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Abstract. In this paper we consider a new variant of the classical Weyl type theorems for operators
defined on Banach spaces. This variant, called S-Weyl’s theorem entails two other variants, a-Weyl’s theorem
and property (w), studied by different authors in the last two decades. The theory is also exemplified by
considering many classes of operators that satisfy it. In particular, the theory is exemplified for Toeplitz
operators defined on the Hardy space H2(T), where T is the unit circle.

1. Introduction

A classical result by H. Weyl [20] states that for self-adjoint operators on Hilbert spaces the spectral
points λ of T for which λI − T is Weyl (i.e., λI − T is Fredholm operator having index 0) are exactly all
isolated points of the spectrum that are eigenvalues having finite multiplicity. A similar result has been
observed for operators that are non-normal, see Chapter 6 of the monograph [1]. A bounded linear operator
T ∈ L(X) on an infinite dimensional Banach space X, whose spectrum has the structure above mentioned for
self-adjoint operators, is said, in the modern literature, to satisfy Weyl’s theorem. Weyl’s theorem admits
several stronger variants, among these a-Weyl theorem and property (w) for many reason seem to be the
more important, and have been studied in several papers by different authors. Property (w) and a-Weyl’s
theorem are independent one each other, but each one of them entails Weyl’s theorem.

In order to give a certain order to the intricate variety of variants of Weyl’s theorem, we introduce
another variant of Weyl’s theorem, that we call S-Weyl’s theorem, (abbreviation of Strong Weyl’s theorem),
that implies both a-Weyl theorem and property (w). S-Weyl’s theorem is a rather strong property, the same
self-adjoint operators satisfy a-Weyl’s theorem, as well as property (w), but may fail S-Weyl’s theorem.
Another example of operator which satisfies both a-Weyl theorem and property (w), but not S-Weyl’s
theorem, is given by every finite-dimensional operator. Nevertheless, the classes of operators that satisfy
S-Weyl’ s theorem is considerably large, and deserve to be studied. For instance, Riesz operators having
infinite spectrum, and a less trivial examples are provided by Toeplitz operators Tϕ, where ϕ ∈ H∞(T), or
with a continuous symbol ϕ on T for which the orientation of the curve ϕ(T) with respect to each hole is
counterclockwise. If the orientation of the curve ϕ(T) is clockwise then the adjoint of Tϕ satisfies S-Weyl’s.
In particular, if ϕ is a trigonometric polynomial on T then S-Weyl’s theorem holds for Tϕ. Other important
examples that satisfy S-Weyl’s theorem are given by the dual T∗ of a non-invertible symmetry T which is
not quasi-nilpotent.
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2. Definitions and preliminary results

Let X be an infinite-dimensional complex Banach space and let T ∈ L(X) be a bounded linear operator
defined on X. By α(T) and β(T), the dimension of the kernel ker T and the codimension of the range
R(T) := T(X), respectively. Recall that T ∈ L(X) is said to be upper semi-Fredholm, T ∈ Φ+(X), if α(T) < ∞
and T(X) is closed, while T ∈ L(X) is said to be lower semi-Fredholm, T ∈ Φ−(X) if β(T) < ∞. The class
of Fredholm operators is defined by Φ(X) := Φ+(X) ∩ Φ−(X), while the class of semi-Fredholm operators is
defined by Φ±(X) := Φ+(X) ∪ Φ−(X). If T ∈ Φ±(X) then the index is defined by ind (T) := α(T) − β(T). The
set of Weyl operators is defined by W(X) := {T ∈ Φ(X) : ind T = 0}, the class of upper semi-Weyl operators
is defined by W+(X) := {T ∈ Φ+(X) : ind T ≤ 0}, and the class of lower semi-Weyl operators is defined by
W−(X) := {T ∈ Φ−(X) : ind T ≥ 0}. Clearly, W(X) = W+(X) ∩W−(X). The classes of operators above defined
generate the Weyl spectrum, defined by σw(T) := {λ ∈ C : λI−T <W(X)}, the upper semi-Weyl spectrum σuw(T)
and the lower semi-Weyl spectrum σlw(T), defined similarly.

