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A comprehensive study of refined Hermite-Hadamard inequalities and
their applications
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Abstract. In this article, we explore a novel class of Hermite-Hadamard inequalities via exponential
type convexity. To establish the main results, we primarily use Holder’s inequality, the power mean
inequality and some generalized associated inequalities. These inequalities have strong applicability in
inequalities and optimization theory. Moreover, we compare the main findings to demonstrate that the
Holder-.Isan inequality can yield more refined results than Holder’s inequality and the improved power
mean inequality can offer better refinements of Hermite-Hadamard inequalities than the power mean
inequality. Additionally, we provide some applications for generalized means.

1. Introduction

The concept of convexity can be traced back to the ancient Greek mathematician Archimedes (287
BC-212 BC). In his work “On the Sphere and Cylinder”, he considers a convex arc as a bent line in a
plane that completely lies on one side of the line joining its extreme points [29]. Major developments
in convex functions and their applications started more than a century ago. Fundamentally, convexity
arises in geometry [26], with vast applications, particularly in physics [12], chemistry [16], optimization
problems [5], DC programming [22], convex programming [30] and also in mathematical disciplines such
as functional analysis [13], monotone operators [2] and complex analysis [25].

There are many inequalities that find wide application in numerous scientific and mathematical prob-
lems, such as Jensen’s inequality [21], the power mean inequality [19], the Cauchy-Schwarz inequality [24],
Bell’s inequality [3], Boole’s inequality [? ], the Sobolev inequality [14] and Chernoff’s inequality [4]. While
various types of inequalities exist, convex inequalities play a vital role in this field. The Hermite-Hadamard

(H — H) inequality is one of these well-known inequalities, applicable to a convex function ¢ : [0, ®] = R
and defined by
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This inequality has many applications in various areas of mathematics which include convex analysis
[9], fuzzy fractional calculus [15], special means [11, 23], physics [10]. It is also helpful in proving other
mathematical inequalities. Due to it’s usefulness and properties, many researchers have studied this vital
inequality. Several refinements in Hermite-Hadamard inequality have been explored, such as it’s gen-
eralization to n-intervals [27], weighted Hermite-Hadamard inequality [28]. In this paper, we dedicate
ourselves to obtaining some new refined inequalities of Hermite-Hadamard inequality using a new con-
vexity. The fundamental definitions and some basic concepts required to maintain the flow of this work
are presented below.

Definition 1.1. [20] A function i : I — R is known as a convex function if it satisfies the following inequality
P+ A = nw) < np(u) + (1 - (),

wheren € [0,1] and p,w € L

Definition 1.2. [17] A function i : I — R is called as an exponential type convex function if
Y+ (1= na) < € =Dy + €7 - Dy(w),

wheren € [0,1] and p,w € L

Remark 1.3. The exponential-type convex functions have a range of [0, o0). For the proof, we refer the reader to [17].

Theorem 1.4. (Holder integral inequality [6]). Suppose that 1 and Z are real-valued mappings defined on closed
interval [0, ®]. If [P and |2|7 are integrable over [0, @], then

f (w(u)E(y)IdMS( f |¢<u>|”du)"( f |E<y)|qdu)q,

wherep > 1and ; + ¢ = 1.

Theorem 1.5. (Power-mean integral inequality [6]). Let i and E be the real-valued mappings defined on [0, ®]. If
[y, [YIIE|T are integrable on [0, @], then

@ ) 1—% @ %
f 1¢<u>a(u>|dus( f Iw(mldu) ( f 11#(#)118(/1)1%)

The following inequality is the improved form of Holder inequality known as the Holder-Iscan inequality
presented in [7].

Theorem 1.6. Let 1 and E be real mappings defined on closed interval [o, ®]. If Y|P and |E)7 are integrable over
[o, @], then

fg (=) du < — L - [( f (@ - |y’ du)p ( f (@ - B’ du)q

+( f (u=0) |¢<y>|qdu)p ( f (u=0) IE(H)quH)ql,

wherep>1and%+%:l.

The following theorem presents an improved form of power-mean inequality, also known as improved
power-mean integral inequality given in [18].
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Theorem 1.7. Let 1 and E be the real-valued mappings defined on closed interval [o, ®]. If ||, [Q||E) are integrable
on [0, @], then

[ )
1 @ 1*% @ %
sm_aﬂl:@—uWme@ (i}w—mMmMame)
o) 1—*
+(fw—mwwwﬁ (fw wthww)l

where q > 1.

The following lemma was proved by Iscan in [8].

