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Abstract. This work investigates the inverse boundary value problem for a sixth-order Boussinesq equa-
tion, where the time-dependent coefficients are unknown. The primary objective is to determine these
unknown coefficients and solve the corresponding problem. The original problem is transformed into
an equivalent auxiliary problem. By utilizing the contraction mapping method, we prove the existence
and uniqueness of the solution for the auxiliary problem. Consequently, we establish the existence and
uniqueness of a classical solution to the initial problem.

1. Introduction

In many practical applications, problems arise when determining the coefficients or the right-hand side
of differential equations based on known solution data. These problems are known as inverse boundary
value problems of mathematical physics. Such problems emerge in diverse fields including seismology,
mineral exploration, biology, medicine, and industrial quality control, positioning them as key problems in
contemporary mathematics.

Inverse problems represent a rapidly growing area of modern mathematics, with recent advancements
leading to their widespread application across various scientific disciplines. Numerous studies have
explored different inverse problems for various types of partial differential equations. Notable contributions
include the work of A.N. Tikhonov [21], M.M. Lavrent’ev [9, 10], A.M. Denisov [2], M.I. Ivanchov [6], among
others. Their work has significantly influenced subsequent developments in this field.

The sixth-order Boussinesq equation with double dispersion, which models wave motion on water
with surface stress, was examined by Schneider and Wayne in [19]. Numerous boundary value problems
associated with Boussinesq-type equations have been extensively studied in the literature [3, 5, 11, 16—
18, 22-24]. Additionally, inverse problems for various classes of partial differential equations have received
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significant attention in several works [1, 7, 8, 13, 14]. Specifically, inverse problems for the sixth-order
Boussinesq equation have been considered in [4, 25].

In this paper, we establish the existence and uniqueness of the solution of the inverse boundary value
problem for the double-dispersive sixth-order Boussinesq equation.

2. Problem statement and its reduction to equivalent problem

Let T > 0 be a fixed constant, and define the domain Q7 := {(x,f) : 0 < x < 1,0 < t < T}. We consider
the one-dimensional inverse problem of determining the unknown set of functions {v(x, f), a(t), B(t)} for the
following double-dispersive sixth-order Boussinesq equation [20]:

Utt(x/ t) — Uyx(X, t) — U (X, t) + Z]xxxx(xr t) + Uttxxxx(xr t) = a(t)o(x, t) + ﬁ(t)h(x, t) +r(x, t)r (1)

subject to the nonlocal initial conditions:

T
o(x,0) = j(; Qi(v(x, t)dt + n(x), x€][0,1],

T 2)
v1(x,0) = f Qo(Ho(x, t)dt + E(x), x€[0,1],
0

and boundary conditions:

0:(0,) =0, v:(1,)=0, vu(0,t)=0, t€][0,T], 3)
as well as the nonlocal integral condition:

1
f o(x,dx =0, te€]0,T], 4)
0

and over-determination conditions:

olxj, t) = git), j=12xm#x, tel0,T] 6)

where x; € [0,1] for j = 1,2 are fixed points, and the functions h(x, t), 7(x, t), n(x), &(x), Q;(t) for j = 1,2, and
gj(t) for j = 1,2 are assumed to be sufficiently smooth for x € [0,1] and ¢ € [0, T].

Definition 2.1. The triple {v(x, t), a(t), B(t)} is said to be a classical solution to the problem (1)—(5) if the functions
o(x, t) € C**(Qr) and a(t), B(t) € C[0, T] satisfy equation (1) in the region Qr, the conditions (2) on the interval
[0, 1], and the conditions (3)—(5) on the interval [0, T], where

C*2(Qr) = {o(x, 1) : 0(x, 1) € CHQT), Varer (X, 1), Vit (x, ) € C(Q1)}
To investigate the problem (1)-(5), we first consider the following auxiliary problem:

Z’(t) = a(t)z(t), tel0,T], (6)

T T
20) = fo Qub(dt, Z(0) = fo Qu(t)=(t)t, )

where a(t), Qi(t), Q2(t) € C[0,T] are given functions, and z = z(t) is the desired solution. Here, by the
solution of the problem given by (6) and (7), we mean a function z(t) € C2[0, T] that satisfies the conditions
(6) and (7) in the classical sense.



