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Characterization of mixed triple derivations on incidence algebras
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Abstract. Let R be a 2-torsion free commutative unital ring and I(S, R) be the incidence algebra of a locally
finite preordered set S. In the present paper, we show that if an R-linear map T : I(S,R) — I(S,R) satisfies

([t o u,v]) = [T(t) o u, v] + [t 0 T(u), v] + [t o u, T(V)],

forallt,u,v € I(S,R), then T = ¥ + ¢, where ¥ : I(S,R) — I(S,N) is a derivation and ¢ : I(S,R) — Z(I(S,R))
is an R-linear map.

1. Introduction

Let R be a commutative unital ring and A an associative algebra over R with center Z(). For t,u € ¥,
tou = tu +ut, [t,u] = tu — ut represent Jordan product and Lie product of t and u respectively. So (%, o)
and (2, [.,.]) are Jordan algebra and Lie algebra respectively. An R-linear map T : A — A is said to be
a derivation if T(tu) = T(t)u + +T(u) for all t,u € A and is known as a Jordan (resp. Lie) derivation if

() = T(Ot + tI(t) (resp. T([t,u]) = [T(t), u] + [t, T(u)]) for all t,u € A. Also an R-linear map T : A — Wis
called a Lie triple derivation if

([, ul, 0]) = [[Z(E), ul, o] + [[t, T(w)], o] + [[£, u], T(v)]

for all t,u,v € A. Let ¥ be a derivation of A and ¢ be an R-linear map from A into Z(A). Then ¥ + ¢ is a
Lie triple derivation if and only if ¢ vanishes at all second commutators [[t, u], v]. Throughout this paper,
we call an R-linear map T : A — A, a mixed triple derivation if

T([tou,v]) =[T(t) ou,v] + [t o T(u),v] + [t o u, T(V)]

forall t,u,v € A. Let ¥ be a derivation of A and ¢ be an R-linear map from A into Z(A). Clearly ¥ + ¢p isa
mixed triple derivation if and only if

P([t o u,v]) = 2{[tp(w), v] + [p(H)u, v]}
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for all t,u,v € A. A mixed triple derivation of the form W + ¢, where W is a derivation and ¢, a central
valued map will be called a proper mixed triple derivation else, an improper mixed triple derivation.

Let’s now review the concept of incidence algebras, with which this paper deals. Let (S, <) represent
a locally finite preordered set. This implies that “<” is a reflexive and transitive binary relation on the set
S and for every t < u, there are only finite number of elements v € S satisfying t < v < u. The incidence
algebra I(S,R) of S over R is defined as the set

ISR)={y:SxS>R|ytu)=0if t £ u}

with algebraic operations given as
(v +mt,u) =yt u) + 1t u),

(1"‘)/)(t, M) = 77/(t/ Ll),
Gmtu =Y vt omew

t<v<u
forall y,n € I(5,R),r € Rand t,u,v € S. The product y7 is usually called convolution in function theory.
Obviously the full matrix algebra M,,(R) and upper (or lower) triangular matrix algebras T, (R) are special
examples of incidence algebras.

The problem of identifying a class of algebra in which every mixed triple derivation is proper has its
origin in the Herstein’s Lie-type mapping research program [8]. Firstly, Ward [20] considered incidence
algebras to be a generalized algebra of arithmetic functions. Rota and Stanley developed incidence algebras
as the fundamental structures of enumerative combinatorial theory and allied areas of arithmetic function
theory (see [18]). Motivated from Stanley’s work [17], automorphisms and other algebraic mappings of
incidence algebras have been extensively studied (see [2, 3, 5, 10, 11, 15, 16] and references therein). On the
other hand, in the theory of operator algebras, the incidence algebra I(S, R) of a finite poset S is referred to
as a digraph algebra or a finite dimensional CSL algebra. The operator algebras on which every derivation
is proper include von Neumann algebras [14], certain CSL algebras [12], nest algebras [6] and C*-algebras
[13]. Miers proved that if A is a von Neumann algebra with no central abelian summands, then every Lie
triple derivation of U is proper [14, Theorem 1]. Bresar [4] extended this result to prime rings and also
Miers result was extended to Lie n-derivations for linear and nonlinear cases in [1] and [7] respectively.
Furthermore, Xiao [21] and Khrypchenko [9], characterize Jordan derivations of incidence algebras and
finite incidence rings respectively. Zhang et al. [22] proved that if S is a locally finite preordered set and
R is a 2-torsion free commutative unital ring, then any Lie derivation on I(S,R) is proper and Wang et al.
[19] similarly proved that every Lie triple derivation is proper while taking same I(S,R). Inspired by the
preceding results, in this paper, we first characterize mixed triple derivations on I(S, R) and based on such
characterizations, we then prove that every mixed triple derivation of I(S,R) is proper provided that ‘R is
2-torsion free.

