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Abstract. In this paper, we introduce the notion of weighted generalized group inverse in a Banach
algebra with proper involution. This is a natural generalization of weighted weak group inverse for a
complex matrix and Hilbert space operator. We present several characterizations and representations of
this generalized inverse. In addition, a new partial order on elements in a Banach *-algebra is investigated
by using the weighted generalized group inverse and some known results are thus generalized.

1. Introduction

Let A ∈ Cn×n be a complex matrix. The group inverse of A is defined as the matrix X ∈ Cn×n satisfies the
equations:

XA2 = A,AX2 = X,AX = XA.

Such X is unique if exists, denoted by A#. As is well known, a square complex matrix A has group inverse
if and only if rank(A) = rank(A2).

In [20], Wang and Chen introduced and studied a weak group inverse for square complex matrices. A
square complex matrix A has weak group inverse X if it satisfies the equations:

AX2 = X,AX = A †OA.

Here, A †O is the core-EP inverse of A (see [7, 8, 11, 13, 15]). Weak group inverse was also generalized to
a rectangular matrix and Hilbert space operator (see [5, 17]). We refer the reader to [18, 21–24] for more
results on weak group inverse.

LetB(X,Y) be the set of all bounded linear operators from X to Y, where X and Y are infinite-dimensional
complex Hilbert spaces. Very recently, Mosić and D. Zheng introduced and studied weighted weak group
inverse for Hilbert space operators. Let A ∈ B(X,Y) and W ∈ B(Y,X) \ {0}. The W-weighted weak group
inverse of A is defined as

A
⊗
,W = (AdO,WW)2A.
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Here, AdO,W is the weighted core-EP inverse of A (see [12, 14, 17]).
A Banach algebra is called a Banach *-algebra if there exists an involution ∗ : x→ x∗ satisfying (x+ y)∗ =

x∗ + y∗, (λx)∗ = λx∗, (xy)∗ = y∗x∗, (x∗)∗ = x. The involution ∗ is proper if x∗x = 0 =⇒ x = 0 for any x ∈ A.
The algebra Cn×n of all n × n complex matrices is a Banach algebra with conjugate transpose ∗ as its proper
involution. If X is a Hilbert space then the algebraB(X) of all bounded linear operators from on X, with the
usual operations and norm, is a Banach algebra with the adjoint operation as its proper involution. Every
C∗-algebra is a Banach *-algebra that satisfies an additional condition known as the C∗-identity. The goal of
this paper is to generalize (weighted) weak group inverse for complex matrices and Hilbert space operators
to elements in a Banach algebra with proper involution. Some known results are thus generalized to wider
cases.

Let A be a Banach algebra with proper involution ∗. An element a ∈ A has g-Drazin inverse (i.e.,
generalized Drazin inverse) if there exists x ∈ A such that ax2 = x, ax = xa, a − a2x ∈ Aqnil. Such x is
unique, if exists, and denote it by ad. Here, Aqnil = {z ∈ A | 1 + λz ∈ A−1 for any λ ∈ C}. Evidently,
a ∈ Aqnil

⇔ lim
n→∞

∥ an
∥

1
n= 0. As a generalization of weak group inverse mentioned above, the author

introduced and studied generalized group inverse (see [2]). An element a ∈ A has generalized group
inverse if there exists x ∈ A such that

x = ax2, (a∗a2x)∗ = a∗a2x, lim
n→∞
||an
− xan+1

||
1
n = 0.

Such x is unique, if exists, and denote it by a gO. Here, we list several characterizations of generalized group
inverse.

Theorem 1.1. (see [2, Theorem 2.2, Theorem 4.1 and Theorem 5.1]) Let A be a Banach *-algebra, and let a ∈ A.
Then the following are equivalent:

(1) a ∈ A gO.
(2) There exist x, y ∈ A such that

a = x + y, x∗y = yx = 0, x ∈ A#, y ∈ Aqnil.

(3) a ∈ Ad and there exists x ∈ A such that

x = ax2, (ad)∗a2x = (ad)∗a, lim
n→∞
||an
− xan+1

||
1
n = 0.

(4) There exists an idempotent p ∈ A such that

a + p ∈ A−1, (a∗ap)∗ = a∗ap and pa = pap ∈ Aqnil.

(5) a ∈ Ad and
ad
A = qA and a∗aq = q∗a∗a

for an idempotent q ∈ A.

In Section 2, we extend the definition of weighted weak group inverse for a Hilbert space operator to an
elements in a Banach algebra. We obtain some characterizations of weighted generalized group inverse,
in particular, the representations of weighted generalized group inverse in terms of generalized group
inverses. Recall that an element a ∈ A has generalized w-core-EP inverse if there exist x ∈ A such that

a(wx)2 = x, (wawx)∗ = wawx, lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

The preceding x is unique if exists, and we denote it by adO,w (see [3]). An element a ∈ A has generalized
core-EP inverse if the w mentioned above is 1, and denote its generalized core-EP inverse by adO (see [1]). In
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Section 3, we establish the representations of weighted generalized group inverse as a subclass of weighted
generalized core-EP inverses. In Section 4, we characterize the weighted generalized group inverse in
terms of involved images and kernels. A new property of weighted group inverse is presented by using
three systems of equations. Finally, in the last Section, we investigate constrained binary relations and
some properties of weighted generalized group orders are derived by using weighted generalized group
inverses.

Throughout the paper, all Banach algebras are complex with a proper involution ∗. We useA−1,A#,Ad,AWO ,
A

dO andA gO to denote the sets of all invertible, group invertible, g-Drazin invertible, weak group invertible,
generalized core-EP invertible and generalized group invertible elements in A, respectively. An element
a ∈ A has (1, 3)-inverse x if it satisfies the equations axa = a and (ax)∗ = ax and denote x by a(1,3).

