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Abstract. The recent introduction of significant features in conformable integrals and derivatives has paved
the way for advancements in the field of fractional calculus [1–4]. This study provides a comprehensive
exploration of this emerging area, with a particular focus on the various definitions and distinct fractional
derivatives that have been proposed. Of particular interest is the concept of ”new conformable derivatives,”
as introduced in [1], which we thoroughly investigate.

(DαF) (t) = liml−→0
F(t+le(α−1)t)−F(t)

l ,

where α ∈ (0, 1], this derivative is explored in terms of its origin, unique characteristics, and how it com-
pares to other conformable fractional derivatives. Furthermore, the study extends its analysis to the practical
applications of these derivatives in financial mathematics. Specifically, we examine the construction of a
new fractional Black-Scholes option pricing model, highlighting the potential of these mathematical tools
in addressing complex problems in finance. This investigation not only enriches the theoretical framework
of fractional calculus but also opens up new avenues for applying these concepts in real-world scenarios.

1. Introduction

The theory of fractional derivatives is a branch of mathematics with a history that stretches back nearly
as far as classical calculus itself. Its origins can be traced to the late 17th century, a period when Sir Isaac
Newton and Gottfried Wilhelm Leibniz were laying down the foundational principles of differential and
integral calculus that have become central to modern mathematics. Leibniz, in particular, contributed
significantly to this emerging field by introducing the notation dn f

dtn to represent the nth derivative of a
function f . This notation, which is now a fundamental aspect of calculus, was originally intended to apply
where n was a natural number.

However, even in its infancy, the concept of extending these operators to non-integer, or fractional, orders
was considered. In a famous letter dated September 30, 1695, Leibniz posed the question to L’Hôpital about
the meaning of a derivative of order 1

2 . This seemingly abstract query laid the groundwork for what would
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become the field of fractional calculus, an area of study that explores the generalization of integrals and
derivatives to non-integer orders.

While the initial reaction to fractional derivatives was largely theoretical and speculative, the concept
gradually gained mathematical rigor and practical significance over the centuries. The development of
fractional calculus was not linear but rather sporadic, with contributions made by various mathematicians
over different periods. Notable figures such as Euler, Fourier, and Liouville made significant strides
in the 18th and 19th centuries, each building upon the work of their predecessors and expanding the
understanding of fractional operations.

In the 20th and 21st centuries, fractional calculus has found numerous applications across a wide range
of fields, including physics, engineering, finance, biology, and control theory. The fractional derivative
offers a more accurate modeling tool for systems that exhibit anomalous behavior or memory effects, where
the rate of change is not adequately described by integer-order derivatives. For example, in viscoelastic
materials, diffusion processes, and chaotic systems, fractional derivatives can describe phenomena where
the current state depends not only on the immediate past but on the entire history of the process.

This growing importance of fractional calculus in applied mathematics has led to the development
of various definitions and approaches to fractional differentiation and integration, such as the Riemann-
Liouville, Caputo, and Grünwald-Letnikov derivatives, each suited to different types of problems and
applications. As research continues to evolve, fractional calculus is being increasingly recognized as a
valuable tool in both theoretical investigations and practical applications, providing deeper insights into
the behavior of complex systems.

Thus, what began as an abstract question posed by Leibniz has grown into a comprehensive and
indispensable field, with fractional derivatives offering a powerful extension to the traditional calculus
that has shaped much of modern mathematics and science. As this field continues to develop, it promises
to yield even more profound applications and insights, further solidifying its role in both theoretical and
applied mathematics.

The first comprehensive formalization of these local operators emerged in 2014, marking a pivotal
advancement in the field of fractional calculus. This development introduced a differential operator that
significantly transformed non-integer order calculus.

This breakthrough addressed several limitations associated with global operators. In their influential
paper ”A New Definition of the Fractional Derivative” (refer to [2]), R. Khalil and colleagues introduced
the innovative concept of the ”Conformable Derivative.” This new definition aimed to refine and enhance
the understanding and application of fractional derivatives, leading to improved solutions and insights in
fractional calculus. The conformable derivative represents a substantial shift in the approach to fractional
differentiation, facilitating more accurate and effective handling of various mathematical and engineering
problems.