2. Finite case

We will use some notations that will be used throughout this paper. For any t € S, let L; and R; be
defined as:
Li=f{ieS|i<ti#t and Ri={jeS|t<jj#t}.

Since S is a preordered set, L; N R; may not be empty. Also we denote {BZA i <j, t < u}, the constants in R
satisfying T(e;;) = Y.y B! ey, with the convention that B;’u =0, for t £ u. The identity element 6 of I(S,R) is

t
given as O(f, u) = Oy, for tus u, where 6, € {0,1} is the Kronecker delta. Let Z(I(S,R)) denote the centre of
I(S,R). Fort <uoru>t, wemeant <uandt # u. Fort,u € Switht < u, e;, be defined as the function on

S5x Sby
1, (tu)=(xy)

ew(x,y) = {0, (t,u) # (x, y).
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Clearly by definition of convolution, the product ey, eyy = dyxer, holds on I(S,R). Moreover, the set B = {ey, :
t < u} forms an R-linear basis of I(S, R) and is known as standard basis.

Proposition 2.1. Let A1, A; be two R-algebras. Then Ay and A, have no improper mixed triple derivations if and
only if Ay €D A has no improper mixed triple derivation.

Proof. Assume that A; and A, have no improper mixed triple derivations. We show that A; €5 A, has no
improper mixed triple derivation. Let ¥ be a mixed triple derivation on A; 5 A, and ¥(a, b) = (T1(a), T2(b)),
where T; : A; = A; (i = 1,2) are linear maps. Also, it can be easily verified that T; (i = 1,2) is a mixed triple
derivation on A; (i = 1,2). Therefore, T; = W; + ¢; (i = 1,2), where W; : A; — A;(i = 1,2) are derivations
and ¢; : A; = A; (i = 1,2) are central valued maps on A;. Consequently, ¥ : A; EBAZ — Ay @Az given
by W(a,b) = (W1(a), V2(b)) is a derivation and @ : A; P Ay — A; ) A, given by P(a, b) = (1(a), p2(b)) is a
central valued map. Therefore T = W + ® and hence A; P A, has no improper mixed triple derivation.

Conversely, we assume that A; P A, has no improper mixed triple derivation. We prove that A;
(similarly Aj) has no improper mixed triple derivation also. Let T; be a mixed triple derivation of A;.
Define a map on A; @ As by T(a, b) = (T1(a), 0). Clearly T is a mixed triple derivation on A; @ Ar. So Tis
proper, i.e., T =W + @, where ¥ : A; P A — A1 P A is a derivation and @ : A; P Ay — Z(A1 P Az) is
a central valued map. Hence

T@,0) = (V+D)a,0)
(T1(a),0) = W(a,0)+ D(g,0)
(Th(@),0) = (W1(a),0) + (¢1(a),0)
(T1(@),0) = (Vi) + ¢1(a),0).

Hence T1(a) = (W1 + ¢1)(a), which gives us that T, is proper on A;. [
The main result of our paper follows as:

Theorem 2.2. Let R be a 2-torsion free commutative unital ring and T be a mixed triple derivation of 1(S,R), where
S is finite. Then T is proper.

Let S = US; be the decomposition of S into distinct connected and finite components. Also, let 6; = }.;cs, €x-
Therefore from [16, Theorem 1.3.13], {6;} forms a complete set of central primitive idempotents of I(S,R),
ie, I(S,R) = @ 0:il(S,R). Clearly 6;I(S,R) = I(S;,R) for each i. Therefore, using Proposition 2.1, we prove
our Theorem 2.2, when S is connected.

Lemma 2.3. [21, Theorem 2.2] Let T : I(S,R) — I(S, R) be an R-linear operator. Then T is a derivation if and only
if T satisfies

i(eij) = Z BZet] + B;;e,] + Z B;{tem
teL; ltER]'
forall e;j € B and thi satisfies )
i1 ]] _ . . ..
B;}+Bi], =0, ifi<j;
B/ +Bj =By, ifi<j<k
Lemma 2.4. Let S be connected and T be a mixed triple derivation of I(S,R). Then

Tew) = ) | Bllew+ ) Biew+ ) Blew (1)

tel; i#teS ueR;

Teyj) = Z Bileyj + BZeij + Z Bﬁieiu/ ifi#]. @

tel; MGRj
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Proof. Assume first that |S| = 1, let i be the unique element of S, so the result holds trivially.

Now assume that |S| > 2 and let i € S. Since S is connected, there is an element j # i comparable with i.
Assume we choose a path with the starting vertex j and end vertex i, i.e., for ¢;; € B withi < j.