Y. T. Mehraliyev et al. / Filomat 39:27 (2025), 9547-9560 9549

Lemma 2.2. ([15]). Assume that a(t), Q1(t), Q2(t) € CIO, T1, and ||a(t)llcjo,r) < R, where R is a constant. Addition-
ally, suppose the following condition holds:

T
(T1Q:@ltom + 101 Blcom + 5R)T < 1.
Then, the problem given by (6) and (7) has a unique trivial solution.

Next, in conjunction with the inverse boundary value problem (1)-(5), we consider the following
auxiliary inverse boundary value problem: the objective is to determine a triple of functions {v(x, t), a(t), B(t)},

where v(x, t) € 64'2(QT) and a(t), B(t) € C[0,T], that satisfy the relations (1)—(3) along with the following
conditions:

Z)xxx(lr t) =0, te [O, T]/ (8)

!]},(t) - vxx(le t) - vttxx(le t) + vxxxx(xj/ t) + vttxxxx(xj/ t) = a(t)gj(t) + .B(t)h(x]/ t) + T'(x]', t)/
ji=1,2 telo,Tl. (9)

This formulation allows us to proceed with the analysis of the original problem as follows:

Theorem 2.3. Suppose that n(x),&(x) € C[0,1], (1) = 0, &”(1) = 0 and Qj(t) € C[0,T] for j = 1,2.
Additionally, let g;(t) € C2[0,T] for j = 1,2, and suppose g(t) = g1(Hh(x2,t) — ga(Hh(x1,t) # 0 for t € [0, T].
Assume that h(x,t),r(x, t) € C(Qr), and the following conditions hold:

1 1
f h(x, t)dx =0, f r(x,t)ydx =0, tel0,T], (10)
0 0
T T
1- f Q1 (t) costdt —f Q1 () sintdt
D= (; 0 T + (), (11)
—f Qy(H)costdt 1- f Qy(t)sintdt
0 0
1 1
fo n(x)dx =0, fo E(x)dx =0, (12)
T T
50 = [ Qs ), g0 = [ Qognas i), =12 (13)
0 0

Then, the following statements are valid:
(i) Every classical solution {v(x, t), a(t), B(t)} of the problem (1)—(5) is also a solution of the problem (1)—(3), (8), (9).
(ii) Conversely, every solution {v(x, t), a(t), B(t)} of the problem (1)—(3), (8), (9), that satisfies the condition:

T
(TIQ:Blcrom + 11Ol + 5 la®lleom) T <1,

is a classical solution of the problem (1)—(5).

Proof. Let {v(x,t), a(t), B(t)} be any classical solution to the problem (1)-(5). By integrating both sides of
equation (1) with respect to x from 0 to 1, we find:

2

r

1 1 1
+ (Upxax (1, £) = U (0, £)) = a(t)j; o(x, t)dx + ﬁ(t)fo h(x, t)dx + fo r(x, t)dx, tel0,T]. (14)

1
f U(xr t)dx - (’UX(]‘/ t) - Z]J((O/ t)) - (Uttx(ll t) - Uttx(or t)) + (Uxxx(lr t) - Uxxx(or t))
0
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Taking into account the conditions (10) and considering (3) and (4), we obtain:
vttxxx(lr t) + vxxx(l/ t) = 0/ te [0/ T]- (15)
By applying (2) and using 1"’(1) = 0 and £”’(1) = 0, we obtain:

T T
01, 0) - fo 01 (Bora(L, Bt = 17(1) = 0, Dpens(1L,0) - fo Qa(B)0sen(L, Bt = £7(1) = 0. (16)

When the condition D # 0 holds, the problem given by (15) and (16) has only a trivial solution, which
implies vy (1,¢) = 0 for t € [0, T], i.e. condition (8) is fulfilled.
Next, setting x = x; in equation (1), we find:

vtt(le t) - vxx(xj/ t) - vttxx(xjr t) + vxxxx(xjr t) + Z7),‘txxxx(3"j/ t) = a(t)v(xj, t) + ﬁ(t)h(x]r t) + T’(Xj, t)/
j=1,2, telo,Tl. 17)