2. Weighted generalized group inverse

The purpose of this section is to introduce a new generalized inverse which is a natural generalization
of group inverse in a *-Banach algebra. Our starting points is the following.

Theorem 2.1. Let a,w ∈ A. Then the following are equivalent:

(1) There exists x ∈ A such that

x = a(wx)2, [(wa)∗(wa)2wx]∗ = (wa)∗(wa)2wx,
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

(2) wa ∈ A gO.

In this case, x = a[(wa) gO]2.

Proof. (1)⇒ (2) By hypothesis, we can find x ∈ A such that

a(wx)2 = x, [(wa)∗(wa)2wx]∗ = (wa)∗(wa)2wx, lim
n→∞
||(aw)n−1

− (xw)(aw)n
||

1
n−1 = 0.

Then
(wa)(wx)2 = wx, [(wa)∗(wa)2wx]∗ = (wa)∗(wa)2wx.

Furthermore, we have
||(wa)n

− (wx)(wa)n+1
||

1
n

= ||w(aw)n−1a − wxw(aw)na||
1
n

= ||w[(aw)n−1
− xw(aw)n]a||

1
n

≤ ||w||
1
n [||(aw)n−1

− xw(aw)n
||

1
n−1 ]

n−1
n ||a||

1
n .

Therefore
lim
n→∞
||(wa)n

− (wx)(wa)n+1
||

1
n = 0.

Hence,
wa ∈ A gO and (wa) gO = wx.

Accordingly,
x = a(wx)2 = a[(wa) gO]2,

as desired.
(2)⇒ (1) Let x = a[(wa) gO]2. Then we verify that

a(wx)2 = awa[(wa) gO]2wa[(wa) gO]2

= a[(wa) gO]2 = x,
(wa)∗(wa)2wx = (wa)∗(wa)2wa[(wa) gO]2

= (wa)∗(wa)2(wa) gO,
((wa)∗(wa)2wx)∗ = [(wa)∗(wa)2(wa) gO]∗ = (wa)∗(wa)2(wa) gO

= (wa)∗(wa)2wx.
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We easily check that
(xw)(aw)n+1 = a[(wa) gO]2w(aw)n+1

= (aw)n
− a[(wa)n−1

− (wa) gO(wa)n]w
− a(wa) gO[(wa)n

− (wa) gO(wa)n+1]w

Hence, we have
||(aw)n

− (xw)(aw)n+1
||

1
n

≤ ||a||
1
n ||(wa)n−1

− (wa) gO(wa)n
||

1
n ||w||

1
n

+ ||a(wa) gO
||

1
n ||(wa)n

− (wa) gO(wa)n+1
||

1
n ||w||

1
n .

Therefore
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0,

the result follows.

Corollary 2.2. Let a,w ∈ A. Then the following are equivalent:

(1) The system of conditions

x = a(wx)2, [(wa)∗(wa)2wx]∗ = (wa)∗(wa)2wx,
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

is consistent and it has the unique solution given by x = a[(wa) gO]2.
(2) wa ∈ A gO.

Proof. (1)⇒ (2) This is obvious by Theorem 2.1.
(2) ⇒ (1) Since wa ∈ A gO, by the argument above, a[(wa) gO]2 satisfies the preceding equations. If x

satisfies the system of conditions mentioned above, then wx = (wa) gO. Therefore x = a(wx)2 = a[(wa) gO]2, as
asserted.

The preceding unique solution x is called the generalized w-group inverse of a, and denote it by a gO,w.
That is, a gO,w = a[(wa) gO]2.We useA gO,w to denote the set of all generalized w-group invertible elements inA.
By the argument above, we now derive

Corollary 2.3. Let a,w ∈ A. Then

(1) a gO,w = x.
(2) wa ∈ A gO and (wa) gO = wx.

An element a ∈ A has generalized w-Drazin inverse if there exist x ∈ A such that

awx = xwa, xwawx = x, a − awxwa ∈ Aqnil.

Such x is unique, if exists, and denote it by ad,w. Evidently, ad,w = (aw)da(wa)d (see [4]). LetAd,w be the set of
all generalized w-Drazin invertible elements inA.

Theorem 2.4. Let a ∈ A. Then a ∈ A gO,w if and only if

(1) a ∈ Ad,w;
(2) there exists x ∈ A such that

x = a(wx)2, [(wa)d]∗(wa)2wx = [(wa)d]∗wa,
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.
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Proof. =⇒ In view of Theorem 2.1, wa ∈ A gO. By virtue of [2, Theorem 2.2], wa ∈ Ad. Hence a ∈ Ad,w. Set
x = (wa) gO. Then

x = a(wx)2, lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

Since (wa) gO = wx, it follows by [2, Theorem 2.2] that [(wa)d]∗(wa)2wx = [(wa)d]∗wa, as required.
⇐= Since a ∈ Ad,w, wa ∈ Ad. By hypothesis, there exists x ∈ A such that

x = a(wx)2, [(wa)d]∗(wa)2wx = [(wa)d]∗wa,
lim
n→∞
||(aw)n−1

− (xw)(aw)n
||

1
n−1 = 0.

Then xw = wa(wx)2. Moreover, we see that

||(wa)n
− (wx)(wa)n+1

||
1
n

≤ ||w||
1
n

(
||(ax)n−1

− (xw)(aw)n
||

1
n−1

)1− 1
n
||a||

1
n .

Thus, we have
lim
n→∞
||(wa)n

− wx(wa)n+1
||

1
n = 0.

In light of [2, Theorem 2.2], wa ∈ A gO. Therefore we complete the proof by Theorem 2.1.