The ascent p := p(T) of an operator T is the smallest non-negative integer p, if it does exist, such that
ker Tp = ker Tp+1. Analogously, the descent q := q(T) of T is the smallest non-negative integer q, if it
does exist, such that Tq(X) = Tq+1(X). If p(T) and q(T) are both finite then p(T) = q(T). Moreover, if
0 < p(λI − T) = q(λI − T) < ∞ if and only if λ is a pole of the resolvent, see [19, Proposition 50.2].

The class of all Browder operators is defined as the set B(X) := {T ∈ Φ(X) : p(T), q(T) < ∞}; the class of
all upper semi-Browder operators is defined B+(X) := {T ∈ Φ+(X) : p(T) < ∞}, and the class of all lower semi-
Browder operators is defined B−(X) := {T ∈ Φ−(X) : q(T) < ∞}. Obviously, B(X) ⊆ W(X) and B+(X) ⊆ W+(X)
and B−(X) ⊆W−(X).

In the sequel we denote by σap(T) the classical approximate point spectrum, and σs(T) surjectivity spectrum.
Evidently, σuw(T) ⊆ σap(T) and σlw(T) ⊆ σs(T).

An operator T ∈ L(X) is said to satisfy Browder’s theorem if σw(T) = σb(T), , where the operator T ∈ L(X)
is said to satisfy a- Brower’s theorem if σuw(T) = σub(T), or equivalently σap(T) \ σuw(T) = pa

00(T), where
pa

00(T) := σap(T) \ σub(T). It is known that a-Browder’s theorem entails Browder’s theorem.
Recall that given a compact set σ ⊂ C, a hole of σ is a bounded component of the complementC\σ. Since

C \ σ has always an unbounded component, C \ σ is connected precisely when σ has no hole.
For a proof of the following result see [6]

Lemma 2.1. Let T ∈ L(X). Then

(i) σuw(T) has no hole if and only if σap(T) has no hole and T satisfies a-Browder’s theorem.

(ii) σlw(T) has no hole if and only if σs(T) has no hole and T satisfies a-Browder’s theorem.

Recall that T ∈ L(X) has the single valued extension property at λ0, abbreviated the SVEP at λ0, if for every
open disc U of λ0, the only analytic function f : U→ X which satisfies the equation (λI − T) f (λ) = 0 for all
λ ∈ U is the function f ≡ 0. An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point λ ∈ C.
Evidently, an operator T ∈ L(X) has SVEP at every point of the resolvent ρ(T) := C \ σ(T), and both T and
T∗ have SVEP at the isolated points of σ(T).

Remark 2.2. We have

p(λI − T) < ∞⇒ T has SVEP at λ (1)

and dually

q(λI − T) < ∞⇒ T∗ has SVEP at λ (2)

If T is semi-Fredholm then p(λI − T) < ∞⇔ T has SVEP at λ, and dually, q(λI − T) < ∞⇔ T∗ has SVEP
at λ, see [1, Chapter 2]. Furthermore, if T has SVEP then σ(T) = σs(T), if T∗ has SVEP then σ(T) = σap(T),
see [1, Theorem 2.68].
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The concept of Drazin invertibility has been introduced in a more abstract setting than operator theory.
In the case of the Banach algebra L(X), T ∈ L(X) is said to be Drazin invertible (with a finite index) if
p(T) = q(T) < ∞. Clearly, λI − T ∈ L(X) is Drazin invertible if and only if λI − T is invertible or λ is a pole of
the resolvent. Drazin invertibility for bounded operators suggests the following definition:

The concept of pole of the resolvent suggests the following definition:

Definition 2.3. An operator T ∈ L(X), is said to be left Drazin invertible, if p := p(T) < ∞ and Tp+1(X) is closed.
T ∈ L(X), is said to be right Drazin invertible, if q := q(T) < ∞ and Tq(X) is closed. If λI−T is left Drazin invertible
and λ ∈ σap(T) then λ is said to be a left pole. If λI − T is right Drazin invertible and λ ∈ σs(T) then λ is said to be
a right pole.

It should be noted that there is a perfect duality, i.e., T (respectively, T∗) is left Drazin invertible if and
only if T∗ (respectively, T) is right Drazin invertible. Furthermore, T ∈ L(X) is Drazin invertible if and only
if T is both left Drazin invertible and right Drazin invertible.

Denote by Π(T) and Πa(T) the set of all poles, the set of left poles of T, respectively. Clearly, Π(T) =
σ(T) \ σd(T), Πa(T) = σap(T) \ σld(T). Let iso A denote the set of all isolated points of a subset A ⊆ C.