Considering that gj(f) € C*[0, T] for j = 1,2 and differentiating (5) twice yields:
on(xj, ) =g/, j=12, tel0,T] (18)

From (17) and considering (5) and (18), we conclude that the relation (9) holds. Now, assuming that
{v(x, 1), a(t), B(t)} is a solution of the problem (1)-(3), (8), (9). Then, from (14), taking into account the
conditions (10) and using the relations (3) and (8), we obtain:

1 1
:—;j; U(x/f)dx=0¢(t)f(; v(x,t)dx, te]0,T]. (19)

Furthermore, from (2) and (12), it is straightforward to see that:

1 T 1 1 T 1
Lv(x,O)dx—fo Q1(1) (fo v(x,t)dx)dtzf(; (U(X,O)—fo Ql(t)v(x,t)dt)dxzfo nx)dx =0, (20)

1 T 1 1 T 1
fovt(x,O)dx—fO Qz(t)(f0 v(x,t)dx)dtzj(; (vt(x,O)—j; Qz(t)v(x,t)dt)dx=j(; Ex)dx=0. (21)

Since, by Lemma 2.2, the problem given by (19)-(21) admits only a trivial solution, it follows that:

1
f o(x,dx =0, te€l0,T],
0

i.e. condition (4) is satisfied. Next, from equations (9) and (17), we obtain:

2
,j? (U(xjr t) - 9j(t)) = a(t) (v(xj, t) - gj(t)), j=1,2, tel0,T] (22)

By utilizing (2) and the compatibility conditions (13), we obtain:
T T
o(x;, 0) = g;(0) - f Qi) (v(xj, ) = g(8)) dt = o(x;,0) - f Q1(Bo(x, bt
0 0

T T
- (9;(0) - fo Q1(f)gj(f)dt) = n(xj) = (gj(O) - fo Ql(t)gj(f)df) =0, j=12 (23)

T T
0,00 =500~ [ Qa0 ot )= (0 = 0,00 = [ Qatot i

T T
—(g;-<0>— | Qz(t)gja)dt)=cs<xj)—(g;<0>— | Qz(t)gj(t)dt)zoz =12 4)

By Lemma 2.2 and the relations (22)—(24), we conclude that conditions (5) are fulfilled. This completes
the proof of the theorem. O
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3. Existence and uniqueness of the classical solution

9551

We aim to determine the first component v(x, t) of the classical solution {v(x, t), a(t), B(t)} of the problem

(1)-(3), (8), (9) in the following form:

(e8]

o5, 1) = ) oult) cos(iun),

n=0

where

1
v,(t) = ynf u(x, t) cos(uux)dx, p,=nmn, n=0,1,2,...,
0

and

)1, ifn=0,
"2 ifn=12,...

By applying the formal scheme of the Fourier method to equations (1) and (2), we obtain:

(1+ 2+ ud) ol + (2 + ph) oult) = Gu(tiv,a,p), n=0,1,2,...; 0<t<T,

T T
0n(0) = 1 + f QuBonBdt, U, (0) = & + f QaBonBidt, n=0,1,2,...,
0 0
where

Gl’l(t/ U/ a/ ﬁ) = ri’l(t) + a(t)vn(t) + ﬁ(t)hn(t)/ n= O/ 1/ 2/ RN
1 1
ra(t) = ynf r(x, t) cos(unx)dx, hy,(t) = ynf h(x,t)cos(upx)dx, n=0,1,2,...,
0 0

1 1
My = y,,f n(x) cos(unx)dx, &, = )/nf &(x)cos(uux)dx, n=0,1,2,....
0 0

Solving the problem given by (26) and (27), we obtain:

T T t
wolt) = o + fo Q1(t)00(f)dt+t(€0+ fo Qz<t>vo<t>dt)+ fo (= 1)Go(; 0, a, B,

T T
v,(t) = (Un + fo Ql(t)vn(t)dt) cos(wyt) + a)i (én + fo Qz(t)vn(t)dt) sin(w,t)