Let α ∈ (0, 1] and F : (0,+∞)→ R. The conformable derivative of order α at t0 > 0 is defined by

D
(α)F(t0) = lim

ε→0

F
(
t0 + εt1−α

0

)
− F(t0)

ε
, (1)

if this limit exists.
Indeed, this novel approach to differentiation maintains all the standard properties of classical differen-

tiation, except for the semigroup property. While R. Khalil et al. are credited as the pioneers of this new
concept, T. Abdeljawad played a crucial role in establishing its theoretical framework through his seminal
paper, ”On the Conformable Fractional Calculus” [3].

Further advances were made by A. A. Abdelhakim in 2019, who demonstrated in his paper [4] that
the existence of the limit defining the conformable derivative is equivalent to the conventional notion of
differentiability. His work not only reaffirmed the fractional nature of the approach but also highlighted its
theoretical significance, as originally established by R. Khalil, T. Abdeljawad, and other contributors.

This ongoing development has sparked considerable debate among researchers. Proponents argue that
the conformable fractional derivative provides a more intuitive and applicable framework for fractional
calculus, while critics question its generality and applicability compared to traditional fractional calculus
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methods. This discourse continues to shape the field, reflecting both the potential and the challenges of
integrating new concepts into established mathematical theories.

This dissertation examines the article by D. R. Anderson and D. J. Ulness, published in 2015, titled
”Newly Defined Conformable Derivatives” [5]. The definition presented in their work builds upon the
conventional notion of differentiability and extends the approach originally introduced by R. Khalil et al.
In this dissertation, we first review the concept of conformable differentiability as defined in [5]. We then
outline the principal calculation rules established in that paper without providing proofs. Following this,
we introduce several new properties of conformable derivatives. Finally, the aim of this dissertation is to
apply and update the results from [1] to develop a new conformable Black-Scholes model.

2. Conformable Fractional calculus

Definition 2.1. Let L : [0,∞)→ R and t > 0. Then the fractional derivative of L of order α is defined by,

D
α(L)(t) = lim

ϵ→0

L
(
teet−α

)
− L(t)

ϵ
, (2)

for t > 0, α ∈ (0, 1). If L is α-differentiable in some (0, b), b > 0, and limt→0+D
α(L)(t) exists, then define

D
α(L)(0) = lim

t→0+
D
α(L)(t). (3)

Theorem 2.2. If a function L : [0,∞)→ R is α-differentiable at b > 0, α ∈ (0, 1], therefore, L is continuous at b.

Proof. Since L
(
beeb−b

)
− L(b) =

L
(
beeb−b

)
−L(b)

ϵ ϵ, we have

lim
ϵ→0

[
L
(
beeb−b)

− L(b)
]
= lim

ϵ→0

L
(
beeb−α

)
− L(b)

ϵ
· lim
ϵ→0

ϵ.

Definition 2.3. [1] Given a function L : [0,∞) −→ R, and then the conformable fractional derivative of L order α is
defined by

(DαL) (t) = lim
k−→0

L
(
t + ke(α−1)t

)
− L(t)

k
, (4)

for all t > 0, and α ∈ (0, 1). If L is α differentiable in some (0, a), a > 0, and limt→0+ (DαL) (t) exists, then define

(DαL) (0) = lim
t−→0+

(DαL) (t). (5)

Theorem 2.4. [1] If a function L : [0,+∞) −→ R and α differentiable at t0 > 0, then L is continuous at t0.

Theorem 2.5. If L be α differentiable at a point t > 0.

1. Dα(aL + bL) = a (DαL) + b (DαL), for all a, b ∈ R.
2. Dα (tn) = ne(α−1)ttp−1 for all n ∈ R.
3. Dα(β) = 0, for all constant L(t) = β.
4. (DαLH) = L (DαH) +H (DαL).
5. (Dα(L/H)) = (L (DαH) +H (DαL)) /H2.
6. If L is differentiable, then (DαL) (t) = e(α−1)tL′(t).
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Proof. (1) to (5) see [1], for (6) we have

(DαL)(t) = limL−→0
L(t+he(α−1)t)−L(t)

h (DαL)(t)

= limε−→0
L(t+ε)−L(t)
εe(1−α)t (DαL) (t)

= e(α−1)t limε−→0
L(t+ε)−L(t)

ε (DαL) (t)

= e(α−1)tL′(t).

