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Abstract. Let A be a generalized matrix ∗-ring and let B be an unital ∗-ring. For a, b ∈ A, we define
{a, b}∗ = ab + ba∗. In this paper, we prove that, under some additional conditions, a bijective map φ : A→ B
that satisfies φ({a, b}∗ + b∗a) = {φ(a), φ(b)}∗ +φ(b)∗φ(a) for all a, b ∈ A or satisfies φ({a, b}∗ + a∗b) = {φ(a), φ(b)}∗ +
φ(a)∗φ(b) for all a, b ∈ A is a ∗-ring isomorphism.

1. Introduction

Two algebraic structures A and B are considered essentially the same if they are isomorphic, meaning
that there is a bijection φ : A → B between them that preserves their operations. However, we often just
have a bijection φ : A → B that preserves only a part of their structures. For example, we may have two
rings A and B and a bijectionφ : A→ B that preserves multiplication, but we still do not know if it preserves
addition.

Therefore, it is interesting to find some additional conditions under which a bijective map preserving a
part of their structures is necessarily an isomorphism. As a main example, Martindale III in [5] found that
for associative rings A and B such that A is prime and contains a nontrivial idempotent, every multiplicative
bijective map φ : A→ B is additive.

Motivated by this, many authors paid more attention to generalizations or bijective mappings on rings
preserving other important operations. For example, Li and Xiao in [8] extended the result of Martindale
III from prime associative rings to a larger class of associative rings called generalized matrix rings and
they also studied the Jordan product a ◦ b = ab + ba and the triple Jordan product {abc} = abc + cba.

Other authors also considered rings with involution, because of their applications to functional analysis,
such as in C∗-algebras and bounded linear operators in Hilbert spaces, and they considered operations using
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also the involution. For instance, Cui, Li, Fang, and Lu examined the characterization of specific mappings
preserving the operation {a, b}∗ = ab + ba∗ or preserving [a, b]∗ = ab − ba∗ in a factor von Neumann algebra
[2, 3]. Also, Taghavi et al. in [6] investigated mappings preserving the operation {a, b}∗ + b∗a in the context
of associative prime complex ∗-algebras.

Recently, many authors have studied the other mappings not necessarily preserving a certain operation,
but satisfying interesting identities. For example, Ferreira and Marietto in [4] and other authors in references
therein have explored and analyzed rings with involution A, an n-ary operation p(x1, . . . , xn) in A, such as
the triple Lie products p(a, b, c) = [[a, b], c] and its variants with involutions, and mappings φ : A → A that
resemble derivations concerning p, that is, they satisfy:

φ
(
p(x1, . . . , xn)

)
=

n∑
i=1

p(x1, . . . , xi−1, φ(xi), xi+1, . . . , xn)

for all x1, . . . , xn ∈ A. They proved that, if A is an unital prime complex ∗-algebra containing a nontrivial
symmetric idempotent and φ : A → A is a derivation concerning p, then φ is a ∗-derivation, that is, φ
preserves involution and is a derivation concerning the original multiplication.

For another example, Cheung in [1], investigated a class of rings called triangular algebras and, for such
a ring A, he investigated what we call commuting mappings, which are mappings φ : A → A satisfying
[φ(a), a] = 0 for all a ∈ A. He proved that, for a triangular algebra A satisfying some additional conditions,
every commuting mapping φ : A→ A is proper, that is, there is an element x in the center Z(A) of A and a
linear mapping h with image in Z(A) such that φ(a) = ax + h(a) for all a ∈ A.

Most of these results were obtained for prime associative rings or other particular cases of generalized
matrix rings. Therefore, it would be interesting to see whether these results can be extended to generalized
matrix rings. For example, Xiao and Wei in [7] extended the result of Cheung for generalized matrix rings.

In Section 3, we will extend the result of [6] about mappings preserving {a, b}∗+b∗a to generalized matrix
rings. In Section 4, we will obtain the same result for mappings preserving a similar operation {a, b}∗ + a∗b.
But before all this, in Section 2 of this paper, we will introduce some notations and terminology to state
more clearly our results and show by some examples that these two operations are not directly equivalent.

2. Notation and terminology

In this paper, by a ring, we mean an associative ring. By a unital ring we mean a ring with an identity
element. Let A be a ring.

• A is prime if, for all ideals I and J of A such that IJ = 0, we have I = 0 or J = 0. Because we are assuming
that A is associative, it is equivalent to say that for any x, y ∈ A, if for all a ∈ A we have xay = 0, then
x = 0 or y = 0.

• A is semiprime if, for any ideal I of A such that I2 = 0, we have I = 0. Because we are assuming that A
is associative, it is equivalent to say that for any x ∈ A, if for all a ∈ A we have xax = 0, then x = 0.

An involution in a ring A is a function a 7→ a∗ from A to A such that for any a, b ∈ A:

• (a + b)∗ = a∗ + b∗,

• (ab)∗ = b∗a∗,

• a∗∗ = a.

A ∗-ring is a ring A endowed with an involution. In this case, for every element x ∈ A, we say that x is
symmetric if x∗ = x, and x is a projection if it is symmetric and idempotent.