Lemma 2.4. If T ∈ L(X) then

Πa(T) ⊆ iso σap(T) and Πs(T) ⊆ iso σs(T). (3)

Proof. In fact, if λ0 ∈ Πa(T) then λI − T is left Drazin invertible and hence p(λ0I − T) < ∞. Since λI − T
has topological uniform descent (see [18], for definition and details), it then follows, from [18, Corollary
4.8], that λI − T is bounded below in a punctured disc centered at λ0. An analogous reasoning shows that
Πs(T) ⊆ iso σs(T) for all T ∈ L(X).

The Drazin spectrum is defined as

σd(T) := {λ ∈ C : λI − T is not Drazin invertible}.

The left Drazin spectrum σld(T) and the right Drazin spectrum σrd(T) are defined similarly. Evidently, σd(T) =
σld(T) ∪ σrd(T).

The next lemma has been proved in [3, Lemma 2.4].

Lemma 2.5. Let T ∈ L(X). Then we have

σld(T) = σd(T)⇔ σa(T) = σ(T).

Analogously,
σrd(T) = σd(T)⇔ σs(T) = σ(T).

Let now consider an analytic function defined on an open disc containing the spectrum σ(T)). Then
f (Tϕ) is defined by the classical functional calculus:

f (T) :=
1

2πi

∫
Γ

f (λ)(λI − T)−1 dλ,

where Γ is a contour that surrounds σ(T) in U. The set of all analytic functions defined on an open disc
containing the spectrum σ(T) will be denoted byH(σ(T)). In the sequel we shall need the following simple
result.

Lemma 2.6. Let T ∈ L(X) and f ∈ H(σ(T)). Then iso σap( f (T)) ⊆ f (iso σap(T)), iso σs( f (T)) ⊆ f (iso σs(T)) and
iso σ( f (T)) ⊆ f (iso σ(T))
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Proof. The proof of the first inclusion may be found in [2]. This proof may be adapted in very simple way
to prove the second and the third inclusion.

A bounded operator T ∈ L(X) is said to be polaroid (respectively, a-polaroid) if every λ ∈ iso σ(T) (respec-
tively, λ ∈ iso σap(T)) is a pole of the resolvent. Every a-polaroid operator is polaroid. T is said finite-polaroid
if every λ ∈ iso σ(T) is a pole of finite rank, in other world λI − T ∈ B(X). The next Lemma has been proved
in [7].

Lemma 2.7. If iso σuw(T) = ∅ then T is finite-polaroid.

Proof. Assume that iso σuw(T) = ∅ and λ0 ∈ isoσ(T). Then there exists ε > 0 for which λI − T is invertible
for all 0 < |λ − λ0| < ε. We have either λ0 ∈ σuw(T) or λ0 < σuw(T). If λ0 ∈ σuw(T) then λ0 ∈ iso σuw(T) = ∅,
and this is impossible. Hence λ0 < σuw(T), so λI−T ∈W+(X). Since both T and T∗ have SVEP at λ0 we have
p(λ0I − T) = q(λ0I − T) < ∞, and this implies α(λ0I − T) = β(λ0I − T) < ∞. Therefore λ0I − T ∈ B(X), so λ0 is
a pole of finite rank.

3. S-Weyl’s theorem

Semi-Fredholm operators have been generalized by Berkani ([11] and [12]) in the following way: if
T ∈ L(X) and n ∈ N by T[n] we denote the restriction of T to Tn(X), viewed as a map from the space
Tn(X) into itself (we set T[0] = T). T ∈ L(X) is said to be semi B-Fredholm, (resp. B-Fredholm, upper semi
B-Fredholm, lower semi B-Fredholm,) if for some integer n ≥ 0 the range Tn(X) is closed and T[n] is a semi-
Fredholm operator (resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case T[m] is a
semi-Fredholm operator for all m ≥ n ([12]) with the same index of T[n]. This enables one to define the index
of a semi B-Fredholm as ind T = ind T[n].