3. Application to fractional Black-Scholes model

Mathematicians have long sought to address the intricate problems presented by the financial sector.
These problems often exhibit seemingly erratic behavior, as seen in the volatility and unpredictability of
the stock market. Probabilistic models, adept at managing randomness and uncertainty, are particularly
effective for analyzing such financial phenomena.

In 1973, Fischer Black and Myron Scholes made a significant contribution with their introduction
of a formula for pricing European call options, now known as the Black-Scholes formula. This model
transformed financial mathematics by offering a systematic method for option valuation, taking into account
variables such as the price of the underlying asset, the strike price of the option, the time remaining until
expiration, the risk-free interest rate, and the asset’s volatility. The Black-Scholes formula has since become
a fundamental element in modern financial theory and practice.

Its impact goes well beyond theoretical realms; the formula is widely employed by traders, financial
analysts, and risk managers. The volatility measure derived from the Black-Scholes model has become
a key tool in financial markets, used as a standard for evaluating market conditions and pricing various
financial instruments.

Over time, the Black-Scholes model has been refined and expanded to address its initial limitations and
to integrate additional elements, such as dividends and varying volatility. Despite these advancements,
the original formula remains a crucial and influential tool for understanding and forecasting financial
market dynamics. The ongoing importance of the Black-Scholes model highlights its role in the evolution
of quantitative finance and its lasting influence on financial theory and practice.

3.1. The Black-Scholes Option Pricing equation (1973):

It’s essential to present the Black-Scholes model by detailing the well-known formula that provides the
pricing of European call options in its simplest form, assuming constant parameters. The Black-Scholes
model articulates the formula for the call price C and the put price P as follows:

Ccall = Sϕ(D1) − Xe−RTϕ(D2), (6)

Pput = Xe−RTϕ(−D2) − Sϕ(−D1), (7)

where

D1 =
log(S/X) +

(
R + σ2/2

)
T

σ
√

T
, (8)

D2 = D1 − σ
√

T. (9)

In these equations, S denotes the current price of the underlying asset, while X represents the strike
price of the option. The risk-free interest rate is denoted by R, and T stands for the time remaining until the
option’s expiration. The volatility of the underlying asset is given by σ, which measures the asset’s price
fluctuations over time.
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The function ϕ in the formulas refers to the cumulative distribution function (CDF) of the standard nor-
mal distribution, which is used to calculate the probabilities associated with the option’s payoff. Specifically,
ϕ(D1) and ϕ(D2) represent the probabilities that the option will be in-the-money at expiration, adjusted for
the current time and volatility.

These Black-Scholes formulas are crucial for determining the theoretical prices of European call and put
options, providing a benchmark for traders and investors. The model’s ability to incorporate key factors
such as asset price, strike price, interest rates, and volatility into a coherent pricing framework underscores
its importance in financial markets. It facilitates informed decision-making by offering a method to estimate
option values and assess risk.

The Black-Scholes model has had a profound and lasting impact on quantitative finance, influencing
both theoretical research and practical trading strategies. Its widespread use has led to the development
of various extensions and modifications to address additional complexities, such as dividends and varying
volatility. Despite these advancements, the foundational Black-Scholes formulas continue to be central to
option pricing and financial analysis, highlighting the model’s enduring relevance and significance.

3.2. Model of Black-Scholes and Stochastic formula:

The derivation of the B-S using the stochastic differential equation and Ito’s Lemma, defined by equation:

dS
S
= vdT + σdX (10)

is called the stochastic differential equation. And, from (10) we have the Wiener process with the following
properties:

E(dX) = 0,E(dX)2 = dt,E(dS) = σ2S2dX2. (11)

Therefore, σ is proportional to√
Var(ds)

S
. (12)

This final result is called Stochastic model .

3.3. Derivation of the B-S equation

The derivation of the Black-Scholes equation using the equation (10) and Ito’s Lemma, we can write

dH =
(
µS
∂H
∂S
+

1
2
σ2S2 ∂

2H
∂S2 +

∂H
∂t

)
dt + σS

∂H
∂S

dXt. (13)

The B-S idea is first to find this proportion ∆ so that the portfolio becomes deterministic. Note that the
value of this portfolio is

Π(t) = H − ∆S. (14)

The change in the value of this portfolio in one time-step dt is

dΠ(t) = dH − ∆dS. (15)