A complex involution in a C-algebra A is an involution a 7→ a∗ such that for any λ ∈ C and x ∈ A we have
(λx)∗ = λ̄x∗. A complex ∗-algebra is a C-algebra with a complex involution.

Let A and B be two ∗-rings and φ : A→ B a map. We have the following definitions:
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• φ is additive if φ(a + b) = φ(a) + φ(b) for any a, b ∈ G.

• φ is ring isomorphism if φ is an additive bijection that satisfies φ(ab) = φ(a)φ(b) for all a, b ∈ G.

• φ preserves involution if φ(a∗) = φ(a)∗ for all elements a ∈ G.

• φ is a ∗-ring isomorphism if φ is an isomorphism that preserves involution.

The following theorem is the main result of the article [6].

Theorem 2.1. Let A and B be two prime unital complex ∗-algebras such that A has a projection e satisfying e < {0, 1}.
Suppose that φ : A→ B is a bijective mapping satisfying at least one of the following:

• φ({a, b}∗ + b∗a) = {φ(a), φ(b)}∗ + φ(b)∗φ(a) for all a, b ∈ A,

• φ({a∗, b}∗ + ab∗) = {φ(a)∗, φ(b)}∗ + φ(a)φ(b)∗ for al a, b ∈ A.

Then φ is a ∗-ring isomorphism.

We will extend this result to a larger class of rings. Thus, we will briefly present the important concepts
about generalized matrix rings. Let R and S be unital rings, let M be an (R,S)-bimodule and let N be an
(S,R)-bimodule. Let us also consider two bimodule homomorphisms Φ : M⊗S N→ R andΨ : N ⊗R M→ S
satisfying the following associativity conditions: (mn)m′ = m(nm′) and (nm)n′ = n(mn′) for all m,m′ ∈ M
and n,n′ ∈ N, where we put mn = Φ(m ⊗ n) and nm = Ψ(n ⊗m). Let:

A =Mat(R,S,M,N) =
{(

r m
n s

)
: r ∈ R, s ∈ S,m ∈M,n ∈ N

}
be the set of all 2 × 2 matrices. Observe that, with the obvious matrix operations of addition and multipli-
cation, A is a ring, and we call it generalized matrix ring. Set:

e1 =

(
1 0
0 0

)
and:

e2 =

(
0 0
0 1

)
.

For i, j ∈ {1, 2} let Ai j = eiAe j. Then we can write A = A11 ⊕ A12 ⊕ A21 ⊕ A22. Also, for every a ∈ A and
i, j ∈ {1, 2}, let ai j = eiae j, so that the element ai j belongs to Ai j. By a direct calculation, for any a, b ∈ A, we
have ai jbkl = 0 if j , k, where i, j, k, l ∈ {1, 2} .

In Section 2.1 of [7], Xiao and Wei highlight a simpler approach to generalized matrix algebras. Namely,
we can have a correspondence between generalized matrix rings and pairs (A, e) where A is an unital ring
and e is an idempotent element of A, as in the following proposition.

Proposition 2.2. Let A be an unital ring and e ∈ A be an idempotent element. Then the function:

a 7→
(

eae ea(1 − e)
(1 − e)ae (1 − e)a(1 − e)

)
is an isomorphism:

A→
(

eAe eA(1 − e)
(1 − e)Ae (1 − e)A(1 − e)

)
.
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We say that a generalized matrix algebra A = Mat(R,S,M,N) is secondary-faithful if M is faithful as a
left R-module and faithful as a right S-module and N is faithful as a left S-module and faithful as a right
R-module. With the above correspondence, is it equivalent to say that A12 is faithful as a left A11-module
and faithful as a right A22-module and A21 is faithful as a left A22-module and faithful as a right A11-module.

Example 2.3. Let A be a prime unital ring with an idempotent e < {0, 1}. Then A is a secondary-faithful generalized
matrix ring.

Indeed, for a11 ∈ A11, if for every x12 ∈ A12 we have a11x12 = 0, then for every x ∈ A we have e1xe2 ∈ A12, so
0 = a11e1xe2 = a11xe2, but e2 , 0 and A is prime, so a11 = 0. Thus A12 if a faithful left A11-module.

Moreover, for a22 ∈ A22, if for every x12 ∈ A12 we have x12a22 = 0, then for every x ∈ A we have e1xe2 ∈ A12, so
0 = e1xe2a22 = e1xa22, but e1 , 0 and A is prime, so a22 = 0. Thus A12 is a faithful right A22-module.

The converse of Example 2.3 is not true. There are generalized matrix rings that are secondary-faithful
but are not even semiprime.

Example 2.4. We consider the following set:

A =
(
C C
C C

)
.

Addition in A is coordinatewise, but multiplication in A is given by:(
a1 m1
n1 b1

)
∗

(
a2 m2
n2 b2

)
=

(
a1a2 a1m2 +m1b2

n1a2 + b1n2 b1b2

)
.

To show that A is not semiprime, consider the element:

a =
(
0 1
0 0

)
.

It is easy to see that a ∗ x ∗ a = 0 for every x ∈ A.