Lemma 1.8. Let the mapping ¢ : I° ¢ R — R be a differentiable mapping on I°, o,@ € I° with o < @, C € N and
Jel{o,1,..C—1}. Ifyb € L[o, @], then the below equality holds true

Ie(y, 0, @)

_ 1 (C-)o+lo C=1-Do+(@+1)
-gxP( ) C ﬂ ots ) v

-1
_yo- U(l zn)lp(w (1_n)(C—J—1)2+(J+1)@)dn]_

Researchers are continuously working in the field of inequalities, which are extensively used in analysis
and convexity theory. Inspired by new extensions of these inequalities, this paper focuses on refinements
related to the Hermite-Hadamard inequality via exponential-type convexity. This is a first ever novel class
of refinements of Hermite-Hadamarad inequalities. The limiting cases of the main findings are presented
in terms of corollaries. Practical applications of the explored results are provided in terms of means.

2. Main Results for Exponential Type Convex Functions

In this section, we study novel general inequalities of Hermite-Hadamard type for exponential type
convex functions by applying Holder’s inequality, power mean inequality and their improved forms.

Theorem 2.1. Suppose that the mapping ¢ : I ¢ R — R is differentiable on I°, o, € I° with o < @. If |Y'|7 is an
exponentially convex mapping on [0, @] for a certain q > 1, then the inequality

-1

cD -—
|IC(¢/O—/(D)| < ;O ZCZ (1+p) ( _2)1
‘¢ (C—J)G+J(D +’¢,((c—3—1)2+(3+1)@)qr O
is satisfied.
Proof. Applying Lemma 1.8, we can write
(¥, 0, @)
-1 1
®—-0 A (C=Do+1lo C-1-Do+(+ N
< ;‘ 20 -2y (Uf +(1=1) z ) dn).
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Applying Holder’s inequality, we get
: :
ey, 0,0) < 2 20 (fo n- 2n|”dq)
'(n(C—J)a+J(D (c—1—1)0+(3+1)@)

[ 0 C C

Since, || is exponential type convex function, so
1 ;
Ie(,0,0) < Z ([ -z
1 _ q
oo
0 c

J—1)a+(:i+1)co)
C

+(1-1)

T
dn].

NIRRT
Jin

e -1) \w ©

1

- LD_ 1 ;
552 n-are
U o 1)‘¢ J)o+3®)

f A 1)‘¢ 1)z+(3+1))

C-1 1
o—-ocf 1 Y 1
L (m) (=2

=0

dn

%
dr]]

(€ =)0+ o
[“” C )

Hence the result is proved. O

q
+‘¢,((c—3—1)2+(1+1)@)

‘7]}7

Corollary 2.2. If we apply exponential type convexity of [i'| in inequality (1) again, then we arrive at

-1 1
I 0,0 < Y, 5o (1+p) -2)!

1=0

et =)+ (= 1) @]

Corollary 2.3. If we set C = 1 in Corollary 2.2, we obtain

Yo rp@ 1 [
O Mo

-0

> ( )[(e—2><e—1>(|¢<o>|q+|¢<o>|q)]

-

686
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Corollary 2.4. If C = 2 is set in Corollary 2.2, it reduces to

4@ +9@)  oral 1 (°
H O gt L [ w(u)du‘

®—0
<
8

(ﬁ) =2 [((e~ 1) +2(ve - D) (W @I + 19 @)F)]

Theorem 2.5. Suppose that the mapping 1 : I ¢ R — R is differentiable on I°, o, € I’ with 0 < @. If [Y'|7 is
exponential type convex on [0, @] for a certain q > 1, then the following inequality holds true

-1 1

®—0 7\

e, 0,0) < Y ZZJ(—e+4vz_§)
1=0 q

@—m+m

@—J—Da+@+hmy

‘1# i ] - )

[

Proof. Applying Lemma 1.8 and then using power-mean inequality, we obtain

(i, 0, @)l
-1
@—-0 (C—=Do+lo C-1-Do+(+ o
< 32:_;‘ oz [ ( —C +(1-1n) C ) dn]
S o-a (" o
L% |1_2,7|d,7)

1 () R C-1-1Do+(0+ Do
Lgll—ZﬂP’&———éL——-Hl—n) Z )

T
dr]].