Substituting (10) and (11) into (13), we have

dΠ(t) =
(
µS
∂H
∂S
+

1
2
σ2S2 ∂

2H
∂S2 +

∂H
∂t
− µ∆S

)
dt + σS

(
∂H
∂S
− ∆

)
dXt. (16)
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But if we choose ∆ = ∂H/∂S, then the stochastic term is zero, and (16) becomes

dΠ =
(

1
2
σ2S2 ∂

2H
∂S2 +

∂H
∂t

)
dt. (17)

And so the choice

∆ =
∂H
∂S

(18)

reduces the stochastic expression into a deterministic expression. Thus, we should have dΠ = RΠdt, and
hence by (17),

RΠdt =
(

1
2
σ2S2 ∂

2H
∂S2 +

∂H
∂t

)
dt. (19)

Now replace Π in (19) by H − ∆S as given in , and replace ∆ by ∂H/∂S as given in (16), and then divide
both sides by dt. We arrive at

∂H
∂t
+

1
2
σ2S2 ∂

2H
∂S2 + RS

∂H
∂S
− RH = 0 (20)

with the initial condition :
H(x.0) = Hx(0),

and

H(x,T) = x − c, x ≥ c. (21)

3.4. Solution of the B-S equation
The solution of the B.S equation is represented by equation :

H(x, t) = xN (D1) − ceR(t−T)N (D2) , (22)

with

D1 :=
ln π

c +
(
R + 1

2 v2
)

(T − t)

v
√

(T − t)
, (23)

and

D2 :=
ln x

c +
(
R − 1

2 v2
)

(T − t)

H
√

(T − t)
, (24)

where N(D) is the cumulative Laplace-Gaussian . In today’s world, finance plays a very important role and
is sometimes the origin of global crises. It then appears important that finance is based on models solid data
for assessing risks and prices. From this necessity, the model and formula of Black-Scholes has established
itself as a reference since 1973, in option calculation. Despite its flaws, this model is successful because it
has many advantages: its simplicity of application and formula, its significant use by market operators but
also and above all because it allows you to calculate an important parameter in finance. There variability
measures the average variation over time of a financial asset and therefore gives an critical risk information.

The Black-Scholes formula can be demonstrated rigorously if a certain number of conditions are es-
tablished. We then talk about the Black-Scholes model, or we say that we are in the Black-Scholes case.
Financial markets fit this model quite well, but not exactly of course and, in particular, contrary to the
central hypothesis of the model, time is not continuous. There is therefore a certain gap between this model
and reality, which can become significant when the markets are agitated with frequent price discontinuities.
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3.5. Derivation of new conformable Fractional Black-Scholes Model
Taking B-S PDE as an example, we have the following stochastic formula [6]:

RSdt + σv(t)(dt)α/2 = dS, 0 < α ≤ 1, (25)

with σ and S : volatility and stock value, R is the risk interest rate, and v(t) represents the Wiener deviation.
With the case of constant results (expressed in β), the above formula becomes .

(R − β)Sdt + σv(t)(dt)α/2 = dS, 0 < α ≤ 1. (26)

According to Jumarie [7], we use some properties, which support the score Jumarie Taylor in [6]:

1
Γ(2 − α)

e(α−1)t(dt)α = dαt, 0 < α ≤ 1,

Γ(α + 1)dS = dαS, 0 < α ≤ 1,
(27)

and

dαS
(dS)α

=
1

Γ(2 − α)
e(α−1)S, 0 < α ≤ 1. (28)

Combining (26) and (27) gives a formula by which all unit percentages can be converted to unit percent-
ages and vice versa:

dS =
e(α−1)S

Γ(α + 1)Γ(2 − α)
(dS)α, 0 < α ≤ 1. (29)

Assume that H = H(S, t) is the cost of the European value, and we have the equation

dH = RHdt. (30)

Multiplying both sides of (30) by Γ(1 − α) gives us

Γ(1 − α)dH = Γ(1 − α)RHdt. (31)

Now, combining (31) and (27) gives the formula:

dαH = Γ(α + 1)RHdt. (32)

Equation (32) together with (29) gives the following dynamic equation :

dαH =
RH
Γ(2 − α)

e(α−1)tT(dt)α. (33)

Since H(S, t) is smooth in S and the α derivative with respect to t remains the same, fractional taylor
series is used in H(S, t) of ordre α until the remaining error

1
Γ(α + 1)