1 ¢
+ —f Gu(T;v,a,B)sin(wy(t —1))dtr, n=1,2,...; 0<t<T,
W (1 +y%+y$) 0

where

2+ 4
W, = ,/% n=0,1,2,....
T+ i+ iy

(25)

(26)

(27)

(28)

(29)
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To determine the first component of the classical solution of the problem (1)-(3), (8), (9), we substitute
the expressions v,(t) for n = 0,1, 2, ... into (25) and obtain:

T T t
u(x, t) = (170 + j(; Ql(t)vo(t)dt) + t(éo + fo Qz(t)vo(t)dt) + j(; (t = 1)Go(T;v, a0, B)dT

© T 1 T .
+ Z {(7711 + j(; Ql(t)vn(t)dt) cos(w,t) + aTn (én + j(; Qz(t)vn(t)dt) sin(wyt)

n=1
¢
+;f Gu(t; 0, a, B) sin(w,(t — 1))dT ¢ cos(pinx). (30)
) Jo

(1 4+ 2 + i
It follows from (9) and (25) that:
a(t) =[gB] (g7 () = r(x, )h(xa, £) = (g5 (£) = (2, B)h(x1, )
+ i(h(xz, ) cos(pnx1) = h(x1, £) cos(nx2)) (15, + )@ () + (D)}, (31)

n=1

B =[g(O] (g5 (1) = r(x2, )1 (8) = (g7 (B) = r(x1, ))ga(t)

o

+ ) (0108 cos(uxz) = ga(t) cos(u 1)) (i + i) (07 (1) + 0u(E)) (32)

n=1

From (26) and (29), we obtain:

(W0 + 0n®) = ~0(0) + Cultso,a f) = 1Ty (1 - ;) Gult;v, , )
e " 1+ p2 + 1+ 2 +

2, 4
_ Mty ou(t) +

2 4
M + Hy ) _ 2 20 (4
_1 + H% + [u;ll n 4 Gn(t/ U, (X,‘B) - a)nvn(t) + a)nGn(tr U, ar,B)

T+ gy + i

T T
(nn+ | Ql(nvn(t)dt)cos(wnmwi(csn+ | Qz(nvn(t)dt)sin(wnt)
0 n 0

—. 2
=w;,

t
+ ;f Gu(T;v,a, B) sin(wy(t — 1))dT + Gu(t;0,0,8)|, n=1,2,.... (33)
wn(l +y%+yﬁ) 0

Substituting equation (33) into (31) and (32), we obtain the equations for the second and third components
of the solution to the problem (1)—(3), (8), (9):

at) =[] H(gy () = r(xr, D)z, £) = (g5 (8) = r(x2, D)1, 1)

+ ) (2, B cos(ptux1) = 1, ) cos(px))w}

n=1
T T
X[(ﬂn+ fo Ql(t)vn(t)dt)COS(wntHwin(cfw fo Qz(t)vn(t)dt)sin(a)nt)

1 t
+— f Gu(t;v,a, B) sin(w,(t — 1))dT + Gu(t; 0,0, B) | ¢, (34)
) Jo }

w1+ 2 + i
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B(b) =[g()1 (g5 () = rx2, H)ga(H) — (g7 (B) = r(x1, £)g2(D)

oo

+ ) (10 cos(2) = a(b) cos(pu,x1))?

n=1

T T
X[(nn+ fo Ql<t>vn<t>dt)cos<wnt>+win(fzﬁ fo Qz<t>vn<t>dt)sin<wnt>

+; ft Gu(T;v,a, B) sin(wy(t — 1))dT + Gu(t; 0,0, B) | ¢ - (35)
) Jo

Wy (1 + 12 + ut
”( lu'l’l !“ln

Thus, the solution of the problem (1)—(3), (8), (9) reduces to the solution of the system (30), (34), (35)
with respect to the unknown functions v(x, t), a(t) and (t).

Lemma 3.1. If {v(x, t), a(t), B(t)} is any solution to the problem (1)—(3), (8), (9), then the functions

1
v,(t) = ynf u(x,t)cos(uyx)dx, n=0,12,...,
0

satisfy the system given by (28) and (29) in C[O, T.