For the end vertex i, with i # t € S, we have [e; o ey, ey] = 0. Therefore,

I([eii o ex, ex]) =0
Teii)er — ey T(eii) + e T(en)en — enT(en)eii = 0.

Operating in previous relation by ey from left and by e, from right, we get

e T(eii)ereun — enT(eii)euu + exneiiT(ern)eneuy — enT(ex)eiieyy = 0.

Hence
enZ(ei)ey, = 0, ifi#t<u#i
ey Z Bi’;tetueuu = 0, ifi#tt<u#i
t<u
Y Biew = 0 ifizt<ui
t<u
Bi = 0,ifitt<u#i (3)

Also, we have [e;; o ¢;;, ¢;;] = 2e;;. Therefore
I([eii o eii, eif]) = 2X(eij)
2{T(ei)eij + eiT(ei)eij — eijT(ei)eir + eiiT(eij) — Teijeit = 2T (ei).
Multiplying the above relation by ¢;; from left and by e;; from right, we get
2{e;iT(eii)eij + eiT(eieij + eiZ(eijlejjt = 2eiiT(eij)ejj.
Now using 2-torsion freeness of R, we have
4e;iT(eir)eij = 0
4e;; Z Bf;’;leme,-]- =0
t<u
Bi =0. (4)

Now utilizing the relations (3) and (4), we have

_ i
3:(eii) - z Btuetu
t<u
_ ii ii
= E Bttett + E Btuetu
teS t<u
_ 2 ' i z ‘ i z ‘ i
= Bttett + Biuem + Btuetu
i#t€S i=t<u i#t<u
— z ii 2 ii E il z ii
= Bttett + Biue,'u + Btuem + Btieti
i#teS i<u i#Et<u#i i#t<u=i
_ ii i il i
= E Biey + E B} ey + E By e + E B
i#t€eS i<u i#Et<u#i i#t<i

= Z B;iett + Z B;;eiu + Z Bi;-eti.

i#tes i<u t<i
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Therefore,
T(ei) = Z BZett + Z BZ@“‘ + Z Bﬁ‘eiu. (5)
i#teS t<i u>i
Let us now consider the starting vertex j. We have [ei]- o ¢jj, e]-]-] = ejj. Therefore
I(leijoejj, ej) = Zleif)
T(eijejj — ejjT(eij) + eijTejjleji — ejiTejjeij + eijT(ej;) = Teij).
Multiplying the above relation by e;; from left and by e;; from right, we get
eiiZ(eijejj + eijT(ejpej; + eijT(ejjeji = eiZ(eijejj.
Now using 2-torsion freeness of R, we get
2e;T(ejj)ejj = 0
2¢;j Z B{flemeﬁ =0

t<u
i _
B],], =0. (6)
Now for any j # u € S, we have [e,, o ey, ¢jj] = 0. Therefore

T([ewy © ey, e]]]) =0
Z{euuz(euu)ejj - ejjz(euu)euu + euuz(ejj) - fz(ejj)euu} = 0

Applying e on left and e, on right in the above relation and using 2-torsion freeness, we get

z{etteuu(z(euu)ejjeuu - ettejjz(euu)euu + etteuuz(ejj)euu - ettz(ejj)euu} =0.

2e4X(ejjlewy = 0, if jEt<u#j
ey Z B{ietueul, = 0,if jt<u#j
t<u

ettZ‘Bgetu = 0, ifj#t<u#j

t<u
By doing a similar computation as in the above case, we get
Tes) = ), Bluew+ ) Blerj+ ) Bliein ®)
j#ues t<j u>j

Since by given hypothesis S is connected, each element t € S must be either a starting vertex or an end
vertex of a path, therefore from the above relations (5) and (8), we get the desired form of T(ey) forany ¢ € S.
Next we describe the form of T(e;;) where i # j. Now, we have

eij = [eii o Cij, ejj]
T(eij) = Zleioeij, ejl)
Teip) = Teiej +eijTei)ej; — ejiTlei)eij + eitleijej; — eji¥e)ei + eijTej;) — Tejjleij.