Since [i)'|7 is exponential type convex on [0, @], therefore

-1 1 1-1 1 7
' (C=o+ 1o
(¥, 0, @) < (ZU (£|1—2ﬂdﬂ L£|1—mﬂ0w—14¢(i__%L__)

1=0
NET
Jin

J—l)a+(J+1)(D)
C

“1 1
Lo (f - 2'7|d’7)

J=

q
[j‘h 2ﬂ@"'nh __j%jﬁq

1 _ , @—J—no+@+n@)
f— 1 f—
+l:h 2n] (' DP} z
-1
[0)

1

o)

_,,_1)‘1#/(@

1
14

dn

'Y
dn]

21
=0 27 C?
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Corollary 2.6. If exponential type convexity of |Y’|7 is applied again in Theorem 2.5, we obtain

(C—J)G+Jca

+‘¢,((C—J—1)Z+(J+l)m)

[

Hence the required result is proved. [

-1

It

M
ik

7\i
(), 0,@)] < ; (—e+4\/E— z)

{e= -1+ (6 ) (e 1)+ (2 - )@l

Corollary 2.7. If we set C = 1 in Corollary 2.6, we obtain

YO @ 1 [
OO L " g
<

<22 (corave-Z) [e-n (Wi v @r)]

Il
”o

Corollary 2.8. If we set C = 2 in Corollary 2.6, we get
LY@ +Y@) o+ 1 (°
H N T )]—@_afa V(i
< ;

< ‘D;; (—e + 4o ;)" [((e= 1)+ 2(Ve = D) (1w @) + 1y @)P)]-

Theorem 2.9. Suppose that the mapping 1 : I ¢ R — R is differentiable on I°, o, € I’ with 0 < @. If [Y'|7 is
exponential type convex on [o, @], then the following inequality

1
<  —

Ie(y, 0, @)] < Z 202 (2(p+1))

2¢e=5| . ((C-)o+lo
X{( 2 (% |

(C—J)o+J(D)

ey

q

)

( J—1)0+(J+1)ca)

1
5l

?

2e -5 c-1-1 I+ Do
L2 |¢(( )cé+<+>)

(3¢

is true, where % + % =1.

Proof. Applying Lemma 1.8 and Holder-Iscan inequality in Theorem 1.6, we get

(¥, 0, @)|
, ( C=Do+lo
T

Cch O[fl

Lo |, C
@—0 1 . ;
= fo (1= )it - 2qPdn

+(1-mn)

o

(C—J—l)o+(J+1)ca)
C

:

[y

IA

1=0
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1 ] %
x(f (1—17)‘1;,’(,7@ +(1_n)(C—J—1)a+(J+1)@) d’?)
0

C
1 ;
+(f il —217|”dr])
0

L, —Jo+1
(ﬁﬂw(ﬂ(c Yo + Jo

c
Using exponential type convexity of [¢/'|7, we get

C 1
W oo)< Y, o [( f - n)l1—2nl”dn)

=0

(f(l "e 1)‘¢ J)a+Jca)

_,,_1)‘1!/ (C—J—l)(2+(3+1)@)

1 5
+( f nit —217|”dn)
(fl (e” ‘I]D Do + JcD)

(C—J—1)0+(J+1)w)
C

+(1-mn)

(C—J—l)o+(3+1)ca)
C

qdn);}

Ja)

"N
el Jof|
_ZO- 20 (2(p+1))

1 Do+
(foa e 1)‘1#(( o+ ‘D

f(l—n)(el . 1)’¢ ((C 1)a+ J+1)@)

(e (22

+f n(el-’7—1)‘¢’ —J—1)Z+(J+1)@)

- Z 202 (2(p n 1))

(2e—5’¢,((c—1)a+3@)"

X

)
d,ﬂ

?i
q)q]'

X

2 C c

+%’¢((C—J—1)a+(3+1) )

1| f(C=-Do+W\" 2e-5| . ((C-1-Do+(+ 1D
+(5‘¢( C )+ 2 "”( C )
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Hence the required inequality is proved. [

Corollary 2.10. If we apply exponential type convexity of |/'|1 in Theorem 2.9 again, it gives

Iy, 0, @) CZ;. 2 (2(P+1))p
(25265 1) e -)or
(B ) 3 v
A0 e
R Ee ]

Corollary 2.11. If we set C = 1 in Corollary 2.10, we obtain

IIJ(O)J”P(CD -0 l
‘ o= o*f l’b(”)d”‘ 2 (2(p+1)) =1
(2o diston) + (Glvor+ 252 wor) |
Corollary 2.12. If we set C = 2 in Corollary 2.10, we get
1[¢(0) + (@) o+ @ 1 @ o-of 1\
B[HE 2] - 51 [ v« 25 ()
[{(26 5(e—1)+(e—z)(\/é—l))|¢’(a)(q+

(L= 1+ €205 )y @)

+H{(3e-1+Ce-2(Ve- D)l @) +

(2e

In the upcoming proposition, a proof by comparison is provided to establish the more refined inequality
between Theorem 2.1 and Theorem 2.9.