Proof. Let {v(x, t), a(t), B(t)} be any solution of the problem (1)—(3), (8), (9). By multiplying both sides of
equation (1) by the function y, cos(u,x) forn = 0,1,2, ..., integrating the result with respect to x from 0 to
1, and using the following relations:

2

1 1
Vn f Uk (x, ) cos(px)dx = 5? ()/nf o(x, t) cos(y,,x)dx) =v,(t), n=0,12,...,
0 0

1 1
Vn f Vxx(x, t) cos(upx)dx = —yi ()/nf o(x, ) cos(ynx)dx) = —yivn(t), n=0,1,2,...,
0 0
1 1
Vn f Vs (%, £) cOS(pnx)dx = —pi (yn f v (x, £) cos(ynx)dx) = —yiv;’(t), n=0,1,2,...,
0 0
1 1
Vn f Ve (X, £) cos(upx)dx = pf, (y” f o(x, t) cos(y,,x)dx) = yﬁvn(t), n=0,1,2,...,
0 0

1 1
Vn f Vst (X, 1) cOS(Wnx)dx = iy (yn f vi(x, 1) cos(ynx)dx) =wol(t), n=0,12,...,
0 0

we obtain that equation (26) is satisfied. Similarly, from equation (2), we establish that condition (27) holds.
Therefore, the functions v,(t) for n = 0,1,2,... are solutions of the problem (26) and (27). Hence, it follows
directly that the functions v,(f) for n = 0,1,2, ... satisfy on [0, T] the system (28) and (29). Thus, the lemma
is proved. [

It follows from Lemma 3.1 that:

Corollary 3.2. Let the system (30), (34), (35) have a unique solution. Then, the problem (1)—(3), (8), (9) cannot have
more than one solution, i.e. if the problem (1)—(3), (8), (9) has a solution, it must be unique.

To further analyze the problem (1)—(3), (8), (9), we introduce the following functional spaces. Denote by
Bg/T [12] the set of all functions of the form:

(e8]

v(x, t) = Z v, (t) cos(nx), pn =nm,

n=0
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considered in the region Qr, where each v,(t) for n = 0,1, 2, ... is continuous over the interval [0, T] and
satisfies the following condition:

- 0
llo0(E)llcgo,ry + {Z (123 1on (Ollego, ) } < +00,

n=1

The norm in this set is defined as:

oo H
2
llo(x, t)”Bng = ”UO(t)”c[o,T] + {Z (P‘Z ||Un(t)||c[o,T]) } .

n=1
It is known that B5 is a Banach space. Denote by E5 the space B r X C[0, T]x C[0, T] of vector-functions
w(x, t) = {v(x, t), at), ﬁ(t)} with the norm:
ko, Dlles = lox, Ollas, + lla®llerory + [BO] oz
Obviously, E3 is also a Banach space. Now consider the operator:
Y(,a,p) = {¥1(v,a, B), W2(v, a, B), W3 (v, a, B)}, (36)

in the space E3, where

(o)

\yl ('U, a, ﬁ) = ?;(x/ t) = Z 571“) COS(an), \IIZ(UI a, ﬁ) = a(t)/ \IIS(UI a, ,B) = E(t)/

n=0

and the functions vy(t), 0, () forn = 1,2, ..., a(t) and ,E(t) are equal to the right-hand sides of equations (28),
(29), (34) and (35), respectively.
It is straightforward to observe that:

1 1 1
— <w,< V2, —<—< 3.
V3o V2 @
Taking these relations into consideration and using (28), (29), (34) and (35), we have the following
estimates:

1

T 2
80Oy < 0] + T1col + T (IQ1Alco;ry + TNQ2(B)llcgo.my) Ioo®llegory + T «/T( fo Iro(o)? dr)

T 3
+ T la®)llcgo,r 00@llcpo,r + T VT [IBO]| oz ( fo lho(0)? df) , (37)