Utilizing (1) in the previous relation, we get

i(eij) = Z BZet] + Z BZ{E,‘M + (BZ + B;l] - le])(?l] - (B;{ + B;)EU - B’]]leﬂ (9)

t<i u>j
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Also, we have —e;; = [e;; o ¢j;, ¢;;]. Therefore
—Heip) = Uleijoejjeil)
eiy) = Teieij — eijTen) + eiTleijlej; — ejiTeij)eii + eijTejj) + eiT(ejjeij — eijT(ejj)eii-
Utilizing (1) in previous relation, we obtain
‘I(e,'j) = Z BZ.et]- + Z B;{leiu + (BZ - Bljl] + B{ij)e,-]- - (B;{ + B;ii)eii - B;JI:EJ'Z'. (10)
t<i u>j
From (9) and (10), we have
2(BY; — B}))eij — (B] + B)ejj + (B + Bl))eii = 0. (11)
Operating e;; on left in the last relation, we get (B;{ + Bj.il.) = (. Similarly, opgrating left side by e;; and right
side by ¢;; in (11) and using 2-torsion freeness of R, we arrive at (Bjij - Bfl] ) = 0. Indeed, we also have
[eii o ¢éjj, ei]-] = 261‘]‘. So
2%(eij) = I[eii o eii, eif])
23(eij) = 2{T(eir)eij + eiT(ei)eij — eijTlei)ei + eiX(eij) — Teij)eii)- (12)
Operating ¢;; on left and ¢;; on right in the previous relation, we get BZ = 0. Using these relations in either
(9) or (10), we conclude that for i # j, T(e;j) has the form

Iej) = Z Bile,; + Z Bl ei + Bllei; (13)

t<i u>j

This completes the proof. [J

Lemma 2.5. Let S be finite and connected. If T is a mixed triple derivation on I(S,R), then the coefficients BZ{ are
subject to the following relations:

Bi+B/=0, if i<j (14)
By +Bj=0,if k<l l#i#k (15)
BY =B, if i<l I#p+i (16)
Bi+Bl=Bl ifi<l<q i#g (17)
Bi+Bi=0, ifi#l; (18)
Bl+By+Bi=0, ifi<j<l<i (19)
Bl+By+BI=B! ifi<j<i<q i#q (20)
Proof. We have
[eij o exi, epgl = Ok (Oipeiq — Ogiepr) + 01i(Ojperg — Ogrep))- (21)

Applying mixed triple derivation T on above identity and by Lemma 2.4, we have the following cases:
1. i=jk=Lp=gq
2. i=jk=1Lp#q
3. i=jk#l,p=g;
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i=j kL, p#g;

it k=1Lp=g

it k=1Lp+g

iz, k#l,p=g;

izjk#l, p#q.

We will deal with the Cases (1), (3), (4), (8) and rest other cases are symmetric to these four cases.
Case (1). i=j, k=1, p =gq. From (21), we have

®© NG

[eii o exx, epp] = Oi(Oxpeip — Opiepr) + Oki(Oipery — Opkepi)- (22)

Now there are two subcases:
Subcase 1.1. Assuming k = i in (22), we have
2(bipeip — Opiepi) = leii o €ii, epp]
2{Z(Oipeip — Opiepi)) = T[eii o eiiy epp))
2{T(Oipeip — Opiepi)} [T(eir) o eii, epp] + [eii © Tei), epp] + [eii © eii, Tepp)]
2{T(ipeip) — T(Opiepi)} 2{T(ei)eiiepy + eiiT(eir)epy — eppT(eii)eii — eppeiiT(ei) + eiT(eyp) — Tepp)eiil-
Now, there are two subcases:

Subcase 1.1.1. i = p. Then the last relation holds trivially.
Subcase 1.1.2. i # p. In this situation, the last relation reduces to

eii T(eii)epp — eppTeir)eii + eiiTlepp) — Tepp)eii = 0.
Using (1) in the above relation, we conclude that
B;;+Bip =0, ifi<p,
B + B, =0, ifp <i.
This proves (14).
Subcase 1.2. Assuming k # i in (22), we get [e;; © e, e,p] = 0. Thus
0 = T([eii © exx, eppl)
0 = T(eii)orpery + ek T(eir)epy — eppTeii)erk — OpreprT(eii) + eiTlew)epy + Tlew)dipeip (23)
= Opiepi T(exk) — eppT(err)eii-
Now we have three further subcases:
Subcase 1.2.1. k = p, i # p, we obtain
T(ei)er — e T(eir) + eiT(ew)err — e Tlew)ei = 0.

Using (1) in the previous relation, we conclude that C + C = 0,if i <kor C¥ + Cil. = 0,if k < i.
i ik ki ki

Subcase 1.2.2. k # p, i = p. This case is symmetric to Subcase 1.2.1.
Subcase 1.2.3. k # p, i # p. Then the relation (23) holds trivially.
Case (3). Assuming i = j, k # [, p = qin (21), we arrive at
[eii 0 en, epp] = Oix(Oppeip — Opiepr) + 01i(Oipery — Opkepi)- (24)
Now there are three subcases:
Subcase 3.1. i# land i # k. We have [e;; o ey, epp] = 0. Thus
0 = T([eii © ew, eppl)
= T(eir)Opery + enT(ei)eyy — eppT(einer — OprepTeii) + eiT(ex)epy + Tex)Oipeip (25)
— OpieyiT(ex) — eppT(en)eii-
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Now we have three subcases:
Subcase 3.1.1.1 # p, p # k. From (25), we have

e T(ei)epy — eppT(eir)er + eiT(en)epy + Tlew)dipeip — OpiepiT(en) — eppTlen)eis = 0.