Corollary 2.5. Let a ∈ A and k ∈N. Then a ∈ A gO,w if and only if

(1) a ∈ Ad,w;
(2) there exists x ∈ A such that

x = a(wx)2, [(wa)k]∗(wa)2wx = [(wa)k]∗wa,
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

Proof. =⇒ Let x = a gO,w. In view of Theorem 2.1, we have

x = a(wx)2, (wa)∗(wa)2wx = (wa)∗wa,
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

We have shown that [(wa)k−1]∗(wa)∗(wa)2wx = [(wa)k−1]∗(wa)∗wa. That is, [(wa)k]∗(wa)2wx = [(wa)k]∗wa, as
desired.
⇐= By hypothesis, there exists x ∈ A such that

x = a(wx)2, [(wa)k]∗(wa)2wx = [(wa)k]∗wa,
lim
n→∞
||(aw)n

− (xw)(aw)n+1
||

1
n = 0.

Then
[((wa)d)k+1]∗[(wa)k]∗(wa)2wx = [((wa)d)k+1]∗[(wa)k]∗wa.

Therefore [(wa)d]∗(wa)2wx = [(wa)d]∗wa, This completes the proof by Theorem 2.4.

Corollary 2.6. Let a ∈ A and k ∈N. Then a ∈ A gO if and only if

(1) a ∈ Ad;
(2) there exists x ∈ A such that

x = ax2, (ak)∗a2x = (ak)∗, lim
n→∞
||an
− xan+1

||
1
n = 0.

Proof. This is obvious by choosing w = 1 in Corollary 2.5.
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3. Representations by weighted generalized core-EP inverses

Every square complex matrix has core-EP inverse, and so has weighted generalized core-EP inverse
(see [19]). Every weighted g-Drazin invertible bounded linear Hilbert operator has weighted generalized
core-EP inverse (see [17]). In view of [2, Theorem 6.1], AdO,w

⊆ A
gO,w. Thus, weighted generalized core-EP

invertible elements form a rich subclass of weighted generalized group inverse. Let a ∈ AdO,w. The aim of
this section is to present the representations of weighted generalized group inverse a gO,w as a subclass of
weighted generalized core-EP inverse.

Theorem 3.1. Let a ∈ AdO,w. Then
a gO,w = a((wa)dO)3wa = (adO,ww)2a.

Proof. In view of [3, Corollary 2.2], we have adO,w = a[(wa)dO]2. By virtue of Corollary 2.2, a gO,w = a[(wa) gO]2.
Applying [2, Theorem 6.1], we see that (wa) gO = [(wa)dO]2wa. Thus,

a gO,w = a[(wa)dO]2wa[(wa)dO]2wa
= a[(wa)dO]2(wa)dOwa
= a[(wa)dO]3wa.

On the other hand, we verify that

(adO,ww)2a = [a((wa)dO)2w]2a
= [a((wa)dO)2w][a((wa)dO)2w]a
= a((wa)dO)3wa.

Therefore a gO,w = (adO,ww)2a, as asserted.

In [17], Mosić and Zhang introduced and studied the weighted weak group inverse for Hilbert space
operators. Evidently, weighted weak group inverse and weighted generalized group inverse coincide with
each other for a Hilbert space operator as the following shows.

Corollary 3.2. Let X be a Hilbert space, W ∈ B(X) \ {0} and A ∈ B(X)d,W . Then

A gO,W = (AdO,WW)2A.

Proof. This is obvious by Theorem 3.1.

We are ready to prove:

Theorem 3.3. Let a ∈ AdO,w. Then a gO,w = x if and only if

a(wx)2 = x, awx = adO,wwa.

Proof. =⇒ In view of Theorem 3.1, x = a((wa)dO)3wa. Since wa((wa)dO)2 = (wa)dO and adO,w = a((wa)dO)2, we check
that

a(wx)2 = awa((wa)dO)3wawa((wa)dO)3wa
= a((wa)dO)2(wa)dOwa
= a((wa)dO)3wa = x,

awx = awa((wa)dO)3wa
= a((wa)dO)2wa = adO,wwa,

as desired.
⇐= By hypothesis, we have

awxwx = x, awx = adO,wwa.

Then we see that
x = a(wx)2 = (awx)wx = (adO,wwa)wx
= adO,ww(awx) = adO,ww[adO,wwa]
= (adO,ww)2a

In light of Theorem 3.1, x = a gO,w, as asserted.



H. Chen, M. Sheibani Abdolyousefi / Filomat 39:2 (2025), 483–500 489

Corollary 3.4. Let a ∈ AdO. Then a gO = x if and only if

ax2 = x, ax = adOa.

Proof. This is obvious by choosing w = 1 in Theorem 3.3.

In [20], Wang and Chen introduced and studied the weighted weak group inverse for complex matrices.
As an immediate consequence of corollary 3.4, the weak group inverse and generalized group inverse
coincide with each other for a square complex matrix.

Corollary 3.5. Let A ∈ Cn×n. Then X = A gO if and only if X satisfies the system of equations

AX2 = X,AX = A †OA.

We are ready to prove:

Theorem 3.6. Let a ∈ AdO,w. Then the following are equivalent:

(1) a gO,w = x.
(2) adO,wwawx = x, awx = adO,wwa.
(3) xwawx = x, awx = adO,wwa, xwadO,w = adO,wwadO,w.

Proof. (1)⇒ (3) In view of Theorem 3.3,

a(wx)2 = x, awx = adO,wwa.

By virtue of [2, Theorem 3.1], adO,wwawadO,w = adO,w. Applying Theorem 3.1, we have

xwadO,w = [(adO,ww)2a]wadO,w

= adO,ww[adO,wwawadO,w]
= adO,wwadO,w.

Then
xwawx = xw(awx) = (xwadO,w)wa = (adO,wwadO,w)wa = [adO,ww]2a.