∂αH
∂tα

(dt)α +
∂H
∂S

dS +
1
2
∂2V
∂S2 (dS)2 = dH. (34)

Combining this equation with Ito’s lemma and equation (26) results in

1
Γ(α + 1)

∂αH
∂tα

(dt)α + (R − β)S
∂H
∂S

dt +
1
2

S2σ2 ∂
2H
∂S2 (dt)α = dH. (35)
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Using the transformation method (29) but in terms of t replace dt in (35) with .

dt =
e(α−1)t(dt)α

Γ(α + 1)Γ(2 − α)
, (36)

dH =
1

Γ(α + 1)
∂αH
∂tα

(dt)α +
(R − β)

Γ(α + 1)Γ(2 − α)
Se(α−1)t ∂H

∂S
(dt)α +

1
2

S2σ2 ∂
2H
∂S2 (dt)α. (37)

Multiplying both sides of (37) with Γ(α + 1) yields

Γ(α + 1)dH =
(
∂αH
∂tα
+

(R − β)
Γ(2 − α)

Se(α−1)t ∂H
∂S
+
Γ(α + 1)

2
S2σ2 ∂

2H
∂S2

)
(dt)α. (38)

Using (37), the left side of (38) it can be rewritten as

Γ(α + 1)dH = dαH

=
RH
Γ(2 − α)

e(α−1)t(dt)α.
(39)

Using (39), along with (38), yields

RH
Γ(2 − α)

e(α−1)t =
∂αH
∂tα
+

(R − β)
Γ(2 − α)

Se(α−1)t ∂H
∂S
+
Γ(α + 1)

2
S2σ2 ∂

2H
∂S2 . (40)

Equation (40) can be converted to BS-PDE:

∂αH
∂tα
=

(
RH −NS

∂H
∂S

)
e(α−1)t

Γ(2 − α)
−
Γ(α + 1)

2
σ2S2 ∂

2H
∂S2 , N = R − β, 0 < α ≤ 1. (41)

with the terminal condition and following boundary :

H(S, 0) =Max(K − S, 0), H(0, t) = KeR(t−T), lim
S→∞

H(S, t) = 0, (42)

T is the expiration date and K is the strike price of the European option .

Remark 3.1. For α = 1 we coincide with classical form of B-S formula (20).

3.6. The solution of the new conformable Black-Scholes equation:

3.6.1. Derivation of a new conformable B-S:
We present on the solution of the Black-Scholes formula

H(α)
t (s, t) = (RH −NSHs)

e(α−1)t

Γ(2 − α)
−
Γ(α + 1)

2
σ2S2Hss (43)

with the condition H(s,T) defined by (42).
(Step 1) Deleting the rH-term. If H(s, t) is differentiable w.r.t. time , therefore we gets the followig change

of variable

H(s, t) = eR(t−T)H̃(s, t), (44)

but if H(s, t) is not differentiable w.r.t time, we will settle down

H(s, t) = Eα (R(t − T))α) H̃(s, t). (45)
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then, we have the equation

H(α)
t (s, t) =

(
Dα

t eR(t−T))
)

H̃(s, t) + eR(t−T)H̃(α)
t (s, t)

= ReR(t−T) e(α−1)t

Γ(2 − α)
H̃(s, t) + eR(t−T)H̃(α)

t (s, t),

and substituting into (43), we obtain the form

H̃(α)
t (s, t) = −RS

e(α−1)t

Γ(2 − α)
H̃s(s, t) −

Γ(α + 1)
2

σ2S2H̃ss(s, t). (46)

with the terminal condition

H̃(s,T) = H(s,T). (47)

The same equation (46) is obtained with the transformation (45), by virtue see [8] we remember the
definition of modified Riemann-Liouville’s derivative. The solution of the fractional equation

z(α)(t) = λz(t), t ≥ 0, z(0) = z0, 0 < α ≤ 1, (48)

λ constant, is

z(t) = z0Eα (λtα) , (49)

where Eα(.) is the Mittag-Leffler function.
(Step 2) The conformable derivation PDE with const coefficient. The presence of SH̃s and S2H̃ss in the

Eq. (46) is recommended to change the variables

y = ln s + b, (50)

with b denotes a const, and search for a solution in the form

H̃(s, t) ≡ Z(y, t). (51)

where the terminal condition

Z(y,T) = H(s,T) = H
(
ey−b,T

)
. (52)

And indeed, on substituting (50) into (46) yields

Z(α)
t (y, t) =

(
Γ(α + 1)

2
σ2
− R

e(α−1)t

Γ(2 − α)

)
Zy(y, t) −

Γ(α + 1)
2

σ2Zyy(y, t). (53)

(Step 3) Corresponds to first-order solutions of fractional partial differential equations. To suggest the
solution to (53), we first consider a discrete problem.