1

[i 5Ol ) ] [2 (1) ] +r[2(yn|an)];

n=1 n=1 n=1
1

+ V7T (IQiB)llcory + V3IQe®)llcgo.ry) [Z (i ||vn(t)||qo,ﬂ)2]
n=1

T o 3 o 2
" 21T[ fo X(yn|rn(f)|)2df] +«/ﬁﬂm(t)llcmn[Z(u2||vn(t>||qo,ﬂ)2]
n=1 n=1

T o 3
+ V21T ||ﬁ(t)||cm] [ fo Z(un I, (0))) dT) . (38)
n=1



Y. T. Mehraliyev et al. / Filomat 39:27 (2025), 9547-9560 9555

[y <o oo

+[Z#E2] W Gxz, )]+ ey, Dlllego ry {[22 =) ]
n=1

n=1

+ 2T 1Q1 (Bl o7 [Z (Mn |vn(t)||C[OT] ] (Z 1 1€4] ]
=1

(!71/(1‘) —r(x1, t)) h(x, t) — (gél(t) — 1, t) h(x, t)”(:[o T]

n=1

+ V2T 1Q2()llcpo g [Z iy o Ollcpory ]
n=1

+V2_T[ fo Z(un |rn<v:>|)2df] + ﬁ'rua(t)nm[ (15 o (®llcrom) J
n=1 =1

n

T © 2 o %
+W|)ﬁ<f>|1qo,ﬂ( fo Z_](unmn(m)%] +2[Z( i ®llegoy ]

n=1
1

+2||a<t>||c0T[Z i 0w Bl J +2||ﬁ<t>|)qm[2 b (Bl ”} (39)
=1 =1

B0ty = 0T gy {851 = rea ) 710) = (5 = v, ) )]

C[o,T]
1

(£ ) 0t bl o ]
aff ]

l

[T

n=1

+ 2T [|Q1(D)llcjo,y ( iy llow®)llcro, ]

+ \/§T||Q2(t)||co]“ {Z Hn”vn(t)”coT 2]
n=1

1
)

T oo % 2
+ \/Z_T[ fo Z(wrn(m)%] + «/ETna(t)nqo,n[ (15 o ®llcro, ) ]
— =1

n

+ \/_”ﬁ(t)”C[OT] [f Z(}ln |h, (T)D dT] +2[Z( ||7’n(t)||c0T ]

n=1
(o] [ee]

22 lla®llcor, (Z (5 ||vn<t>||qo,n)2] +2[B0)lqory [Z (140 ||hn<t>||qo,n)2] “ . o)

n=1 n=1

Suppose that the data for the problem (1)—(3), (8), (9) satisfy the following assumptions:
(@ n(x) € C*0,1], n®(x) € L2(0,1), 77(0) = (1) ="’ (0) = 7" (1) = 0

(IN) &(x) € CH0,1], EO(x) € Lo(0,1), &'(0) = &'(1) = &(0) = &'(1) = 0;

() r(x, t) € C(Qr), r2(x, ) € L2(Qr);

(IV) h(x,t) € C(Qr), hy(x,t) € L2(Qr);

(V) gi(t) € C2[0, T] for j = 1,2, g(t) = gr(D)h(x2, t) — ga()h(x1, 1) #0, 0 <t < T.
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Under these assumptions, from (37)—(40), we can deduce the following estimates:

”%(t)“C[O,T] = “TT(X)”LZ(O,D * TN + T VT, QLY
+ T (I1Q1B)llcgory + THQ2B)llcgo g + T lle®llcgo,m) oo B)llcgo
+TNT ”ﬁ(t)”C[O,T] Ih(x, DIz, -

1

{5 (Ol < VT 0l O, VT3

n=1
1

+ \/?T(||Q1(t)||c[0/ﬂ + V31Q2Wllcpo.ry + V3lla®)llcpo,ry {Z #nllvn(t)llqon ]
=1
+ V2UT [|B8)]| 0,7y 5 6, Dl

7lkon = Mo o {0 =50} 50~ st )

Clo,T]
[Z T J (2, ) + 1hCx1, Hlllcpo,my [2||17(5)(x “Lz(Ol + V2 [0 w) “L 00t VT (%, Bl )

+ 2l Ao mlly 00 + V2T IBONcgo,ry 1 Dl + 2 1BO o 7y 1M o mll 0.