2= 1)+ - 2)(Ve- D) |¢’<ca>|q}”}.

Proposition 2.13. The inequality (3) is the refined form of inequality (1). Since the mapping « : [0,00] — R,
x(u) = p', where 1 € (0,1], is a concave mapping, so

R R

forall 6,& 2 0.

(4)

By substituting the following values in inequality (4)

1,  (C=-1-Do+(0+Da)|
z"”( C )

2e—

7

(C—J)G+JcD)

o
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2¢e-5, , ((C-31-1 1+ Do
+62 W(( ﬁ+(+ﬁw

a+J<D)

e= 3w (€

and 1 = }], it gives

q];
1
fi}q

Ze—

@—Da+hj @—J—na+u+nm)

1, .
+§W ( T
Ze— ‘lp ( —J—l)cg+(3+1)ca)

1
5 “P

1
§|¢

@—Ja+kj

<(e-2)i

: ( (C—i)éma )|‘7 N | W ( (C—J—l)qc+(3+1)w )|‘7 ‘ §
2

Therefore

1
= W—=0

202 (2(17 + 1))
(Ze

iy

-1 1

1 1
2C (m) e
a7
x[ ] |

lP,((C—J)owmq
c

Theorem 2.14. Suppose that the mapping ¢ : I ¢ R — R is differentiable on I°, o, € I° with o < @. If P’|7 is

exponential type convex mapping on [0, @], then for g > 1 the following inequality

o=y 22 (1)
=0

[{ 12€+4O Ve — (C—J)G+J®)

1=

==

q

)

Jm+m)
X

((C—J—l)o+(3+1)@)

1
+51v

2l

N

|

2¢—5 C-1-Do+(+ o

+F(@_J_DZ+O+D®)

\¢

+&—2ﬂfﬂn9h/(c—3—nz+u+n@)

+{&-a4va+wkﬁ(@—ma+qu

1
ﬂ}q
1
ﬂ}q

4 C

+—126+4Z\/E—33 l¢,((c—3—1)z+(3+1)@)

is satisfied.
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Proof. Applying Lemma 1.8, we get
c(y, 0, @)l

+(1-mn)

((C—J)G+JCD

(C—J—l)o+(3+1)w)
C

C

Applying improved power-mean inequality, we arrive at

-1 1 -
e, 0,@) < ) @2; [( fo 1 -mll - 2n|df7)

=0

1 (€= +] TIPS
x{f (1—17)|1_2,7|‘¢ (U(C)# +(1—77)(C 1)<z+( +1)(D)

[N

dn}
q g
dr]}

+ nll 2nldn)

x nll 2’7|‘¢ %41—@@‘3‘”?(“1)@)

-1 1

w—0

DN=TE

9 N\i
{f(l - 2n|‘¢ J)a+3w (1_n)(c—1—1)z+(3+1)@) dn}

~ ([ C=Do+lo . (C-I-Do+(+Da)l }W
+{f0 1 277|‘1P (n—c +(1 = 1) : )dn ]

Since [¢/'|7 is exponential type convex, so it gives

1,0, 0)l < Z = 71y

[{f (1-n)1-21]

_3_ Y

1)‘¢ J)a+J(D) —"—1)‘¢’((C ] 1)z+(3+1)@) )dn}
+{f 17|1—217|

_ Y

1)‘¢ J)a+JcD) (61,7_1)‘¢, (c 3 1)z+(3+1)@) )dn}]

S Do +3
=Z@2Cf i [{ f (=t -2e] - 1)‘1# Bt ‘D) d
=0

%
dr]}

1 s -
+£(1—ﬂ)‘1—2n‘(61—1]_1)|¢ ((C )(24-( + )(D)

i

692
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1 (@C=Yo+o)|
RETRNS S

1
B 1-n _ AC=-1-Do+(+ 1o
+[) r]|1 2r]|(e N 1)‘1#( C )

_Z 20 (Z)

[{—12e+40\ﬁ—33 ‘¢/((C—J)G+J®)q

dn

qmyl

4 c

 Be=24+e+19 ’lp,((g_J_l)ﬁ(JH)(D)q}é
4 C
+{8@—24\/E+ 19 ‘lp,((g_J)“J@)q
4 C
_1Ze+40\/2—33| ,((C_3_1)0+(3+1)@)q}3
+ n 1,[) e

Hence the required result is obtained. [J

Corollary 2.15. If we again apply exponential type convexity on Theorem 2.14, it gives