A bounded operator T ∈ L(X) is said to be B-Weyl (respectively, upper semi B-Weyl, lower semi B-Weyl)
if for some integer n ≥ 0 the range Tn(X) is closed and T[n] is Weyl (respectively, upper semi-Weyl. lower
semi-Weyl). The B-Weyl spectrum is defined by σbw(T) := {λ ∈ C : λI−T is not B-Weyl}, the upper semi B-Weyl
spectrum σubw(T) and the lower semi B-Weyl spectrum σlbw(T) are defined similarly. We have, see [1, Chapter
3]:

σubw(T) ⊆ σld(T) and σbw(T) ⊆ σd(T).

Lemma 3.1. If iso σuw(T) = ∅ then σuw(T) = σubw(T).

Proof. The equality

σuw(T) = σubw(T) ∪ iso σuw(T) (4)

holds for every operator T ∈ L(X), see [1, Theorem 3.55]. If iso σuw(T) = ∅ then σuw(T) = σubw(T).

Define
∆
1

a(T) := σap(T) \ σubw(T) and ∆
1

1(T) := σ(T) \ σubw(T).

Since σubw(T) ⊆ σld(T), we have
Πa(T) ⊆ ∆1a(T) ⊆ ∆11(T).

Let p00(T) := σ(T) \ σb(T), and pa
00(T) := σap(T) \ σub(T). It is easy to check that p00(T) ⊆ pa

00(T) for all T ∈ L(X)
and, obviously, every point of p00(T) is an isolated point of σ(T), and hence of σap(T), since σap(T) contains
the boundary of σ(T).

The following property has been introduced in [22] and succesively studied in [3].

Definition 3.2. An operator T ∈ L(X) is said to verify property (gaz) if ∆11(T) = Πa(T).
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Define
π00(T) := {λ ∈ iso σ(T) : 0 < α(λI − T) < ∞}.

and
πa

00(T) := {λ ∈ iso σap(T) : 0 < α(λI − T) < ∞}.

It is easily seen that

p00(T) ⊆ π00(T) ⊆ πa
00(T) and pa

00(T) ⊆ πa
00(T). (5)

Property (1az) entails remarkable spectral equalities:

Theorem 3.3. Let T ∈ L(X). Then the following statements are equivalent:
(i) T has property (1az);
(ii) a-Browder’s theorem holds for T and σap(T) = σ(T), or equivalently σld(T) = σd(T).
(iii) σ(T) \ σuw(T) = pa

00(T).
(iv) T∗ has SVEP at every λ < σubw(T);
(v) T∗ has SVEP at every λ < σuw(T).
Furthermore, if T has property (1az) then

σubw(T) = σbw(T) = σld(T) = σd(T). (6)

and

σuw(T) = σw(T) = σub(T) = σb(T). (7)

Consequently, Π(T) = Πa(T).

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii)⇔ (iv) have been shown in [3]. Evidently, (iv) ⇒ (v), since
σubw(T) = σuw(T).
(v)⇒ (iii) Suppose that (v) holds, and let λ ∈ σ(T) \σuw(T). Then T∗ has SVEP at λ and, since λI−T is upper
semi-Weyl, we have q(λI − T) < ∞. This implies, ind (λI − T) ≥ 0, and hence, since λI − T ∈W+(X) we have
ind (λI − T) = 0, i.e. λI − T ∈ W(X). From [1, Theorem 1.22] it then follows that λ ∈ p00(T) ⊆ pa

00(T). On the
other hand, the inclusion

pa
00(T) = σap(T) \ σub(T) ⊆ σ(T) \ σuw(T)

is immediate, so the equality (iii) holds.
Also the equalities (6) have been shown in [3], so it remains to prove (7). The equalities σuw(T) = σub(T)

and σw(T) = σb(T) are true, since T satisfies a-Browder’s theorem and hence Browder’s theorem. It suffices
to prove the inclusion σw(T) ⊆ σuw(T). Let λ < σuw(T). As above, the SVEP for T∗ at λ entails that λI − T is
Weyl, hence λ < σw(T).

In the sequel we set ρap(T) := C \ σap(T) and ρuw(T) := C \ σuw(T).

Theorem 3.4. Let T ∈ L(X).
(i) If σuw(T) has no hole then T satisfies property (1az).
(ii) If σlw(T) has no hole then T∗ satisfies property (1az).