Now if i # p, then above relation holds trivially and if i = p, then we have Bl + Bl = 0 for < iand Bi +B% = 0
fori<k.
Subcase 3.1.2. [ = p and p # k. From (25), we obtain

Teii)ew + enT(eir)en — enTeiien + e T(ew)en — enTew)ei = 0.

Applying (1) and (2), we have B% + B% = 0 for i < kand B}, + Bil = 0 fork <1, I # i # k, which proves (15).
Subcase 3.1.3.1 # p and p = k. This case is symmetric to Subcase 3.1.2.
Subcase 3.2. i =k and i # [. From (24), we deduce that

Oppeip — Opiepr = [eii 0 eil, epp]
T(Opeip) — TOpiep) = T[eii o e, epp])
T(Oieip) — TOpiepr) = T(eir)oieip + enT(eirepy — eppT(ein)en — OpiepT(eir) + eisT(en)epy + Tlei)dipeip (26)
— OpieyiT(en) — eppT(en)eii + enT(epy) — Tlepp)eir-

Now we have three subcases:
Subcase 3.2.1. 1 # p, p # i. From (26), we have

0 = exT(einepy — eppT(eii)en + eiiT(ein)eyy — eppTenleii + enZ(eyp) — Tlepp)eir-

Using (1), (2) and (14), we arrive at Cfip = CZP,

Subcase 3.2.2. 1 =p, p # i. From (26), we have

if i<l and [# p # i, which gives (16).

T(eq) = Teir)en + enTlei)en — enTeir)en + eiiTlen)en — enTen)eii + enTlen) — Ten)ei.

Using (1) and (2), we get Cl/ + Cii = 0, if [ <.
Subcase 3.2.3. | # p, p = i. This case is symmetric to Subcase 3.2.2.
Subcase 3.3. i # k, i =l. This case is symmetric to Subcase 3.2.
Case (4). i=j, k #1, p # q. From (21), we have
leii o e, epg] = Oi(Oipeiq — Ogiepr) + O1i(Oiperg — Ogrepi)- (27)
We have three subcases:
Subcase 4.1. k=i, i #l. From (27), we have
[eii o eir, epg] = Oppeig — Ogiep-

Now we further have four subcases:
Subcase 4.1.1. 1 # p, q # i, we have [e;; o e, ep;] = 0. Hence

0 = T([eii o e, e4])
= e;Teir)epg — epgTein)en + eiiT(ei)epy + T(ei)oipeiq — epgT(en)eii + enT(epg) — Tepg)e-

Now if i = p, then, we have C?7 + C. = 0, if g <iand C'+Cii = 0, if I <i.Ifi# p, then we get C"! + Cii. =0,
qi qi li li qi qi

if g<iandCy+CJ=0,if I<p.
Subcase 4.1.2. 1 =p, i # q, we have e;; = [e;; o ej, e5]. This shows that

Teig) = T([eii o e, ey]),
Teig) = Tei)eig + enT(eiey — ey Tlei)en + eiZ(en)ey — ey Ten)eii + enZ(ery) — Teg)eir-



M. A. Siddeeque et al. / Filomat 39:2 (2025), 437-450

Now using (1) and (2), we conclude that

il

iq  _ pii, _ pi ) lg, _ pmM
Biqelq = Beig que” + Beig + que,q qu ey-

Now using (15) and (16), we get BZ + BZ = B;Z, for i <l < gandi# g, which proves (17).
Subcase 4.1.3. 1=p, i =q, wehavee; —ey = [e; 0 e, e;]. Thus

T(eii — en) = ([eii o e, enl)
Teii) — Ten) = Tew)eir + enTei)en — e Tei)en — enTeir) + einT(en)en — enT(en) — enT(eneii
+ e T(en) — Ten)ei-
Now utilizing (1) and (2), we get
Y Biew— Y Bliew = (Bl + B + Blei — (B} + Biess — (Bj + Bl + Bl)en.
i#tes I#eS

Hence, utilizing (15) and (16), we deduce that BZ + BZ =0, if i # [, which proves (18).
Subcase 4.1.4. [+ p, i = q. This case is symmetric to Subcase 4.1.2.

Subcase 4.2. k # i, i =[. This case is symmetric to Subcase 4.1.