A generalized matrix ∗-ring is a generalized matrix ring A with an involution such that e∗1 = e1. Notice
that it implies that e2 = 1 − e1 satisfies e∗2 = e2 as well. It is also easy to see that, because of the properties of
involution, for A = Mat(R,S,M,N) to be secondary-faithful, it suffices for M to be a faithful left R-module
and a faithful right S-module.

Example 2.5. The ring in the Example 2.4 with the usual conjugate-transposition is a generalized matrix ∗-ring that
is secondary-faithful but not semiprime.

Let G be an abelian group and n be a positive integer. We say G is n-torsion free if nx = 0 implies x = 0
for every x ∈ G. We say G is n-divisible if for every x ∈ G there is exactly one y ∈ G, denoted by x

n , such that
ny = x. If X, Y and Z are abelian groups, we say that a function φ : X × Y→ Z is biadditive if:

• φ(x + y, z) = φ(x, z) + φ(y, z),

• φ(x, y + z) = φ(x, y) + φ(x, z).

With this picture in mind, in this paper, we will discuss when a bijective mapping that preserves sums of
products is a ∗-ring isomorphism in the case of the generalized matrix ∗-rings that are 2-divisible, 3-torsion
free and secondary-faithful.

In the Section 3, we will prove the following theorem.

Theorem 2.6. Let A be generalized matrix ∗-ring that is 2-divisible, 3-torsion free and secondary-faithful. Let B be
a unital ∗-ring. Let φ : A→ B be a bijective mapping satisfying at least one of the following:
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• φ({a, b}∗ + b∗a) = {φ(a), φ(b)}∗ + φ(b)∗φ(a) for all a, b ∈ A,

• φ({a∗, b}∗ + ab∗) = {φ(a)∗, φ(b)}∗ + φ(a)φ(b)∗ for all a, b ∈ A.

Then φ is a ∗-ring isomorphism.

Indeed it is sufficient to consider just one case, because of the following proposition, as indicated in
Lemma 1.1 of [6]:

Proposition 2.7. Let A and B be two ∗-rings and φ : A → B a mapping. Then, the following statements are
equivalent:

• φ satisfies φ({a, b}∗ + b∗a) = {φ(a), φ(b)}∗ + φ(b)∗φ(a) for a, b ∈ A,

• φ satisfies φ({a∗, b}∗ + ab∗) = {φ(a)∗, φ(b)}∗ + φ(a)φ(b)∗ for a, b ∈ A.

Also, in Section 4, we will prove the following theorem.

Theorem 2.8. Let A be generalized matrix ∗-ring that is 2-divisible, 3-torsion free and secondary-faithful. Let B be
a unital ∗-ring. Let φ : A→ B be a bijective mapping satisfying at least one of the following:

• φ({a, b}∗ + a∗b) = {φ(a), φ(b)}∗ + φ(a)∗φ(b),

• φ(a∗ ◦ b + ab) = φ(a)∗ ◦ φ(b) + φ(a)φ(b).

Then φ is a ∗-ring isomorphism.

Indeed it is sufficient to consider just one case, because of the following proposition.

Proposition 2.9. Let A and B be two ∗-rings and φ : A→ B a mapping. The following properties are equivalent:

• φ satisfies φ({a, b}∗ + a∗b) = {φ(a), φ(b)}∗ + φ(a)∗φ(b) for a, b ∈ A,

• φ satisfies φ(a∗ ◦ b + ab) = φ(a)∗ ◦ φ(b) + φ(a)φ(b) for a, b ∈ A.

The following examples show that the properties of the Propositions 2.7 and 2.9 are not equivalent so
that the study of these new mappings is not just a trivial rearrangement of the previous study by Taghavi.

Example 2.10. Let A = Z2 × Z2 be the direct product of two copies of the ring Z2 of integers modulo 2, let
(x, y)∗ = (y, x) and let φ(x, y) = (x + y, y). Then φ satisfies:

φ({a, b}∗ + b∗a) = {φ(a), φ(b)}∗ + φ(b)∗φ(a)

for a, b ∈ A, but:

φ({a0, b0}∗ + a∗0b0) , {φ(a0), φ(b0)}∗ + φ(a0)∗φ(b0)

for a0 = (1, 1) and b0 = (0, 1).

Example 2.11. Let A = Z2 ×Z2 ×Z2 be the direct product of three copies of the ring Z2 of integers modulo 2, let
(x, y, z)∗ = (x, z, y) and let φ(x, y, z) = (y, x, z). Then φ satisfies:

φ({a, b}∗ + a∗b) = {φ(a), φ(b)}∗ + φ(a)∗φ(b)

for a, b ∈ A, but:

φ({a0, b0}∗ + b∗0a0) , {φ(a0), φ(b0)}∗ + φ(b0)∗φ(a0)

for a0 = (1, 1, 1) and b0 = (0, 1, 1).
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The following example shows that the statements of Theorems 2.6 and 2.8 are no longer true if we
replace “secondary-faithful” by “semiprime with e < {0, 1}”.

Example 2.12. Consider the ring A = Z35 of integers modulo 35. We define x∗ = x, e = 15 and the following
function φ : A→ A given by φ(x) = 9x3. Then A is a generalized matrix ∗-ring that is 2-divisible, 3-torsion free and
semiprime1) with e < {0, 1}. Also, φ is bijective and for all a, b ∈ A we have:

φ({a, b}∗ + b∗a) = {φ(a), φ(b)}∗ + φ(b)∗φ(a),

φ({a, b}∗ + a∗b) = {φ(a), φ(b)}∗ + φ(a)∗φ(b),

but φ(1 + 1) , φ(1) + φ(1).