In light of Theorem 3.1, we have xwawx = x, as desired.
(3)⇒ (2) By hypothesis, we have

adO,wwawx = adO,ww(awx)
= adO,ww(adO,wwa)
= (adO,wwadO,w)wa
= (xwadO,w)wa
= xw(adO,wwa)
= xw(awx)
= x,

as required.
(2) ⇒ (1) By hypothesis, adO,wwawx = x, awx = adO,wwa. Then a(wx)2 = (awx)wx = (adO,wwa)wx = x. In view

of Theorem 3.3, a gO,w = x; hence the result.

Corollary 3.7. Let a ∈ AdO. Then the following are equivalent:

(1) a gO = x.
(2) adOax = x, ax = adOa.
(3) xax = x, ax = adOa, xadO = adOwadO.

Proof. This is obvious by choosing w = 1 in Theorem 3.6.
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4. Characterizations involving images and kernels

Let im(a) = {ar | r ∈ A} and ker(b) = {r ∈ A | br = 0}. The notation pim(a),ker(b) denotes the idempotent p ∈ A
such that im(p) = im(a) and ker(p) = ker(b). We easily check that the preceding idempotent p is uniquely
determined by a, b ∈ A. The goal of this section is to characterize the weighted generalized group inverse
by using involved images and kernels.

Theorem 4.1. Let a ∈ AdO,w. Then the following are equivalent:

(1) a gO,w = x.
(2) wawx = pim(wad,w),ker(adO,wwa), im(x) ⊆ im(ad,w).

Proof. (1)⇒ (2) In view of Theorem 3.1, a gO,w = a((wa)dO)3wa. Then

wawx = waw[a((wa)dO)3wa] = (wa)dOwa.

Let p = wawx. Then p2 = (wa)dOwa(wa)dOwa = (wa)dOwa = p. Since ad,w = (aw)da(wa)d, we have

p = (wa)dOwa = w[(aw)d]2awa = w(aw)da
= w(aw)daw[(aw)d]2awa = w(aw)da(wa)dwa;

hence, im(p) ⊆ im(wad,w). On the other hand, we have

wad,w = w(aw)da(wa)d = wa[(wa)d]2wa(wa)d

= (wa)dwa(wa)d = p(wa)d;

hence, im(wad,w) ⊆ im(p). Thus im(p) = im(wad,w). Likewise, ker(p) = ker(adO,wwa).Moreover, we verify that

x = a((wa)dO)3wa
= a[(wa)dO(wa(wa)dO)(1,3)]3wa
= a[(wa)d]3[wa(wa)dO](1,3)

= aw[(aw)d]2a[(wa)d]2[wa(wa)dO](1,3)

= [(aw)da(wa)d](wa)[wa(wa)dO](1,3)

= ad,w(wa)[wa(wa)dO](1,3).

This implies that im(x) ⊆ im(ad,w), as required.
(2)⇒ (1) By the preceding discussion, x = a gO,w satisfies

wawx = pim(wad,w),ker(adO,wwa), im(x) ⊆ im(ad,w).

Assume that wawy = pim(wad,w),ker(adO,wwa), im(y) ⊆ im(ad,w). Then waw(x − y) = 0, and so x − y ∈ ker(waw) ⊆
ker(ad,wwaw). On the other hand, x−y ∈ im(ad,w) ⊆ im(ad,wwaw). Therefore x−y ∈ im(ad,wwaw)

⋂
ker(ad,wwaw) =

0, and so y = x, thus yielding the result.

Corollary 4.2. Let a ∈ AdO. Then the following are equivalent:

(1) a gO = x.
(2) ax = pim(ad),ker(adOa), im(x) ⊆ im(ad).

Proof. We easily obtain the result by choosing w = 1 in Theorem 4.1.

Theorem 4.3. Let a ∈ AdO,w. Then

(1) a gO,w = adO,wpim(wad,w,ker(adO,wwa).
(2) a gO,w = ad,wpim(wad,w,ker(adO,wwa).
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(3) (aw)3(aw)d is group invertible and

a gO,w = [(aw)3(aw)d]#awadO,wwa.

Proof. (1) In view of Theorem 3.6, we have a gO,w = adO,wwawa gO,w. Set q = wawa gO,w. By using Theorem 4.1,
q = pim(wad,w,ker(adO,wwa), as required.

(2) By virtue of Theorem 3.1, we have

a gO,w = (adO,ww)2a
= ad,wwaw(adO,ww)2a
= ad,w[wadO,wwa].

In light of Theorem 3.6, awx = adO,wwa; whence, wawx = wadO,wwa. It follows by Theorem 4.1 that wawx =
pim(wad,w). Therefore a gO,w = ad,wpim(wad,w),ker(adO,w)wa.

(3) Clearly, [(aw)3(aw)d]# = [(aw)d]2. By virtue of Theorem 3.3., we derive

[(aw)3(aw)d]#awadO,wwa = [(aw)d]2awadO,wwa
= (aw)d[adO,wwa]
= (aw)d(aw)a gO,w

= a gO,w,

and so the result is proved.

As an immediate consequence, we derive

Corollary 4.4. Let a ∈ AdO. Then

(1) a gO,w = adOpim(wad,ker(adOa).
(2) a gO,w = adpim(ad,ker(adOa).
(3) a3ad is group invertible and

a gO,w = [a3ad]#aada.

Let A,B ∈M2(A). We say that A is simply equivalent to B if A is equivalent to B by a column and a row
transformations, i.e., (

1 0
∗ 1

)
A

(
1 ∗

0 1

)
= B.

We denote it by A∼̇B.