Z̃(α)(y, t) +
(
R

e(α−1)t

Γ(2 − α)
−
Γ(α + 1)

2
σ2

)
Z̃y(y, t) = 0. (54)

We apply the appropriate extension of the Lagrange characteristics method to obtain its solution that
we recently proposed for this type of equations [9]. On the other hand, we consider the linear system
associated with (54) which is written

(dt)α

1
=

dαy

R e(α−1)t

Γ(2−α) −
Γ(α+1)

2 σ2
. (55)
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The formula on the right gives the following first integral

Z̃(y, t) = const. (56)

The formula on the left, rewritten in the form

R
e(α−1)t

Γ(2 − α)
(dt)α − σ2 Γ(α + 1)

2
( dt)α = dαy, (57)

give the second integral

y − Rt + (1/2)σ2e(1−α)t = const. (58)

Then, we obtain the general solution

Z̃(y, t) = ψ
(
y − Rt + (1/2)σ2e(1−α)tσ2

)
. (59)

(Step 4) Derivation of new fractional equation. This result (59) suggests looking for Z(y, t) in the form

Z(y, t) = G(k, t), (60)

with

k = y − ln c + R(T − t) −
1
2
σ2e(T−t)(1−α), (61)

effectively, the constant b in (50) is selected in the form b = − ln c+RT − 1
2σ

2eT(1−α). On substituting (59) into
(53), we observe the new conformable fractional equation

G(α)
t (k, t) = −γ2Gkk(k, t), (62)

with

γ2 =
Γ(α + 1)

2
σ2, (63)

then, with the terminal condition

G(k,T) = Z(y,T) = H(s,T), (64)

we gets

G(k,T) = c
(
ek
− 1

)
. (65)

3.6.2. Solution of the new fractional B-S:

Ĝ(ξ, t) :=
1

2π

∫ +∞

−∞

eiξkG(k, t)dk (66)

Let Fourier’s transform of G(k, t), and taking the Fourier’s transform of the Eq. (61), we come across the
new conformable differential equation

Ĝ(α)
t (ξ, t) = ξ2γ2Ĝ(ξ, t). (67)

The solution to the equation. (67) which explains the terminal condition (65) is

Ĝ(ξ, t) = Eα
(
−γ2ξ2e(T−t)α

)
Ĝ(ξ,T), (68)

therefore, we have the final resultat :

G(k, t) =
∫ +∞

−∞

Φ(k − v), (T − t)G(v,T)dv, (69)

where Φ(k) is defined by the following expression

Φ(k,T − t) =
∫ +∞

−∞

e−iξkEα
(
ξ2e(T−t)α

)
dξ. (70)
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3.6.3. Comparative solutions for serval values of α:

Figure 1

When α = 1, the equation reduces to a classical first-order derivative with respect to time, representing the
standard case in financial mathematics. Here are the key observations:

• For α = 1 the equation becomes a traditional partial differential equation (PDE) without any fractional
components. This means there is no memory effect, and the system’s behavior at any given time
depends solely on the current state, not on the history. The graph reflects this by showing sharper
transitions and a more direct response to changes in the variables.

• Impact on Dynamics:
- The solution H(S, t) for α = 1 represents the well-known Black-Scholes PDE, which is commonly
used in option pricing. The graph is expected to show a smooth, yet relatively direct, relationship
between the variables S (the underlying asset price) and t (time). The surface is typically more linear
and predictable compared to fractional cases.

• Temporal Behavior:
- The term e(α−1)t

Γ(2−α) simplifies when α = 1, eliminating any exponential decay. This indicates that the
graph evolves in a straightforward manner over time, without any additional complexities introduced
by fractional derivatives.

• Shape of the Graph:
- The graph for H(S, t) when α = 1 will show a surface that is smooth but not influenced by previous
states of the system. The relationship between S and t is more straightforward, with the solution
H(S, t) following the standard option pricing formula. The surface is typically convex, with the
highest values near the strike price K and decreasing as S moves further away from K.