Before proving the main results, we will also present auxiliary claims, some of which have the same
proof as in [6].

Claim 2.13. Let A be a generalized matrix ∗-ring. Then A∗i j ⊂ A ji, for i, j ∈ {1, 2}.

Proof. If ai j ∈ Ai j then:

a∗i j = (eiai je j)∗ = e∗ja
∗

i je
∗

i = e ja∗i jei ∈ A ji.

Therefore a∗i j ∈ A ji.

It is easy to check the following result.

Claim 2.14. Let A and B be abelian groups. Let P : A × A → A and Q : B × B → B be bilinear functions. Let
φ : A→ B be a function satisfying: φ(P(a, b)) = Q(φ(a), φ(b)) for any a, b ∈ A. Let h, x1, . . . , xn ∈ A such that:

φ(h) = φ(x1) + · · · + φ(xn).

Then for every t ∈ A we have:

• φ(P(t, h)) = φ(P(t, x1)) + · · · + φ(P(t, xn)),

• φ(P(h, t)) = φ(P(x1, t)) + · · · + φ(P(xn, t)).

The proof is the same as that of Lemma 2.1 of [6].

Claim 2.15. Let A and B be abelian groups. Let P : A × A → A and Q : B × B → B be bilinear functions. Let
φ : A→ B be a surjective function satisfying φ(P(a, b)) = Q(φ(a), φ(b)) for all a, b ∈ A. Then φ(0) = 0.

The proof is the same as that of Lemma 2.2 of [6].

Claim 2.16. Let A be a ∗-ring that is 3-torsion free and let x ∈ A. If 2x + x∗ = 0, then x = 0.

Proof. If 2x + x∗ = 0, then 4x + 2x∗ = 0 and also:

0 = 0∗ = (2x + x∗)∗ = x + 2x∗.

Subtracting it from the previous equality, we obtain 3x = 0, so x = 0.

1)Indeed, for every integer n > 1, then Zn is semiprime if and only if n = p1 · · · pr where p1, . . . , pr are distinct primes.
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3. First main theorem

In this section, we will prove Theorem 2.6 through the following two Theorems 3.1 and 3.9. The first
consists of proving that φ is additive.

Theorem 3.1. Let A be a generalized matrix ∗-ring that is 3-torsion free and secondary-faithful. Let B be an abelian
group. Let Q : B × B→ B be a biadditive function. Let φ : A→ B be a bijective function which satisfies:

φ({a, b}∗ + b∗a) = Q(φ(a), φ(b))

for all a, b ∈ A. Then φ is additive.

We will prove it by several lemmas, whose statements have the same hypotheses as the Theorem 3.1.
Some of them have the same proof as in [6]. Also, we will use the following abbreviation:

P(a, b) = {a, b}∗ + b∗a

for every a, b ∈ G. It is easy to see that P is a biadditive function, therefore we can apply Claims 2.13 to 2.16.

We have the following helpful formulas, that hold for the idempotent elements ei and for arbitrary x ∈ A
and qi j ∈ Ai j, where i , j:

i) P(ei, x) = (2xii + x∗ii) + xi j + (x ji + x∗i j),

ii) P(x, ei) = (2xii + x∗ii) + (xi j + x∗ji) + x ji,

iii) P(qi j, x) = (qi jx ji + xi jq∗i j) + (x∗iiqi j + qi jx j j) + x j jq∗i j + x∗i jqi j,

iv) P(x, qi j) = qi jx∗i j + (xiiqi j + qi jx∗j j) + q∗i jxii + (x jiqi j + q∗i jxi j).

Lemma 3.2. If i , j, then:

a) φ(aii + bi j) = φ(aii) + φ(bi j),

b) φ(aii + c ji) = φ(aii) + φ(c ji).

The proof is the same as that of Property 2.1 of [6].

Lemma 3.3. If i , j, then φ(aii + bi j + d j j) = φ(aii) + φ(bi j) + φ(d j j).

The proof is the same as that Property 2.2 of [6].

Lemma 3.4. If i , j, then φ(ai j + bi j) = φ(ai j) + φ(bi j).

The proof is the same as that of Property 2.3 of [6].

Lemma 3.5. φ(aii + bii) = φ(aii) + φ(bii).

Proof. Let f ∈ A such that φ( f ) = φ(aii) + φ(bii). By Claim 2.14, for every t ∈ A:

φ(P( f , t)) = φ(P(aii, t)) + φ(P(bii, t)). (1)

By (1) with t = e j, (ii) and Claim 2.15:

φ((2 f j j + f ∗j j) + ( f ji + f ∗i j) + fi j) = φ(0) + φ(0) = φ(0).

Cancelling φ and using Claim 2.16, we get f j j = f ji = fi j = 0, so f = fii. Now, let q ji ∈ A ji. By (1) with t = q ji
and Lemma 3.4:

φ(q ji f ∗ii) = φ(q jia∗ii) + φ(q jib∗ii) = φ(q jia∗ii + q jib∗ii).