+T(20QuBlcory + V21l + V2 lla®lleo.r) [Z o lon®llcgo.r ]
n=1

1

+2 [lax( t)||C0T][Z i lon®)llcgo,ry ] }
=1

”E(t)”c[o n= (I !7(t)]_1||c[0 T] {| (g;’(t) — (e, t)) () - (g{’(t) - gZ(t)”

C[o,T]

[Zw] s+ a2l (217l = VEIEP @00+ VI I3l

+ 2 e Dlletomillyoy + V2T IBOlegoy WG ks + 21O gy W Dllciomll

1

+ T (21Q1llepo.ry + V21QeBllcpory + V2lla®)lcro ) [Z 3 lon®lcoo ) ]
=1

+2[la®)llcgo,m {Z Hn”vn(t)”cw ] ]}
n=1

It follows from (41) and (42) that:

||%7(x, t)HBgT < Ey(T) + F1(T) lla())llcjo,p o, t)”BiT + G1(T) [lo(x, t)||Bng + Hy(T) “ﬁ(t)”C[O,T] ’

9556

(41)

42)

(43)

(44)

(45)
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where
E(T) =[] 01y + TIE@y0 + T VTG lyan + V7191,

+ \/5”5(5)(36)”[12(011) + V21T |l (x, Dl -

Fi(T) = T2+ V21T,  Gu(T) =T (1 + V7)IIQi ®llcor + T (T + V21)IQBllerory
Hi(T) = TNT l(x, Dl + V21T (¥, Dl

Moreover, from (43) and (44), we can also express the following inequalities:

[@®| .77 < E2(T) + Fa(T) el cgo.1y IoGx, Bl + Ga(T) llotx, Dllgg , + Ha(D) [IBO)| .17 - (46)

Bl o1y < Es(D) + Fs(D lla®)llcgo,zy o€, Hllgs, + Ga(T) oG, Hllgs, + Ha(T) [|B®)| 0.7, 47)

where

Eo(T) = ”[!](t)]_l”c[o,ﬂ {|

(970 = (s, ) s, 1) = (g5 1) = 1e2, )) e, 1)

C[0,T]

+ [Z y;z] (e, )] + |h(xl’t)”'C[O,T] [2||T7(5)(x)”L2(0,1) + \/EHE(S)(x)”Lz(O,l)
n=1

VTl Dl + 2 2 Dllcgo o |-

Fa(T) = 19Ol oy [Z #;2] ez, B)] + 1Ger, Dl (V2T +2),
n=1

1
2

Go() = 9T oy | D 2| TG, O+ 1reer, Bllego 1y (2NQBllego.ry + V21Q2Blcomy)
n=1

1

Ho(T) = [[lgO] |y | D 52| ez, B+ 1er, Blego;ry (V2T e, Ol

+2 ||l (x, £)llcgomy ”Lz(o,l)) ’

E5(T) =196 o

(650 = r2,0) 926 = (57 ) = (1, 1) 9200

clo, ]

{Z Hn ] |||91(t)) gz(t mcor [2”’7(5) x)”Lz(O yt \/_“5(5) x)”Lz(Ol)

VT I Dl + 2 2 Dllcgo o |-

E(T) = 9] gz {Z yzz] llg1®] + 192(6lllcgo (V2T +2),
n=1
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Go(T) = [l9®] ™l o1 {Z uzz] T [l ()] + 02| o ry (21Q1 BNt 11 + V21IQ2(Bllego ).
n=1

Hy(T) = ”[g(t)]_lllqo,ﬂ (Z rur;z] |H91(t)| + |g2(t)H|C[O,T] ( V2T ||hs(x, Dy

n=1
) ||||hx(x, t)”C[O,T]“Lz(O,l)) :

From the inequalities (45)—(47), we deduce the following estimate:

|[otx, t)HB;T + [[@®| o1y + IBOlgo,ry < BT+ FTD) la®llegory o, )l + G(T) llo(x, s,

+H(T) [|BO)]| .71 (48)
where
E(T) = E1(T) + Eo(T) + E5(T), F(T) = F1(T) + Fo(T) + F5(T),
G(T) = Gi(T) + Gx(T) + G3(T), H(T) = H1(T) + Ho(T) + H5(T). (49)
This leads us to the following theorem:
Theorem 3.3. Assume that (I)~(V) hold, along with the inequality:
(F(T) (E(T) + 2) + G(T) + H(T)) (E(T) +2) < 1, (50)

then, the problem (1)—(3), (8), (9) has a unique solution in the ball K = Kg (IIwIIE; <R<ET)+ 2) of the space EE%.