Theorem 4.5. Let a ∈ AdO,w. Then

(1) there exists a unique x ∈ A such that

ker(x) = im(wa)d, x2 = x, [(wa)d]∗wax = 0;

(2) there exists a unique y ∈ A such that

ker(y) = im(aw)d, y2 = y, [(wa)d]∗(wa)2wy = 0;

(3) there exists a unique z ∈ A such that(
waw 1 − x
1 − y z

)
∼̇

(
waw 0

0 0

)
.
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In this case, a gO,w = z.

Proof. Let x = 1 − wawa gO,w, y = 1 − a gO,wwaw and z = a gO,w. One directly checks that equalities in (1) and (2)
hold. In view of Theorem 3.6, z = zaz = a gO,wwawa gO,w. Then we verify that(

1 0
−a gO,w 1

) (
waw 1 − x
1 − y z

) (
1 −a gO,w

0 1

)
=

(
waw 0

0 0

)
.

Therefore (
waw 1 − x
1 − y z

)
∼̇

(
waw 0

0 0

)
.

Claim 1. Assume that there exists x′ ∈ A such that ker(x′) = im(wa)d, (x′)2 = x′, [(wa)d]∗wax′ = 0.
Then im(1 − x′) = ker(x′) = im(wa)d. By using [2, Theorem 3.4], we have im(wa)d = im(wa gO). Then
im(wa)d = im(wa gO,w) by Corollary 2.3. Since wa gO,w = wa gO,wwawa gO,w, we have im(wa gO,w) = im(wa gO,wwa). Thus,

im(wa)d = im(wa gO,w) = im(wa gO,wwa).

Since 1 − x′ and wa gO,wwa are idempotents, we have

1 − x′ = wa gO,wwa(1 − x′).

In view of Theorem 2.1 and [2, Theorem 6.1], a gO,w = a[(wa) gO]2 = a[((wa)dO)2(wa)]2, and so

wa gO,wwa = (wa)[((wa)dO)2(wa)]2

= (wa)dO(wa)[(wa)dO]2(wa)
= [(wa)dO]2(wa)
= (wa)dO[(wa)d]2((wa)d)(1,3)(wa)
= (wa)dO(wa)d[(wa)d((wa)d)(1,3)](wa)
= (wa)dO(wa)d[(wa)d((wa)d)(1,3)]∗(wa)
= (wa)dO(wa)d[((wa)d)(1,3)]∗[(wa)d]∗(wa).

Hence,
wa gO,wwax′ = (wa)dO(wa)d[((wa)d)(1,3)]∗[(wa)d]∗(wa)x′ = 0.

Therefore 1 − x′ = wa gO,wwa = 1 − x, and so x′ = x. The uniqueness of x is proved.
Claim 2. Assume that there exists y′ ∈ A such that ker(y′) = im(aw)d, (y′)2 = y′, [(wa)d]∗(wa)2wy′ = 0.

Then im(1 − y′) = ker(y′) = im(aw)d. Since a gO,ww = a gO,wwawa gO,ww, we see that im(a gO,ww) = im(a gO,wwaw). In
view of [2, Theorem 3.4], we have im(a gO,ww) ⊆ im(aw)d. By using Theorem 3.1 and [1, Theorem 1.2], we
directly check that

a gO,wwa(wa)dw = [a((wa)dO)3wa]wa(wa)dw
= a[((wa)d)2((wa)d)(1,3)]3(wa)d(wa)2w
= a[(wa)d]2w
= (aw)d.

and so im(aw)d
⊆ im(a gO,ww). Therefore

im(aw)d = im(a gO,ww) = im(a gO,wwaw).

Since 1 − y′ and a gO,wwaw are idempotents, we get

1 − y′ = a gO,wwaw(1 − y′).
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As in the argument above, we see that

a gO,wwaw = a[((wa)dO)2(wa)]2waw
= a[(wa)dO]2(wa)dO(wa)2w
= a[(wa)dO]2[(wa)d]2(wa)d)(1,3)(wa)2w
= a[(wa)dO]2(wa)d[(wa)d((wa)d)(1,3)](wa)2w
= a[(wa)dO]2(wa)d[(wa)d((wa)d)(1,3)]∗(wa)2w
= a[(wa)dO]2(wa)d[((wa)d)(1,3)]∗[(wa)d]∗(wa)2w.

This implies that
a gO,wwawy′ = a[(wa)dO]2(wa)d[((wa)d)(1,3)]∗[(wa)d]∗(wa)2wy′ = 0.

Accordingly, 1 − y′ = a gO,wwaw = 1 − y; hence, y′ = y. The uniqueness of y is proved.
Claim 3. Assume that there exists z′ ∈ A such that(

waw 1 − x′

1 − y′ z′

)
∼̇

(
waw 0

0 0

)
.

Then (
1 0
∗ 1

) (
waw 1 − x′

1 − y′ z′

) (
1 ∗

0 1

)
=

(
waw 0

0 0

)
.

By the argument above, x′ = 1 − wawa gO,w and y′ = 1 − a gO,wwaw. Then(
1 0
∗ 1

) (
waw wawa gO,w

a gO,wwaw z′

) (
1 ∗

0 1

)
=

(
waw 0

0 0

)
.

Obviously, we have (
waw wawa gO,w

a gO,wwaw z′

)
=

(
1 0

a gO,w 1

) (
waw 0

0 z′ − a gO,wwawa gO,w

) (
1 a gO,w

0 1

)
.

Then (
1 0
∗ 1

) (
waw 0

0 z′ − a gO,wwawa gO,w

) (
1 ∗

0 1

)
=

(
waw 0

0 0

)
.

Since
(

1 ∗

0 1

)−1

=

(
1 ∗

0 1

)
,we see that

(
1 0
∗ 1

) (
waw 0

0 z′ − a gO,wwawa gO,w

)
=

(
waw 0

0 0

) (
1 ∗

0 1

)
.

Accordingly, z′ − a gO,wwawa gO,w = 0, and then z′ = a gO,w, thus yielding the result.