• Parameter Influence:
- The parameters R, N = R − β, and σ2 directly influence the shape and steepness of the graph. For
α = 1, their effects are immediate and apparent, with no delay or memory effect. The graph will
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show a clear and direct response to changes in these parameters, making the solution sensitive to the
current values of S and t.

The graph for α = 1 represents a classical PDE solution, where the system’s behavior is determined
entirely by the current state, with no influence from past states. The surface is expected to be smooth
and convex, following the well-known Black-Scholes formula. The graph will show a direct relationship
between the underlying asset price S and time t, with predictable and sharp transitions. The lack of a
memory effect makes the graph more straightforward and easier to interpret compared to fractional cases
with α < 1.

Figure 2

When α = 0.65, the fractional derivative introduces a moderate memory effect, making the solution H(S, t)
more complex than in the integer-order case. Here are the key observations:

• Memory Effect:
- For α = 0.65, the memory effect is stronger than in the case of α = 1, meaning the system’s history has
a more pronounced influence on its current state. The graph reflects this by showing smoother, more
continuous changes over time, with the solution H(S, t) taking into account past states to a greater
extent.

• Impact on Dynamics:
- The fractional order introduces a non-local behavior, meaning the graph does not simply depend on
the current state but also on how the system has evolved. This creates a more intricate and possibly
more stable solution surface, with the transitions in H(S, t) being more gradual and less sharp. The
graph is likely to show a surface that is smoother and less prone to abrupt changes.

• Temporal Decay:
- The term e(α−1)t

Γ(2−α) influences the time decay of the solution. For α = 0.65, this factor still introduces a
decay, but it is slower than for smaller α, leading to a graph that evolves more gradually over time.
The impact of past states lingers longer, resulting in a more extended memory effect in the graph.
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• Shape of the Graph:
- The graph for H(S, t) when α = 0.65 will show a surface that is smoother and more continuous, with
fewer sharp transitions. The memory effect introduced by the fractional derivative makes the graph
less steep and more rounded, indicating that the system’s response to changes is more moderated and
influenced by its history.

• Parameter Influence:
- The parameters R, N = R − β, and σ2 continue to shape the graph, but their influence is spread out
over time due to the memory effect. This results in a solution that responds more gradually to changes
in these parameters, making the graph more stable and less sensitive to sudden changes.

The graph for α = 0.65 represents a system with a moderate memory effect, where the solution H(S, t)
depends on both the current state and the history of the process. The graph is expected to show a smoother,
more continuous surface compared to the case with lower α, with gradual transitions and fewer abrupt
changes. The memory effect leads to a more complex and stable graph, reflecting the system’s non-local
behavior and moderated response to changes. The solution evolves in a way that considers past states,
resulting in a richer and more nuanced surface.

Figure 3

When α = 0.25, the fractional derivative introduces a memory effect into the system, making the solution
H(S, t) dependent not only on the current state but also on the history of the process. Here are the key

observations:

• Memory Effect:
- With α = 0.25, the fractional derivative ∂αH

∂tα introduces a weak memory effect, meaning that the past
states of the system influence its current behavior. This makes the solution H(S, t) less straightforward
and more complex compared to the case when α = 0. The graph will reflect this memory by showing
a smoother transition in the evolution of H(S, t) over time.

• Time-Dependent Behavior:
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- The term e(α−1)t

Γ(2−α) plays a significant role in shaping the solution. For α = 0.25, this factor introduces a
decaying effect over time, which can cause the influence of past states to diminish as time progresses.
However, the influence is still present, leading to a graph that shows gradual changes rather than
abrupt transitions.

• Nonlinear Dynamics:
- The fractional order α = 0.25 results in a more nonlinear dynamic system. The interaction between
the memory effect and the terms involving R, N, and σ2 creates a graph with more subtle variations
in curvature and slope. The graph will likely exhibit smoother transitions and possibly more intricate
patterns in H(S, t) as it evolves.

• Graph Shape :
- The graph for H(S, t) when α = 0.25 will show a more complex surface compared to the α = 0 case.
The surface is expected to exhibit a more gradual evolution, with the influence of past states leading
to smoother curves. The memory effect introduced by the fractional derivative will make the graph
less steep and more rounded, reflecting the non-instantaneous response of the system.