Proof. (i) By Lemma 2.1, T satisfies a-Browder’s theorem, so it suffices, by Theorem 3.3, to prove
that σap(T) = σ(T). Since ρap(T) is connected, by Lemma 2.1, then there is no bounded open connected
component of ρap(T). Let λ < σap(T). Then λ ∈ ρap(T), and if Ω is the unique unbounded open connected
component of ρap(T), we have

ρ(T) ⊆ Ω ⊆ ρap(T).

Now, T∗ has SVEP at λ, see [9], so q(λI − T) < ∞ by [1, Theorem 2.98], and hence β(λI − T) ≤ α(λI − T) = 0,
by [1, Theorem 1.22]. Thus λ < σ(T), and hence σ(T) ⊆ σap(T). The reverse inclusion is clear.

(ii) This follows from (i), since σuw(T∗) = σlw(T).

The classical Weyl type theorems are defined as follows, see [1, Chapter 6] for details.
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Definition 3.5. A bounded operator T ∈ L(X) is said to satisfy Weyl’s theorem if σ(T) \ σw(T) = π00(T), T ∈ L(X)
is said to satisfy a-Weyl’s theorem if σap(T) \ σuw(T) = πa

00(T), T ∈ L(X) is said to satisfy property (w) if
σap(T) \ σuw(T) = π00(T).

The following diagram resume the relationships between Weyl’s theorems, a-Browder’s theorem and
property (w).

Property (w) ⇒ a-Browder’s theorem
⇓ ⇑

Weyl’s theorem ⇐ a-Weyl’s theorem

(see [1] and [5]). Examples of operators satisfying Weyl’s theorem but not property (w) may be found in [5].
Property (w) is not intermediate between Weyl’s theorem and a-Weyl’s theorem, see [5] for examples. Note
that property (w) and a-Weyl’s theorem are satisfied by a certain number of Hilbert space operators, see [1,
Chapter 6].

We now introduce a stronger variant of Weyl’s theorem.

Definition 3.6. A bounded operator T ∈ L(X) is said to satisfy the S-Weyl’s theorem, abbreviated (SW), if
σ(T) \ σubw(T) = π00(T).

S-Weyl’s theorem may be characterized as follows:

Theorem 3.7. An operator T ∈ L(X) satisfies S-Weyl’s theorem if and only if T has property (1az) and Πa(T) =
π00(T).

Proof. Suppose that σ(T) \ σubw(T) = π00(T). We show first that T satisfies property (1az). Let λ < σubw(T)
arbitrary given. Then there are two possibilities: λ < σ(T) or λ ∈ σ(T). If λ < σ(T) = σ(T∗) then, trivially,
T∗ has SVEP at λ. Suppose that λ ∈ σ(T). Then λ ∈ σ(T) \ σubw(T) = p00(T), so λ is a pole of T and hence
an isolated point of σ(T) = σ(T∗), thus T∗ has SVEP at λ. By Theorem 3.3 then T satisfies property (1az).
Therefore, σ(T) \ σubw(T) = Πa(T).

We show now that Πa(T) = π00(T). From (6) we know that property (1az) entails σap(T) = σ(T) and
σubw(T) = σld(T), so

Πa(T) = σap(T) \ σld(T) = σ(T) \ σubw(T) = π00(T).

Conversely, assume that T satisfies property (1az) and Πa(T) = π00(T). Then

σ(T) \ σubw(T) = σap(T) \ σld(T) = Πa(T) = π00(T).

Since the SVEP for T∗ ensures property (1az) for T, we have:

Corollary 3.8. Suppose that T∗ has SVEP. Then T satisfies S-Weyl’s theorem if and only if π00(T) = Πa(T).

Theorem 3.9. Suppose that T∗ has SVEP and σ(T) is connected. Then f (T) satisfies S-Weyl’s theorem for every
f ∈ H(σ(T)).

Proof. If T∗ has SVEP then f (T∗) = ( f (T))∗ has SVEP for every f ∈ H(σ(T)), see [1, Theorem 2.86], hence
σ( f ((T)) = σap( f ((T)). Since σ(T) is connected then f (σ(T)) = σ( f (T)) is connected, hence iso σ( f (T)) =
iso σap( f (T)) = ∅. This show that Πa( f (T)) = π00( f (T)) = ∅. By Corollary 3.8 then f (T) satisfies S-Weyl’s
theorem.

Recall that if T is upper semi B-Weyl and α(T) < ∞ then T is upper semi-Weyl.

