss. Math. Graph Theory 43(3) (2023)

761–766.
[43] S. Zhou, H. Liu, Two sufficient conditions for odd [1, b]-factors in graphs, Linear Algebra Appl. 661 (2023) 149–162.
[44] S. Zhou, Q. Pan, L. Xu, Isolated toughness for fractional (2, b, k)-critical covered graphs, Proc. Rom. Acad. Ser. A Math. Phys.

Tech. Sci. Inf. Sci. 24(1) (2023) 11–18.
[45] S. Zhou, Q. Pan, Y. Xu, A new result on orthogonal factorizations in networks, Filomat 38(20) (2024) 7235–7244.
[46] S. Zhou, Z. Sun, H. Liu, Distance signless Laplacian spectral radius for the existence of path-factors in graphs, Aequationes Math.

98(3) (2024) 727–737.
[47] S. Zhou, Z. Sun, H. Liu, Some sufficient conditions for path-factor uniform graphs, Aequationes Math. 97(3) (2023) 489–500.
[48] S. Zhou, Z. Sun, Y. Zhang, Spectral radius and k-factor-critical graphs, J. Supercomput. 81(3) (2025) 456.
[49] S. Zhou, Y. Xu, Z. Sun, Some results about star-factors in graphs, Contrib. Discrete Math. 19(3) (2024) 154–162.
[50] S. Zhou, Y. Zhang, H. Liu, Some properties of (a, b, k)-critical graphs, Filomat 38(16) (2024) 5885–5894.
[51] S. Zhou, Y. Zhang, Z. Sun, The Aα-spectral radius for path-factors in graphs, Discrete Math. 347(5) (2024) 113940.