Subcase 4.3. k#1i, i # l. From (27), we have [e;; o ey, ey5] = 0. Thus

0 = Z([eii o ew, epq])
= T(eii)Oerg + enT(eir)epg — epgT(einexs — OgrepT(eii) + eiiT(ew)epg + Tlex)Oipeiq
— 0giepiT(ex) — epgT(ex)eii-

Now we consider three subcases:
Subcase 4.3.1. 1+ p,q#k i#p, i#q wehave

exT(eii)epg — epgT(eii)en + eiiT(en)epg — epgT(en)eii = 0.

Using (1) and (2), the last relation holds trivially.
Subcase 4.3.2. 1#p, q#k i#p, i=gq, wehave

exT(ei)epi — epi(eii)en + eiT(ewn)epi — epiT(en) — epiT(enei = 0.

Now using (1) and (2), we deduce that Ci + CK =0, if i <k.
Subcase 43.3. 1=p, q+k i#p, i =g, wehave

Teii)exi + e T(ei)er — e X(eir)en + eiT(en)ei — e T(ew) — enTlen)ei: = 0.

Now using (1) and (2), we conclude that Cii + CH =0, ifi <kor CI +Cii =0, ifk <i, k#i#1

Case (8). i # j, k #1, p # q. From (21), we have
leij 0 e, epg] = Ojx(Oipeiq — Ogiepr) + 01i (0 jperg — Ogkep))-
Now we consider two subcases:
Subcase 8.1. j=k, [+ i, wehave
[eij o eji, epg] = (Oipeiq — Ogiepi)-
Now we further have the following four subcases:
Subcase 8.1.1. I =p, q =i, we deduce that
eij — ey = [eij o ejy, €]
Teii — en) = ([esj o e, enl)
T(eir) — Tlen) = [Teij) o ejy, en] + [eij o TAejn), en] + [eij o eji, Ten)]
T(eii) — Ten) = Teijeji + e Tei)er — e Tleij)en + eijTejper — e T(ej) — e T(ej)ei
+ e T(en) — Ten)ei-

445

(28)

(29)

(30)
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Now using (1), (2), (15) and (16), we get
Bé’:+B]:l+B’?=O, ifi<j<l<i,
] jl li

which is the relation (19).
Subcase 8.1.2. | =p, q # i. From (30), we obtain

eiq = [eij o eji, e
T(eig) = T([eij o eji, eng])
Teig) = [Teij) o eji, eiq] + [eij 0 TAej), eng] + [eij o eji, T(eny)]
Teig) = Teijejg + enTeijely — el Teijeji + eijTej)ely — el Te)eij + eaTley) — Teigdeir

Now using (1) and (2), we get
ij i ol 0 e .
B;§+B§I+BIZ =B§Z, ifi<j<l<g, i#q,

which is the relation (20).
Subcase 8.1.3. [ # p, q =i. This case is symmetric to Subcase 8.1.2.
Subcase 8.1.4. 1 # p, q # i. From (30), we have [e;; o ej;, e5;] = 0. Thus

I([eij o eji, epq]) = 0.

Using (1) and (2), we get previously proved relations.
Subcase 8.2. j # k, [ =i. Itis symmetric to Subcase 8.1. [

Now, we are ready to prove Theorem 2.2 as follows:
Proof. We prove this theorem by using cardinality of S. If |S| = 1, then I(S,R) = R and the result holds

trivially. Now assume that |S| > 2. Let T : I(5,'R) — I(S, R) be a mixed triple derivation. We have to show
that T is proper. Now as T is a mixed triple derivation, so by Lemmas 2.4 and 2.5, it has the form

T(ew)= ) Bliew+ Y Bhew+ ) Biei (31)

tel; i#teS UER;
_ ii ij ji TR
T(eij) = Z Bjerj + Bijeij + Z Bjueiu, ifi # j, (32)
tel; MER]‘

where the coefficients B;L satisfy the relations (14) - (20).
Now we define an R-linear operator ¥ on I(S,R) as

W(ey) = ) Blleyj+ Bley+ ) Bllew, ifi<], (33)

tel; u€eR;
for all ¢;; € B. Using Lemma 2.5, B;]u satisfies Bl + BZ =0, i<land BZ + B;Z = BZ, fori <1<gq. By[2],
Theorem 2.2 ], W is a derivation. Now consider the R-linear map ¢ : I(S, R) — I(S,R) by ¢(e;;) = (T=¥)(e;)),

for all ¢;; € B. So now we only have to show that ¢ is a central valued map and we will get our result. By
R-linearity of ¢, we have

¢(eif)
¢(eij)

Using relations (31) - (33) in (34), we conclude that ¢ is a central valued map of I(S, R). Hence T is proper. [

(T =W)(e)),
l(e,-]-) - \I/(e,]) (34)
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3. The general case

Here in this section, we examine the mixed triple derivation on I(S,R), where S is a locally finite
preordered set. Let I(S, R) be the subalgebra of I(S, R), which is an R-linear subspace of I(S, R) generated by
{exy : x < y). This implies that I(S, R) represents the set of functions f € I(S,R), which are nonzero only at a
finite number of (x, y). Moreover I(S, R)=I(S,R) if and only if S is finite.