Remark 3.4. Inequality (50) holds for sufficiently small values of ||[g(t)]_ T.

1
”C[O,T] +

Proof. Consider the following operator equation in the space E3:
w = Yw, (51)

where w = {v,a,f} and the components W;(v, a, ) for j = 1,2,3 of the operator W(v, o, f) are determined
by the right-hand sides of equations (30), (34) and (35). Consider the operator W (v, , ) in the ball K = Ky
from E?. By analogy with (48), for any w,, w,, w3 € Kg, the following estimates hold:

IWwilgs < E(T) + F(T) la®llego;r oG, Bllas, + GT) lloCx, Bllgs, + HT) B0 01
< E(T) + E(T)R? + G(T)R + H(T)R < E(T) + (E(T) (E(T) + 2) + G(T) + H(T)) (E(T) + 2), (52)

IWior = Waoaley F(TIR(ffon ) = 2, Bl + llan () = ax(Blcpor
+ G(T) [[or(x, £) = 02(x, llgg, + HT) [[B18) = 20| 0.1 (53)

It follows from (50), (52) and (53) that the operator W acts in the ball K = Ky, and satisfies the conditions
of the contraction mapping principle. Therefore, the operator W has a unique fixed point w = {v, a, 8} in the
ball K = K which is a solution of equation (51); i.e. a unique solution to the system (30), (34), (35).

Then, the function v(x,t), as an element of space Bg/T, is continuous and has continuous derivatives
V(X 1), Uxx(X, 1), Uxax (X, ) and Uyprr(x, £) in the region Q.
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Equation (26) provides the estimate:

1 1
(e8]

[ (th U;t’(t)HC[O,T])Z] S\/E[Z‘ (y3||vn(t)||C[0'T])2]
=1

n n=1

+ V2, )+ a(®0se, 5 + BOG B | 54)

L,(0,1)
From the last relation, we obtain the continuity of the functions vy(x, t), Usx(X, t), Vstx(X, 1), Uptexx (%, t) and
Uixexx (X, 1) in the region Q.
It is straightforward to verify that equation (1) and the conditions (2), (3), (8), (9) are satisfied in the
usual sense. Therefore, {v(x, t), a(t), B(t)} is a solution of the problem (1)—(3), (8), (9), and, by Lemma 3.1, it
is unique in the ball K = Kg. Thus, the proof is complete. [

In summary, from Theorem 2.3 and Theorem 3.3, straightforward reasoning implies the unique solv-
ability of the original problem (1)—(5).

Theorem 3.5. Suppose that all assumptions of Theorem 3.3 hold, along with the conditions:

1 1 1 1
D #0, f n(x)dx =0, f E(x)dx =0, f h(x, t)dx =0, f r(x, t)dx =0,
0 0 0 0

T T
9,0 = fo Qu(t)gj(hdt +n(x)),  g(0) = fo Qe +Ex), =12,

(T1Q:0llto +1Q Dl + 5 (BT +2) T < 1.

Then, the problem (1)—(5) has a unique classical solution in the ball K = Kz (||w||E§ <ET)+ 2) of the space EE%.

4. Conclusions

This paper has established the solvability of the inverse boundary value problem for a sixth-order
Boussinesq equation with unknown time-dependent coefficients. The primary focus has been to determine
these unknown coefficients and the solution of the problem. By defining a classical solution and trans-
forming the original problem into an auxiliary equivalent form, the contraction mapping principle has
been applied to prove the existence and uniqueness of the solution for the transformed problem. Utilizing
the equivalence between the original and auxiliary problems, the existence and uniqueness of a classical
solution for the original boundary value problem have been proven. These results offer deeper insights
into the mathematical structure of high-order equations and their broader applicability in related fields.
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