1,0, |<Z = o[y

[{(—1ze+4o\[—33(€%_:_1)+8e—24\/5+19( et ))|¢ o

4 4
. (—1Ze + 42 Ve-33 (¢ 1)+ 8¢ — 244«/2 +19 (¢ - 1)) |¢'(@)|q}q
+{(8e—244\/5+ 19 (% -1)+ ~12¢ +4Z\f 33 (¢ )) W

4 4

[ o BB |

Corollary 2.16. If we set C = 1 in Corollary 2.15, we get

1 @ —o 1\ 1
¢(o);¢(m) —@_Gfg ‘#(#)dy’s ®-9 O-(Z) (e—1)7

[(—123 +40+e - 33

el TG ——35[15ﬂ¢<W)

+( 24\f+19 WOl +

12e+40\/_ 33 v |)ql.

Corollary 2.17. If we set C = 2 in Corollary 2.15, we get

1[¢(0) + Y(@) o+ @ 1 @
z[ @) o 4—@_Gl:¢wwus

693
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[(EEEEE IR S 1>)|¢<0>V
e . 218 )
+{(8e—24\/'+19(_1) M(xf 1))!¢<0>|q

Ze+8\/_ 7

—12¢ + 40 Ve —
+( e+40 e 33(8_1)

. (Ve- 1))1¢ <@>)‘7}

694

Proposition 2.18. The inequality (5) is the refined form of the inequality (2). It can be proved similarly as Proposition

2.13.

3. Applications to Different Means

Mean is the average number used to summarize the numerical data to a single value. They are widely
used in mathematics, statistics, economics and other calculations. In this section, we utilize the new

inequalities of Section 2 to obtain the relations for the following means.
Arithmetic mean:
Leto,@ € R,

o+
o, > 0.

A=A(0,®) = > >

r-Logarithmic mean:
Leto,@ € R,

o, ifo=wm; %
LT(G/ (D) = r+1_ sr+l % . re \{_1/ 0}/ UILD > O
(Fr) oo,

Proposition 3.1. Suppose that 0, € R, 0 < 0 < @, n € N where n > 2. So for all g > 1, the inequality

o1, ((C-Yo+o) (C-1-Do+@+Do\") .,
§ZA(( C )( C ))’L”(""D’

-1 1
no-o) 1 V 1
<2 ) e

[{(6% - 1) + (e% - 1)} o= 4 {(e% - 1) + (e’%l _ 1)}®(n—1)q]

is satisfied.

T

Proof. If we substitute y(u) = u" where u € [0, @], n € N and n > 2 in Corollary 2.2, the proof follows.

Proposition 3.2. Suppose that 0,0 € R, 0 < 0 < @, n € N, where n > 2. So for all q > 1, the inequality

c

Z_A(((C—J)g+1@) I((c—1—1)2+(3+1)@) ) L'(6,0)

Z‘n(m a)( 4\/5_2)5

O
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is satisfied.
Proof. If we substitute (1) = u" where p € [0,®], n € N and n > 2 in Corollary 2.6, the proof follows. [

Proposition 3.3. Let o,@ € R, 0 <0 < @, n € N where n > 2. So for all q > 1, the inequality

o1 ((C-Yo+\" (C-I1-Do+@+Da)) .,
;ZA(( C )( C ))’L"(“"”)

« n(® — o) 1 ’
5 ZO 2 (2<p+1>)

(P52 ) 5 1))t
1

holds.

Proof. If we substitute ¢(u) = u” where p € [0, @], n € N and n > 2 in Corollary 2.10, the proof follows. [

4. Conclusions

In this paper, we have established generalized inequalities of the Hermite-Hadamard type in terms of
exponential-type convex functions. We compared the results obtained using Holder’s inequality and power-
mean inequality with the consequences established via Holder-Iscan inequality and improved power-mean
inequality. By comparing the outcomes, we concluded that the inequalities achieved by the Hoélder-Iscan
inequality and improved power-mean inequality are more refined than those explored using Holder’s
inequality and power-mean inequality. Theorem 2.9 refines the result of Theorem 2.1 and Theorem 2.14
improves upon Theorem 2.5. In short, we concluded that H”older-.Isan inequality can yield more refined
results than H”older’s inequality and the improved power mean inequality can offer better refinements of
Hermite-Hadamard inequalities than the power mean inequality. We also derived special cases of these
inequalities. Finally, we demonstrated the relation of these new results to some special means. Furthermore,
these inequalities can prove useful in addressing other mathematical problems. Moreover, we hope that
these new results will contribute to further refinements using different convex functions.
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