An R-linear map ¥ : I(S,R) — I(S,R) is called a mixed triple derivation if

[feg, M) =[T(f)og, hl+[f o Xg), hl1+[f o g, T(N)],

for all f,g,h € I(S,R). Clearly, Lemmas 2.4 and 2.5 remain still valid when we replace a finite set S by a
locally finite set S and I(S, R) by I(S, R). Although the sums I(e;j) = ¥, B} ex, are now infinite, multiplying
by ey, either on left or on right works as in the finite case. We also keep in mind the following important
observation

exxfeyy = f(x, y)exy (35)
for all f € I(S,R) and x < y, which will be used frequently.

Definition 3.1. Let f € I(S,R) and x < y. Then the restriction of f to {z € S | x < z < y} is denoted by fl[x,) and is
defined as

f|[x,y] = Z f(u/ V)eyy-

X<u<v<y
Obviously, the above sum is finite, so flix,y1 € I(S, R).

Definition 3.2. Let f € I(S,R). The diagonal function f; is defined as

P

Note that a diagonal function is constant on a set S if for any x, y € S, we have f(x,x) = f(y, y).

Lemma 3.3. [22, Lemma 3.1] Let A : I(S,R) — I(S,R) be a map defined by (f) = flixy). Then A is an algebra
homomorphism.

Lemma 3.4. Let T be a mixed triple derivation of 1(S,'R) and x < y. Then

TN Y = TSl v)- (36)

Moreover, if T is a derivation, then (36) holds for x = y also.
Proof. From [22, Lemma 3.4], we just verify (36) only when x < y. From (35), we have

(), y) = [exx © T(f), eyylx, y)
= {Z([exx 0 fr eyy]) + [eyy/ Texy) © f] + [z(eyy)/ €xx © f]}(x, Y)
= I([exx 0 f/ eyy])(x/ }/) + [eyy/ Texx) © f](xr y) + [z(eyy)r Exx © f](x/ y)
= f(x, ) Texy))(x, y) — (¥, 0)Tey) (X, y) + (Texr) /)X, %) + (fT(exx))(x, X)
= (fTex))(x, y) = (Tew) ), y) + Teyy)(x, x) f(x, y) + (Tleyy) /)Y, y) (37)
— (fZeyy))(x, ) = f(x, 1) T(eyy)(x, ).
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Now in particular, replacing f by fx,y in the last relation, we have

(fleey) @ ¥) = fliyn e YT, ) = fliyi (Y, x)T(eyx)(x, y) + (Texx) fliz ) (%, x)
+ (e Tex)) (2, X) = (fli 1 Tex)) (¥, ¥) = (Tewn) fli ) (X, y)
+ Teyy) (%, ) fliy1 (% ¥) + (Feyy) ) ¥ ) = Flien Teyy)) (X, v) (38)
- f|[x,y](xr x)z(eyy)(x/ ).
Obviously, we have f(x,y) = flu(x, y) and f(x,x) = flx,1(x, x). Also applying [ 22, Lemma 3.2], the third, fourth,
fifth, sixth, eighth and ninth terms of (38) coincide with (37). Hence, we only need to show that the second term of

(38) coincides with (37) also. Now, if y £ x, then obviously both equal to 0 and we get our result and if y < x, then
x<y<z & z<y<x whichimplies that f(y,x) = flyx (Y, X) = flixy(y, x). Hence, we get (36). I

Proposition 3.5. Suppose WV : I(S,R) — I(S,R) is a derivation. Then V can be extended uniquely to a derivation ¥V
of I(S,R).

Proof. By given hypothesis, W : I(S,R) — I(S,R) is a derivation. Now we define a map W on I(S,R) as V(f)(x,y) =
Y(flixy)(x, y), for all f € I(S,R),x < y. Then V is a linear extension of W and is a derivation of I(S,R) by [22,
Remark 3.7]. Now we show V is unique. Let T be another derivation of I(S,R) such that T(h) = W(h) for all
h € I(S,R). From Lemma 3.3, we have

LA y) = T(flien (6 y) = W (Flay) (6 y) = U (Fly)(x, y),
forall f €I(S,R)and x <y. Hencel' =W. O

Lemma 3.6. Let T be a mixed triple derivation on 1(S,R), where S is connected. Then T(f)(x,x) = T(f)(y, y), for
all x,y € S.