Corollary 4.6. Let a ∈ AdO. Then

(1) there exists a unique x ∈ A such that

ker(x) = im(ad), x2 = x, (ad)∗ax = 0;

(2) there exists a unique y ∈ A such that

ker(y) = im(ad), y2 = y, (ad)∗a2y = 0;
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(3) there exists a unique z ∈ A such that(
a 1 − x

1 − y z

)
∼̇

(
a 0
0 0

)
.

In this case, a gO = z.

Proof. This is an immediate consequence of Theorem 4.5.

Let N(X) and R(X) represent the null space and range space of a complex matrix X, respectively. As an
immediate consequence, we improve [6, Theorem 4.2] as follows.

Corollary 4.7. Let A ∈ Cm×n and W ∈ Cn×m. Then

(1) there exists a unique matrix X such that

N(X) = R(WA)D,X2 = X, [(WA)D]∗WAX = 0;

(2) there exists a unique matrix Y such that

N(Y) = R(AW)D,Y2 = Y, [(WA)D]∗(WA)2WY = 0;

(3) there exists a unique matrix Z such that(
WAW I − X
I − Y Z

)
∼̇

(
WAW 0

0 0

)
.

In this case, AWO,W = Z.

Proof. Since very rectangular matrix can be regarded as a subblock of a square matrix by adding some zero
entries, the result is true by Theorem 4.5.

5. Weighted generalized group orders

Our main concern in this section is to describe the relations between two elements in a Banach *-algebra
by means of weighted generalized group inverses. Let a, b,w ∈ A and a ∈ A gO,w. Our starting point is the
following:

Definition 5.1. (1) a ≤ gO,w
r b if (aw)a gO,w = (bw)a gO,w.

(2) a ≤ gO,w
l b if a gO,w(wa) = a gO,w(wb).

(3) a ≤ gO,w b if a ≤ gO,w
r b and a ≤ gO,w

l b.

Lemma 5.2. Let a, b,w ∈ A and a ∈ A gO,w. Then

(1) a ≤ gO,w
r b if and only if a(wa)d = b(wa)d.

(2) a ≤ gO,w
l b if and only if (wa)dO(wa)2 = (wa)dO(wa)(wb).

Proof. (1) =⇒ Since a ≤ gO,w
r b, we have (aw)a gO,w = (bw)a gO,w. In view of Theorem 2.1,

a gO,w = a[(wa) gO]2.

Then we derive
(aw)a[(wa) gO]2 = (bw)a[(wa) gO]2.
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Since wa[(wa) gO]2 = (wa) gO, we obtain
a(wa) gO = b(wa) gO.

In light of [2, Theorem 6.1], (wa) gO = [(wa)dO]2wa. Then we have

a[(wa)dO]2 = a[(wa)dO]2wa(wa)dO

= b[(wa)dO]2wa(wa)dO

= b[(wa)dO]2.

By virtue of [1, Theorem 1.2], (wa)dO = [(wa)d]2((wa)d)(1,3), and then [(wa)dO]2wa = [(wa)d]3. Therefore

a(wa)d = a[(wa)d]3(wa)2

= b[(wa)d]3(wa)2

= b(wa)d.

⇐= Since a(wa)d = b(wa)d, we have a(wa)d = b(wa)d. As (wa)dO = [(wa)d]2((wa)d)(1,3), we get a(wa)dO = b(wa)dO.
This implies that

awa gO,w = awa[(wa) gO]2

= awa[(wa)dO]2wa(wa) gO

= a(wa)dOwa(wa) gO

= b(wa)dOwa(wa) gO

= bwa[(wa)dO]2wa(wa) gO

= bwa[(wa) gO]2

= bwa gO,w.

Therefore a ≤ gO,w
r b .

(2) Analogously to the preceding discussion, the result follows.

Lemma 5.3. Let a, b ∈ A and a ∈ AdO. Then

(1) aa gO = ba gO if and only if aad = bad.
(2) a gOa = a gOb if and only if adOa2 = adOab.

Proof. (1) Assume that aa gO = ba gO. As in the proof of Lemma 5.2, we have aad = bad. Conversely, assume
that aad = bad. In view of [1, Theorem 1.2], we have a gO = [adO]2a = (ad)2(ad)(1,3)adOa. Therefore aa gO =

(aad)[ad(ad)(1,3)adOa] = (bad)[ad(ad)(1,3)adOa] = ba gO, as required.
(2) This is proved in the similar way to the above.

We are ready to prove:

Theorem 5.4. Let a, b,w ∈ A and a ∈ A gO,w. Then

(1) a ≤ gO,w b.
(2) a(wa)d = b(wa)d and (wa)dO(wa)2 = (wa)dO(wa)(wb).
(3) a(wa) gO = b(wa) gO and (wa) gO(wa) = (wa) gO(wb).

Proof. (1)⇒ (2) This is obvious by combining (1) and (2) in Lemma 5.2.
(2)⇒ (3) Since a(wa)d = b(wa)d, we have wa(wa)d = wb(wa)d. The implication is obtained by Lemma 5.3.
(3) ⇒ (1) Since a(wa) gO = b(wa) gO, by virtue of Lemma 5.3, a(wa)d = b(wa)d. According to Lemma 5.2,

a ≤ gO,w
r b. On the other hand, (wa) gO(wa) = (wa) gO(wb). Since a gO,w = a[(wa) gO]2, we have a gO,w(wa) = a gO,w(wb).

Then a ≤ gO,w
l b. So the theorem is true.

The relation ≤ gO,w is a pre-order as the following shows.

Corollary 5.5. If a ≤ gO,w b and b ≤ gO,w c, then a ≤ gO,w c.
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Proof. In view of Theorem 5.4, we have

a(wa) gO = b(wa) gO, (wa) gO(wa) = (wa) gO(wb);
b(wb) gO = c(wb) gO, (wb) gO(wb) = (wb) gO(wc).