Cancelling φ and using the fact that A ji is a faithful right Aii-module, we conclude that fii = aii + bii.
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Lemma 3.6. If i , j, then φ(aii + bi j + c ji) = φ(aii) + φ(bi j + c ji).

Proof. Let f ∈ A be such that φ( f ) = φ(aii) + φ(bi j + c ji). By Claim 2.14:

φ(P( f , e j)) = φ(P(aii, e j)) + φ(P(bi j + c ji, e j)).

By Claim 2.15:

φ((2 f j j + f ∗j j) + ( f ji + f ∗i j) + fi j) = φ(0) + φ((c ji + b∗i j) + bi j) = φ((c ji + b∗i j) + bi j).

Cancelling φ and using Claim 2.16, we have f j j = 0, f ji = c ji and fi j = bi j, so f = fii + bi j + c ji. Now, let
q ji ∈ A ji. By Claim 2.14:

φ(P(P(P( f , q ji), e j), ei))
= φ(P(P(P(aii, q ji), e j), ei) + φ(P(P(P(bi j + c ji, q ji), e j), ei)).

By Claim 2.15:

φ( fiiq∗ji + q ji f ∗ii) = φ(aiiq∗ji + q jia∗ii) + φ(0) = φ(aiiq∗ji + q jia∗ii).

Thus fiiq∗ji + q ji f ∗ii = aiiq∗ji + q jia∗ii. Therefore fiiq∗ji = aiiq∗ji and q ji f ∗ii = q jia∗ii. Because A ji is a faithful right
Aii-module, then fii = aii, so f = aii + bi j + c ji.

Lemma 3.7. If i , j then φ(bi j + c ji) = φ(bi j) + φ(c ji).

Proof. By Lemmas 3.2, 3.5 and 3.6:

φ(bi j + c ji) + φ(3e j + c jibi j)
= φ(3e j + bi j + c ji + c jibi j)
= φ(P(e j + c ji, e j + bi j))
= Q(φ(e j + bi j), φ(e j + c ji))
= Q(φ(e j) + φ(bi j), φ(e j) + φ(c ji))
= Q(φ(e j), φ(e j)) +Q(φ(bi j), φ(e j)) +Q(φ(e j), φ(c ji)) +Q(φ(bi j), φ(c ji))
= φ(P(e j, e j)) + φ(P(e j, bi j)) + φ(P(c ji, e j)) + φ(P(c ji, bi j))
= φ(3e j) + φ(bi j) + φ(c ji) + φ(c jibi j)
= φ(bi j) + φ(c ji) + φ(3e j + c jibi j).

Therefore φ(bi j + c ji) = φ(bi j) + φ(c ji).

Lemma 3.8. φ(a11 + b12 + c21 + d22) = φ(a11) + φ(b12) + φ(c21) + φ(d22).

The proof is the same as that of Property 2.6 of [6].

Proof of Theorem 3.1. Now, using Lemmas 3.4, 3.5 and 3.8, it is easy to see that φ is additive. □

Now we focus our attention to the second theorem of this section, that consists of proving that φ is a
∗-ring isomorphism.

Theorem 3.9. Let A be a unital ∗-ring that is 2-divisible and 3-torsion free. Let B be a unital ∗-ring. Let φ : A→ B
be an additive bijective function such that:

φ({x, y}∗ + y∗x) = {φ(x), φ(y)}∗ + φ(y)∗φ(x). (2)

for any x, y ∈ A. Then φ is a ∗-ring isomorphism.
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Because φ : A → B is an additive bijective function and A is 2-divisible and 3-torsion free, then B is
2-divisible and 3-torsion free too.

The following lemmas have the same hypotheses as the Theorem 2.8 and we use them to prove the
Theorem 2.8.

Lemma 3.10. φ(1) = 1.

Proof. We will prove that, if a = φ−1(1), then 2a − 2a∗ = a2
− a∗2, that is Equation (2.3) of [6]. The remainder

of the proof is the same as in the proof of Lemma 2.4 of [6]. For every x ∈ A, using (2) with y = a we have:

φ({x, a}∗ + a∗x) = {φ(x), 1}∗ + 1∗ · φ(x) = 2φ(x) + φ(x)∗. (3)

In particular, using (3) with x = 1, we have:

φ(2a + a∗) = 2φ(1) + φ(1)∗. (4)

Let b = 2a + a∗ − 1. Then φ(b) = φ(b)∗, so by (3) with x = b, we have:

φ({b, a}∗ + a∗b) = 2φ(b) + φ(b)∗ = 3φ(b) = φ(3b),

thus ba + ab∗ + a∗b = 3b. Because b = 2a + a∗ − 1, we have:

8a + 4a∗ − 3 = 3a2 + a∗2 + 2aa∗ + 3a∗a,

and taking involution:

4a + 8a∗ − 3 = a2 + 3a∗2 + 2aa∗ + 3a∗a,

thus 4a − 4a∗ = 2a2
− 2a∗2. Because A is 2-divisible, we conclude that 2a − 2a∗ = a2

− a∗2.