Proof. By given hypothesis S is connected, without loss of generality, we assume x < y. Now, we have

fz(["3J(yr f])(xr v = Iewo Exy, f])(xr )
= {[T(ex) o Exy, fl+[exxo Z(exy)r f1+ [exy/ T(Hx, )
= ([Tlew) o exy, fDY) + ([exe © Texy), fDY) + (lexy, TAHD, y)
= Tew)x, ) f (v, ) + (Tex) /)Y, y) = 2(f Tex))(x, x) = £(x, x)Texx) (Y, ¥)
+(z(€xy)f)(x/ y)+ fz:(exy)(x/ x)f(x,y) — f(x, x)z(exy)(x, )
+T(N)Y, y) — TN, ). (39)

Replacing f by f|i, in the previous relation, we get
I([exy/ f|[x,y]])(x/ ]/) = I(exx)(x/ x)fl[x,y](y/ ]/) + (z(exx)fl[x,y])(y/ ]/) - 2(f|[x,y]z(exx))(x/ x)

_f|[x,y](xr 0)Tew)(y, y) + (z(exy)fl[x,y])(xr y)+ z(exy)(xr x)fl[x,y](xr )
— (6 ) ZTexy) (%, ¥) + T(fley) @ y) = T(f ) (1) (40)

From Lemmas 3.3 and 3.4, we have
I([exy/ f])(x/ y) = z([exy/ f]|[x,y])(x/ y) = z([exyl[xry]/ f|[x,y]])(x/ y) = I([exy/ f|[x,y]])(x/ ).

Comparing (39) and (40), we have f(x, v) = flx (X, y), f(x, %) = flx(x,x) and f(y, y) = flix1(y, y)- So first,
fourth, sixth and seventh terms of (40) coincide with corresponding terms of right hand side of (39). Also,
from [22, Lemma 3.2], we have (T(ex,) f)(x, ¥) = (T(exy) flix,,1) (X, ¥). Also, from [ 22, Lemma 3.2], we have

(z(exx)ﬂ[x,y])(yr Y= (z(exx)(,ﬂ[x,y])|[y,y])(]// y) = (z(exx)fl[y,y])(]/r )= (z(exy)f)(yr ).

Therefore, we have
TN y) = THE ) = Tl W, ) = T flpy) (6, %)

The right hand side of previous relation is zero by Lemma 2.5. Hence, we get our result. [
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Theorem 3.7. Let S be connected and R be a 2-torsion free commutative ring with unity. If T is a mixed triple
derivation of I(S,R), then T =W + ¢, where W : I(S,R) — I(S,R) is a derivation and ¢ : I(S,R) — Z(I(S,R)) is an
R-linear map.

Proof. Let T be a mixed triple derivation of I(S,R). Let ¢, ¥ : I(S,R) — I(S,R) be maps defined as
o(f) = T(f)g and Y(f) = T(f) — P(f). From Lemma 3.6, ¢ is a central valued map on I(S, R). Now, we only
have to show that W is a derivation on I(S, R). Let’s restrict W on I(S, R), by Theorem 2.2, W : I(S,R) — I(S,R)
is a derivation. Also from Proposition 3.5, ¥ can be extended to a derivation W of I(S, R). Clearly we have

V(A y) = V()@ Y) = L)@ v) = d(flax, ). (41)

Now if x < y, then the relation (41) reduces to W(f)(x,y) = I(f lxy1)(x, ). Now using Lemma 3.4, we get
W(f)(x, y) = TF)(x, y) = Y(f)(x,y), which is the required result for this case. Now if x = y, then the right
hand side of (41) is zero. On the other hand, we have W(f)(x,x) = T(f)(x, x) — ¢(f)a(x, x) = 0. Hence, we
deduce that W = W and thus W is a derivation of I(S,R). [

Finally, we have constructed an example which shows that the condition of 2-torsion freeness of R is
essential in Theorem 3.7.

Example 3.8. Let R = Z, and S = {x1, x2} with the relation x; < x;jif i < jand i, j € {1,2}. Then
I(S,R) = To(R),

the algebra of all 2 X 2 upper triangular matrices over R. We define an R-linear map T : TH(R) — TL(R) as

0 ¢ 0
W T2(R) = T2R) is a derivation and ¢ : TH(R) — Z(T2(R)) is an R-linear map. Thus G(A) = Aal, where
Aa € Rand I is the 2 X 2 identity matrix. Hence, ¥ — ¢ = W is a derivation. But

coolp 2 )

which is a contradiction. Thus T is improper.

iy {[ﬂ b]} — [ﬂ IZ] Then T is a mixed triple derivation on To(R). If T is proper, then T = WV + ¢, where

Acknowledgment: The authors are thankful to the anonymous referees for their valuable comments and
suggestions that helped to improve the article.
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