Then
a(wa) gO = b(wa) gO = b[wa(wa) gO](wa) gO

= b(wb)[(wa) gO]2 = bw[b(wa) gO](wa) gO

= bw[a(wa) gO](wa) gO = bw[b(wb)[(wa) gO]2(wa) gO

= b(wb)2[(wa) gO]3 = · · · = b(wb)n[(wa) gO]n+1

= b[(wb)n
− (wb)d(wb)n+1][(wa) gO]n+1 + b(wb)d(wb)n+1[(wa) gO]n+1;

c(wa) gO = c[wa(wa) gO](wa) gO = c[wb(wa) gO](wa) gO

= cwb[(wa) gO]2 = · · · = c(wb)n[(wa) gO]n+1

= c[(wb)n
− (wb)d(wb)n+1][(wa) gO]n+1 + c(wb)d(wb)n+1[(wa) gO]n+1.

Since bc(wb)d = c(wb)d and

lim
n→∞
||(wb)n

− (wb)d(wb)n+1
||

1
n = lim

n→∞
||(wb − (wb)d(wb)2)n

||
1
n = 0,

we see that
lim
n→∞
||a(wa) gO

− c(wa) gO
||

1
n = 0.

Therefore a(wa) gO = c(wa) gO. By a similar route, we check that (wa) gO(wa) = (wa) gO(wc). Therefore a ≤ gO,w c, the
corollary is true.

Let aw,wa ∈ AdO. Then a ∈ A gO,w and a gO,w = (aw) gOa(wa) gO.We are now ready to prove the main result of
this section.

Theorem 5.6. Let aw,wa ∈ AdO. Then the following statements are equivalent:

(1) a ≤ gO,w
r b if and only if wa ≤ gO wb.

(2) a ≤ gO,w
l b if and only if aw ≤ gO bw.

(3) a ≤ gO,w b if and only if wa ≤ gO wb and aw ≤ gO bw.

Proof. (1)⇒ (2) Since a ≤ gO,w b, we have

(aw)a gO,w = (bw)a gO,w, a gO,w(wa) = a gO,w(wb).

In view of Theorem 2.1, a gO,w = a[(wa) gO]2. Hence

(wa)(wa) gO = w(aw)a[(wa) gO]2

= w(aw)a gO,w

= w(bw)a gO,w

= w(bw)a[(wa) gO]2

= (wb)(wa) gO.

Furthermore, we check that
(wa) gO(wa) = wa[(wa) gO]2(wa)

= w[a((wa) gO)2](wa)
= w[a gO,w(wb)]
= w[a[(wa) gO]2(wb)]
= [wa((wa) gO)2](wb)
= (wa) gO(wa).

Therefore wa ≤ gO wb. Analogously, we show that aw ≤ gO bw, as required.
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(2)⇒ (1) Since wa ≤ gO wb and aw ≤ gO bw, we have

(wa)(wa) gO = (wb)(wa) gO, (wa) gO(wa) = (wa) gO(wb);
(aw)(aw) gO = (bw)(aw) gO, (aw) gO(aw) = (aw) gO(bw).

In view of [2, Theorem 2.1],
(aw)(aw)d[(aw)(aw)d](1,3)

= (aw)(aw) gO

= (bw)(aw) gO

= (bw)(aw)d[(aw)(aw)d](1,3),

and so
(aw)[(aw)d]2(aw)(aw)d[(aw)(aw)d](1,3)(aw)(aw)d

= (bw)[(aw)d]2(aw)(aw)d[(aw)(aw)d](1,3)(aw)(aw)d.

We infer that aw[(aw)d]2(aw)(aw)d = bw[(aw)d]2(aw)(aw)d, hence aw(aw)d = bw(aw)d. By using Cline’s formula
and [2, Theorem 2.1], we derive

a(wa) gO = a(wa)d[(wa)(wa)d](1,3)

= aw[(aw)d]2a[(wa)(wa)d](1,3)

= [aw(aw)d](aw)da[(wa)(wa)d](1,3)

= [bw(aw)d](aw)da[(wa)(wa)d](1,3)

= bw[(aw)d]2a[(wa)(wa)d](1,3)

= b(wa)d[(wa)(wa)d](1,3)

= b(wa) gO.

Since a gO,w = a[(wa) gO]2,we verify that

(aw)a gO,w = (aw)a[(wa) gO]2

= a[wa((wa) gO)2]
= a(wa) gO

= b(wa) gO

= (bw)a[(wa) gO]2

= (bw)a gO,w.

Likewise, we prove that a gO,w(wa) = a gO,w(wb). Therefore a ≤ gO,w b, as asserted.

Let p, q ∈ A be projections and x ∈ A. Then x = pxq+ px(1− q)+ (1− p)xq+ (1− p)x(1− q). We write x as
in the matrix form:

x =
(

pxq px(1 − q)
(1 − p)xq (1 − p)x(1 − q)

)
p×q
.

Theorem 5.7. Let aw,wa ∈ AdO. Then the following statements are equivalent:

(1) a ≤ gO,w
r b.

(2) a,w and b are represented as

a =
(

a1 a2
0 a3

)
p×q
,w =

(
w1 w2
0 w3

)
q×p
, b =

(
a1 b2
0 b3

)
p×q
,

where
p = (aw)(aw)dO, q = (wa)(wa)dO,
a1 ∈ (pAq)−1,w1 ∈ (qAp)−1,
a3w3 ∈ ((1 − p)A(1 − p))qnil,
w3a3 ∈ ((1 − q)A(1 − q))qnil,

(a2 − b2)w3 + (a1w1)−1(a1w2 + a2w3)(a3 − b3)w3 = 0.
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Proof. Let p = (aw)(aw)dO and q = (wa)(wa)dO. Then we have

[1 − (aw)(aw)dO](aw)d = 0, [1 − (wa)(wa)dO](wa)d = 0.