Lemma 3.11. For all a ∈ A we have φ(a∗) = φ(a)∗.

The proof is the same as that of Lemma 2.5 of [6].

Lemma 3.12. For all a, b ∈ A we have φ(ab) = φ(a)φ(b).

Proof. We first divide into some steps.

a) Let a∗ = a and b∗ = b. Using (2) with (x, y) = (b, a) and with (x, y) = (a, b) and using Lemma 3.11, we
obtain:

2φ(ab) + φ(ba) = 2φ(a)φ(b) + φ(b)φ(a),

φ(ab) + 2φ(ba) = φ(a)φ(b) + 2φ(b)φ(a).

Because B is 3-torsion free, we have φ(ab) = φ(a)φ(b).

b) Let a∗ = −a and b∗ = b. Using (2) with (x, y) = (a, b) and using Lemma 3.11, we obtain φ(ab) = φ(a)φ(b).

c) Let a∗ = a e b∗ = −b. Using (2) with (x, y) = (a, b) and using Lemma 3.11, we obtain φ(ab) = φ(a)φ(b).

d) Let a∗ = −a and b∗ = −b. Using (2) with (x, y) = (b, a) and with (x, y) = (a, b) and using Lemma 3.11, we
obtain:

−2φ(ab) + φ(ba) = −2φ(a)φ(b) + φ(b)φ(a),

φ(ab) − 2φ(ba) = φ(a)φ(b) − 2φ(b)φ(a).

Because B is 3-torsion free, we have φ(ab) = φ(a)φ(b).
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Now, let a, b ∈ A. Because A is 2-divisible, we can consider a1 =
a+a∗

2 , a2 =
a−a∗

2 , b1 =
b+b∗

2 and b2 =
b−b∗

2 . Then
a = a1 + a2, b = b1 + b2, a∗1 = a1, a∗2 = −a2, b∗1 = b1 and b∗2 = −b2. Therefore:

φ(ab) = φ((a1 + a2)(b1 + b2))
= φ(a1b1 + a2b1 + a1b2 + a2b2)
= φ(a1b1) + φ(a2b1) + φ(a1b2) + φ(a2b2)
= φ(a1)φ(b1) + φ(a2)φ(b1) + φ(a1)φ(b2) + φ(a2)φ(b2)
= (φ(a1) + φ(a2))(φ(b1) + φ(b2))
= φ(a1 + a2)φ(b1 + b2)
= φ(a)φ(b),

concluding the proof.

Proof of Theorem 3.9. Now, using Lemmas 3.11 and 3.12, it is easy to see that φ is a ∗-ring isomorphism. □

4. Second main theorem

In this section, we will prove Theorem 2.8 through the following two Theorems 4.1 and 4.9. The first
consists of proving that φ is additive.

Theorem 4.1. Let A be a generalized matrix ∗-ring that is 3-torsion free and secondary-faithful. Let B be an abelian
group. Let Q : B × B → B be a biadditive function. Let φ : A → B be a bijective function which satisfies
φ({a, b}∗ + a∗b) = Q(φ(a), φ(b)) for all a, b ∈ A. Then φ is additive.

We will prove it by several lemmas, whose statements have the same hypotheses as the Theorem 4.1.
Also we will use the following abbreviation P(a, b) = {a, b}∗ + a∗b for every a, b ∈ A. It is easy to see that P is
a biadditive function. Therefore, we can apply the Claims 2.13 to 2.16.

We have the following helpful formulas, that hold for the idempotent elements ei and for arbitrary x ∈ A
and qi j ∈ Ai j, where i , j:

i) P(ei, x) = 3xii + 2xi j + x ji,

ii) P(x, ei) = (xii + 2x∗ii) + x∗ji + (x ji + x∗i j),

iii) P(qi j, x) = (qi jx ji + xi jq∗i j) + qi jx j j + (x j jq∗i j + q∗i jxii) + q∗i jxi j,

iv) P(x, qi j) = qi jx∗i j + (xiiqi j + qi jx∗j j + x∗iiqi j) + (x jiqi j + x∗i jqi j).

Lemma 4.2. If i , j, then:

a) φ(aii + bi j) = φ(aii) + φ(bi j),

b) φ(aii + c ji) = φ(aii) + φ(c ji).

Proof. a) Let t ∈ A such that φ(t) = φ(aii) + φ(bi j). Using Claim 2.14:

φ(P(t, e j)) = φ(P(aii, e j)) + φ(P(bi j, e j)).

By Claim 2.15 we have:

φ((t j j + 2t∗j j) + t∗i j + (ti j + t∗ji)) = φ(0) + φ(b∗i j + bi j) = φ(b∗i j + bi j).

Cancelling φ and using Claim 2.16 we obtain ti j = bi j, t ji = 0 and t j j = 0. Now let q ji ∈ A ji. Using Claim 2.14:

φ(P(P(t, q ji), e j)) = φ(P(P(aii, q ji), e j)) + φ(P(P(bi j, q ji), e j)).



D. Kawai et al. / Filomat 39:2 (2025), 469–482 479

By Claim 2.15:

φ(tiiq∗ji) = φ(aiiq∗ji) + φ(0) = φ(aiiq∗ji).