• Impact of Parameters:
- The parameters R, N = R − β, and σ2 continue to influence the graph significantly. However, due to
the memory effect, their impact may be less immediate and more distributed over time, leading to a
less pronounced but more sustained effect on the shape of the graph.

The graph for α = 0.25 represents a system with a weak memory effect, where the solution H(S, t)
depends on both the current state and the history of the process. The graph is expected to show smoother
transitions and more gradual changes compared to the α = 0 case. The memory effect leads to a more
complex and nuanced surface, with subtler variations in curvature and slope. The solution evolves in a
way that reflects the past states’ influence, making the graph less straightforward but richer in detail.

Figure 4

For α = 0, the fractional derivative term ∂αH
∂tα becomes a constant, which significantly alters the behavior of

the equation compared to cases where 0 < α ≤ 1. Here’s how you can interpret the graph for this scenario:
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• Fractional Derivative Term:
- When α = 0, the fractional derivative term reduces to a constant. The term e(α−1)t

Γ(2−α) also becomes
constant, as α = 0 simplifies the time dependence.

• Behavior of the Solution:
- The solution H(S, t) will likely exhibit less sensitivity to the passage of time, as the fractional derivative
no longer contributes time-dependent changes to the equation.
- The impact of volatility (σ) and the drift term involving NS ∂H

∂S still play crucial roles, but the absence
of a time-varying fractional derivative leads to a more stable or flat profile over time.

• Terminal and Boundary Conditions:
- The terminal condition H(S, 0) = max(K − S, 0) provides the initial profile for H, representing a
European put option.
- Boundary conditions at S = 0 and as S → ∞ ensure that the solution aligns with the expected
behavior at extreme values of the stock price.

• Graph Characteristics:
- The graph for H(S, t) when α = 0 would likely show a flatter surface over time, especially when
compared to higher values of α.
- Since the equation lacks a time-dependent fractional derivative, the option price (or the function
H(S, t)) will evolve more predictably, possibly showing less curvature in the t-direction.

The graph for α = 0 indicates a scenario where time-dependent memory effects (typically introduced by
fractional derivatives) are absent. The resulting behavior of H(S, t) becomes more dominated by the other
terms in the equation, leading to a simpler and potentially more stable surface over time. The reduction
in complexity for α = 0 makes it similar to classical option pricing models, though the specific form of the
PDE still introduces unique characteristics that differ from the standard Black-Scholes model.

4. Conclusion remarks

This informative article provides an in-depth exploration of conformable derivatives and their applica-
tions in financial mathematics, with a specific emphasis on their role in the Black-Scholes option pricing
model. By introducing the concept of the ”new conformable derivative,” the article highlights a significant
advancement in the field. This novel derivative offers a refined and versatile approach to modeling complex
financial instruments, paving the way for the development of a new fractional Black-Scholes formula.

The incorporation of the new conformable fractional derivative represents a substantial enhancement
over traditional models. Classical Black-Scholes models, while foundational, often face limitations in
accurately capturing the nuances of market behavior, especially under conditions of high volatility or
irregular price movements. The new conformable derivative addresses these limitations by providing a
more flexible framework that can better accommodate the intricate dynamics of financial markets.

This advancement not only improves the accuracy of option pricing but also offers valuable insights
into the underlying market processes. The fractional Black-Scholes formula, developed using conformable
derivatives, can better reflect the real-world phenomena observed in financial markets, such as fractal-like
price changes and complex volatility patterns. This approach has the potential to enhance risk management
strategies and improve financial decision-making by offering a more nuanced understanding of market
behavior.

Furthermore, the introduction of conformable derivatives into financial mathematics opens new avenues
for research and development. It sets the stage for further exploration of fractional calculus in finance,
potentially leading to the creation of more sophisticated models and analytical tools. As researchers
continue to investigate the applications of conformable derivatives, it is likely that additional breakthroughs
will emerge, contributing to a deeper understanding of financial systems and leading to more innovative
solutions in quantitative finance.
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In summary, the article not only introduces a groundbreaking approach to fractional calculus but also
demonstrates its practical significance in financial mathematics. The new conformable derivative offers a
promising tool for advancing the Black-Scholes model and improving the precision of financial instrument
valuation. As the field progresses, this innovative approach could transform how financial risks and
opportunities are assessed, leading to more effective and informed financial strategies.
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