Moreover, we verify that

(1 − p)aq = [1 − (aw)(aw)dO]a(wa)(wa)dO

= [1 − (aw)(aw)dO](aw)a(wa)(wa)d(wa)dO

= [1 − (aw)(aw)dO](aw)3[(aw)d]2a(wa)dO

= [1 − (aw)(aw)dO](aw)d(aw)2a(wa)dO

= 0;
(1 − q)wp = [1 − (wa)(wa)dO]w(aw)(aw)dO

= [1 − (wa)(wa)dO](wa)d(wa)2a(aw)dO

= 0;

a1w1 = (aw)(aw)dOa(wa)(wa)dOw(aw)(aw)dO

= (aw)(aw)dOa(wa)(wa)dOw(aw)(aw)dO

∈ (pAp)−1;
w1a1 = (wa)(wa)dOw(aw)(aw)dO

∈ (qAq)−1;
a2w2 = [1 − (aw)(aw)dO]a[1 − (wa)(wa)dO]w[1 − (aw)(aw)dO]

∈ [(1 − p)A(1 − p)]qnil;
w2a2 = [1 − (wa)(wa)dO]w[1 − (aw)(aw)dO]a[1 − (wa)(wa)dO]

∈ [(1 − q)A(1 − q)]qnil.

Write b =
(

b1 b2
b4 b3

)
p×q
. Then we have

aw =
(

a1w1 a1w2 + a2w3
0 a3w3

)
p×p
.

Thus,

(aw) gO =

(
(a1w1)−1 (a1w1)−2(a1w2 + a2w3)

0 0

)
p×p
,

and so

aw(aw) gO =

(
1 (a1w1)−1(a1w2 + a2w3)
0 0

)
p×p
.

Furthermore, we have

bw =
(

b1w1 b1w2 + b2w3
b4w1 b4w2 + b3w3

)
p×p
.

Then

bw(aw) gO =

(
b1w1(a1w1)−1 b1w1(a1w1)−2(a1w2 + a2w3)
b4w1(a1w1)−1 b4w1(a1w1)−2(a1w2 + a2w3)

)
p×p
.

Moreover, we have

(aw) gOaw

=

(
1 (a1w1)−1(a1w2 + a2w3) + (a1w1)−2(a1w2 + a2w3)a3w3
0 0

)
,

(aw) gObw

=

(
1 (a1w1)−1(b1w2 + b2w3) + (a1w1)−2(a1w2 + a2w3)(b4w2 + b3w3)
0 0

)
.
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(1) ⇒ (2) By Lemma 5.2 and Lemma 5.3, we have aw(aw) gO = bw(aw) gO, hence, b1w1(a1w1)−1 = 1, and so
b1w1 = a1w1. Since w1 is invertible, we obtain a1 = b1. Since b4w1(a1w1)−1 = 0, we see that b + 4w1 = 0, and
so b4 = 0. On the other hand, we have (aw) gOaw = (aw) gObw. This implies that

(a1w1)−1(a1w2 + a2w3) + (a1w1)−2(a1w2 + a2w3)a3w3
= (a1w1)−1(b1w2 + b2w3) + (a1w1)−2(a1w2 + a2w3)b3w3.

Hence,
(a1w2 + a2w3) + (a1w1)−1(a1w2 + a2w3)a3w3

= (a1w2 + b2w3) + (a1w1)−1(a1w2 + a2w3)b3w3.

Accordingly, (a2 − b2)w3 + (a1w1)−1(a1w2 + a2w3)(a3 − b3)w3 = 0.
(2)⇒ (1) By direct computations, we have

(aw)(aw) gO =

(
1 (a1w1)−1(a1w2 + a2w3)
0 0

)
p×p
= (bw)(aw) gO.

Likewise, we check that (aw) gO(aw) = (bw) gO(aw). Therefore a ≤ gO,w b, as asserted.

Corollary 5.8. Let A,B ∈ Cn×n. Then the following are equivalent:

(1) A ≤⊗,Wr B.
(2) A,W and B are represented as

A =
(

A1 A2
0 A3

)
P×Q
,W =

(
W1 W2
0 W3

)
Q×P
,B =

(
A1 B2
0 B3

)
P×Q
,

where
P = (AW)(AW) †O,Q = (WA)(WA) †O,
A1 ∈ (pCn×nq)−1,W1 ∈ (qCn×np)−1,
A3W3 ∈ N((In − P)Cn×n(In − P)),
W3A3 ∈ N((In −Q)Cn×n(In −Q)),

(A2 − B2)W3 + (A1W1)−1(A1W2 + A2W3)(A3 − B3)W3 = 0.

Proof. This is obvious by Theorem 5.7.

Analogously, we now derive

Theorem 5.9. Let aw,wa ∈ AdO. Then the following statements are equivalent:

(1) a ≤ gO,w
l b.

(2) a,w and b are represented as

a =
(

a1 a2
0 a3

)
p×q
,w =

(
w1 w2
0 w3

)
q×p
,

b =
(

a1 − w−1
1 w2b4 b2

b4 b3

)
p×q
,

where
p = (aw)(aw)dO, q = (wa)(wa)dO,
a1 ∈ (pAq)−1,w1 ∈ (qAp)−1,
a3w3 ∈ ((1 − p)A(1 − p))qnil,

w3a3 ∈ ((1 − q)A(1 − q))qnil,w3b4 = 0,
b2 = a2 + w−1

1 w2(a3 − b3) + (w1a1w1)−1(w1a2 + w2a3)w3(a3 − b3).
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