This shows that tiiq∗ji = aiiq∗ji, so q jit∗ii = q jia∗ii. Therefore, because A ji is a faithful right Aii-module, we get
tii = aii.

b) Let s ∈ A such that φ(s) = φ(aii) + φ(c ji). Using Claim 2.14:

φ(P(s, e j)) = φ(P(aii, e j)) + φ(P(c ji, e j)).

Thus by Claim 2.15 we have:

φ((s j j + 2s∗j j) + s∗i j + (si j + s∗ji)) = φ(0) + φ(c ji) = φ(c ji).

Cancelling φ and using Claim 2.16, we obtain si j = 0, s ji = c ji and s j j = 0. Now let qi j ∈ Ai j. Using Claim
2.14:

φ(P(P(qi j, s), e j)) = φ(P(P(qi j, aii), e j)) + φ(P(P(qi j, c ji), e j)).

By Claim 2.15:

φ(q∗i jsii) = φ(q∗i jaii) + φ(0) = φ(q∗i jaii).

This shows that q∗i jsii = q∗i jaii, so s∗iiqi j = a∗iiqi j. Therefore, because Ai j is a faithful left Aii-module, we get
sii = aii.

Lemma 4.3. If i , j, then φ(aii + bi j + c ji) = φ(aii) + φ(bi j + c ji).

Proof. Let t ∈ A such that φ(t) = φ(aii) + φ(bi j + c ji). Using Claim 2.14:

φ(P(t, e j)) = φ(P(aii, e j)) + φ(P(bi j + c ji, e j)).

By Claim 2.15 we have:

φ((t j j + 2t∗j j) + t∗i j + (ti j + t∗ji)) = φ(0) + φ(b∗i j + (bi j + c∗ji)) = φ(b∗i j + (bi j + c∗ji)).

Cancelling φ and using Claim 2.16, we obtain ti j = bi j, t ji = c ji and t j j = 0. Now let qi j ∈ Ai j. By Claim 2.14:

φ(P(P(P(qi j, t), e j), ei))
= φ(P(P(P(qi j, aii), e j), ei)) + φ(P(P(P(qi j, bi j + c ji), e j), ei)).

Using (ii) and (iii) and Claim 2.15:

φ(q′i jtii) = φ(q′i jaii) + φ(0) = φ(q′i jaii),

so that q′i jtii = q′i jaii, thus t′iiqi j = a′iiqi j, therefore, because but Ai j is a faithful left Aii-module, we obtain
tii = aii.

Lemma 4.4. If i , j, then φ(aii + bi j + c j j) = φ(aii) + φ(bi j) + φ(c j j).

Proof. Let t ∈ A such that φ(t) = φ(aii) + φ(bi j) + φ(c j j). Using Claim 2.14, for every x ∈ A:

φ(P(t, x)) = φ(P(aii, x)) + φ(P(bi j, x)) + φ(P(c j j, x)). (5)

Using (5) with x = ei, Lemma 3.2 and Claim 2.15:

φ((tii + 2t∗ii) + t∗ji + (t ji + t∗i j)) = φ(aii + 2a∗ii) + φ(b∗i j) + φ(0) = φ((aii + 2a∗ii) + b∗i j).

By Claim 2.16, this implies tii = aii, ti j = bi j and t ji = 0. Now, using (5) with x = e j, Lemma 3.3 and Claim
2.15:

φ((t j j + 2t∗j j) + b∗i j + bi j) = φ(0) + φ(b∗i j + bi j) + φ(c j j + 2c∗j j) = φ((c j j + 2c∗j j) + b∗i j + bi j).

By Claim 2.16, we infer that t j j = c j j.
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Lemma 4.5. If i , j, then φ(ai j + bi j) = φ(ai j) + φ(bi j).

Proof. By Lemma 4.2 and Claim 2.15:

φ(ai j + bi j) = φ(P(P(ei + ai j, ei + b∗i j), e j))

= Q(Q(φ(ei + ai j), φ(ei + b∗i j)), φ(e j))

= Q(Q(φ(ei) + φ(ai j), φ(ei) + φ(b∗i j)), φ(e j))

= Q(Q(φ(ai j), φ(b∗i j)), φ(e j)) +Q(Q(φ(ai j), φ(ei)), φ(e j))

+Q(Q(φ(ei), φ(b∗i j)), φ(e j)) +Q(Q(φ(ei), φ(ei)), φ(e j))

= φ(P(P(ai j, b∗i j), e j)) + φ(P(P(ai j, ei), e j))

+ φ(P(P(ei, b∗i j), e j)) + φ(P(P(ei, ei), e j))

= φ(0) + φ(ai j) + φ(bi j) + φ(0)
= φ(ai j) + φ(bi j).

Therefore φ(ai j + bi j) = φ(ai j) + φ(bi j).

Lemma 4.6. φ(aii + bii) = φ(aii) + φ(bii).

Proof. Let t ∈ A such that φ(t) = φ(a11) + φ(b11). By Claim 2.14:

φ(P(t, e j)) = φ(P(aii, e j)) + φ(P(bii, e j)).

By Claim 2.15:

φ((t j j + 2t∗j j) + t∗i j + (ti j + t∗ji)) = φ(0) + φ(0) = φ(0).

By Claim 2.16, we have ti j = 0, t ji = 0 and t j j = 0. Now let q12 ∈ A12. By Claim 2.14:

φ(P(qi j, t)) = φ(P(qi j, aii)) + φ(P(qi j, bii)).

By Lemma 4.5:

φ(q∗i jxii) = φ(q∗i jaii) + φ(q∗i jbii) = φ(q∗i jaii + q∗i jbii).

Because Ai j is a faithful left Aii-module, then tii = aii + bii.

Lemma 4.7. φ(a11 + b12 + c21 + d22) = φ(a11 + d22) + φ(b12 + c21).

Proof. Let t ∈ A be such that φ(t) = φ(a11 + d22) + φ(b12 + c21). By Claim 2.14:

φ(P(t, e1)) = φ(P(a11 + d22, e1)) + φ(P(b12 + c21, e1)).

By Lemma 3.3:

φ((t11 + 2t′11) + t′21 + (t21 + t′12)) = φ(a11 + 2a′11) + φ(c′21 + (c21 + b′12))
= φ((a11 + 2a′11) + c′21 + (c21 + b′12)).

By Claim 2.16, we have t11 = a11, t12 = b12 and t21 = c21. Analogously we have t22 = d22.

Lemma 4.8. If i , j, then φ(ai j + b ji) = φ(ai j) + φ(b ji).
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Proof. By Lemmas 4.2 and 4.7 and Claim 2.15:

φ(ai jb ji + b jiai j) + φ(ai j + b ji)
= φ(ai jb ji + b jiai j + ai j + b ji)
= φ(P(ei + a∗i j, e j + b ji))

= Q(φ(ei + a∗i j), φ(e j + b ji))

= Q(φ(ei) + φ(a∗i j), φ(e j) + φ(b ji))

= Q(φ(a∗i j), φ(b ji)) +Q(φ(a∗i j), φ(e j)) +Q(φ(ei), φ(b ji)) +Q(φ(ei), φ(e j))

= φ(P(a∗i j, b ji)) + φ(P(a∗i j, e j)) + φ(P(ei, b ji)) + φ(P(ei, e j))

= φ(ai jb ji + b jiai j) + φ(ai j) + φ(b ji) + φ(0)
= φ(ai jb ji + b jiai j) + φ(ai j) + φ(b ji).

Therefore φ(ai j + b ji) = φ(ai j) + φ(b ji).

Proof of Theorem 4.1. Now using the Lemmas 4.4 to 4.8 and the Claim 2.15, it is easy to see thatφ is additive. □

Now we focus our attention to the second theorem of this section, that consists of proving that φ is a
∗-ring isomorphism.

Theorem 4.9. Let A be a unital ∗-ring that is 2-divisible and 3-torsion free. Let B be a unital ∗-ring. Let φ : A→ B
be an additive bijective function which satisfies

φ({x, y}∗ + x∗y) = {φ(x), φ(y)}∗ + φ(x)∗φ(y) (6)

for all x, y ∈ A. Then φ is a ∗-ring isomorphism.

Because φ : A → B is an additive bijective function and A is 2-divisible and 3-torsion free, then B is
2-divisible and 3-torsion free too.

In order to prove that we will prove some more lemmas. They have the same hypotheses as the Theorem
4.9.

Lemma 4.10. φ(1) = 1.

Proof. Let a = φ−1(1). By (6) with (x, y) = (a, 1), we have φ(a+ 2a∗) = 3φ(1) = φ(3). Therefore, by Claim 2.16,
we infer that a = 1.

Lemma 4.11. φ(a∗) = φ(a)∗ for all a ∈ A.

Proof. Let a ∈ A. By (6) with (x, y) = (a, 1), we have φ(a) + 2φ(a∗) = φ(a) + 2φ(a)∗, hence 2φ(a∗) = 2φ(a)∗, but
B is 2-divisible, so we have φ(a∗) = φ(a)∗.

Lemma 4.12. φ(ab) = φ(a)φ(b) for all a, b ∈ A.

Proof. We first divide into some steps.

a) Let a∗ = a. Using (6) with (x, y) = (a, b) and Lemma 4.11, we infer:

2φ(ab) + φ(ba) = 2φ(a)φ(b) + φ(b)φ(a).

b) Let b∗ = −b. Using (6) with (x, y) = (b, a) and Lemma 4.11, we infer φ(ab) = φ(a)φ(b).
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c) Let a∗ = a and b∗ = b. By (a), we have:

2φ(ab) + φ(ba) = 2φ(a)φ(b) + φ(b)φ(a),

φ(ab) + 2φ(ba) = φ(a)φ(b) + 2φ(b)φ(a).

Because B is 3-torsion free, we have φ(ab) = φ(a)φ(b)

d) Let a∗ = −a and b∗ = b. By (a) and (b) we have:

φ(ab) + 2φ(ba) = φ(a)φ(b) + 2φ(b)φ(a),

φ(ba) = φ(b)φ(a).

Thus φ(ab) = φ(a)φ(b).

The remainder of the proof is analogous to that of Lemma 3.12.

Proof of Theorem 4.9. Just use the Lemmas 4.11 and 4.12. □
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