Theorem 3.10. If T ∈ L(X) satisfies S-Weyl’s theorem then T satisfies both a-Weyl’s theorem and property (w).
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Proof. Suppose that S-Weyl’s theorem holds for T. Then T has property (1az), by Theorem 3.7, hence
σap(T) = σ(T) andπa

00(T) = π00(T). Moreover, the property (1az) is equivalent, by Theorem 3.3, to the equality
σ(T) \ σuw(T) = pa

00(T), and since pa
00(T) ⊆ πa

00(T) = π00(T) we have σ(T) \ σuw(T) ⊆ π00(T). Conversely, if
λ ∈ π00(T) = πa

00(T) then λ ∈ σ(T) \ σubw(T), i.e. λI − T is upper semi B-Weyl. But α(λI − T) < ∞, since
λ ∈ π00(T), so λI − T is upper semi-Weyl, hence λ ∈ σ(T) \ σuw(T) = σap(T) \ σuw(T). This shows that

π00(T) = πa
00(T) = σap(T) \ σuw(T).

Later we shall give examples which show that the converse of Theorem 3.10 in general is not true.

Corollary 3.11. If T ∈ L(X) satisfies S-Weyl’s theorem then

πa
00(T) = π00(T) = Πa(T) = Π(T). (8)

Proof. By Theorem 3.7 T satisfies property (1az), hence σap(T) = σ(T) and by [3, Lemma 2.7] this is equivalent
to saying σld(T) = σd(T). Therefore,

Πa(T) = σap(T) \ σld(T) = σ(T) \ σd(T) = Π(T) and πa
00(T) = π00(T).

From Theorem 3.7 then we have Πa(T) = π00(T).

Theorem 3.12. If iso σap(T) = ∅ and T∗ has SVEP, then T satisfies S-Weyl’s theorem. Analogously, if iso σs(T) = ∅
and T has SVEP, then T∗ satisfies S-Weyl’s theorem.

Proof. By Remark 2.2 the SVEP for T∗ entails σ(T) = σap(T). Therefore, iso σ(T) = iso σap(T) = ∅, so

π00(T) ⊆ iso σ(T) = ∅,

andΠa(T) ⊆ iso σap(T) = ∅. Since T∗ satisfies property (1az) then S-Weyl’s theorem holds for T, by Theorem
3.7.

Analogously, the SVEP for T entails property (1az) for T∗, see [3, Corollary 3.7], and σ(T) = σs(T), by
Remark 2.2. Therefore, iso σ(T) = iso σs(T) = ∅, so

π00(T∗) ⊆ iso σ(T∗) = iso σ(T) = ∅,

and
Πa(T∗) = Πs(T) ⊆ iso σap(T) = ∅.

By Theorem 3.7 it then follows that T∗ satisfies S-Weyl’s theorem.

Corollary 3.13. Let T ∈ L(X).
(i) If σuw(T) has no hole and iso σap(T) = ∅ then T satisfies S-Weyl’s theorem.
(ii) If σlw(T) has no hole and iso σs(T) = ∅ then T∗ satisfies S-Weyl’s theorem.

Proof. (i) By Theorem 3.4 T satisfies property (1az), and hence, by Theorem 3.3, σap(T) = σ(T). Therefore,
iso σap(T) = iso σ(T) = ∅, so

Πa(T) = π00(T) = ∅.

By Theorem 3.7 then S-Weyl’s theorem holds for T.
(i) By Theorem 3.4 T∗ satisfies property (1az), and hence σap(T∗) = σs(T) = σ(T). Consequently,

iso σap(T∗) = iso σs(T) = iso σ(T) = iso σ(T∗) = ∅,

thus Πa(T∗) = π00(T) = ∅. By Theorem 3.7 then S-Weyl’s theorem holds for T∗.

The result of Theorem 3.12 may be, considerably, improved:
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Theorem 3.14. If iso σap(T) = ∅ and T∗ has SVEP, then f (T + K) satisfies S-Weyl’s theorem for every finite
dimensional operator K ∈ L(X) for which KT = TK and f ∈ H(σ(T + K)). Analogously, if iso σs(T) = ∅ and T has
SVEP, then f (T∗ + K∗) satisfies S-Weyl’s theorem.

Proof. Suppose first that iso σap(T) = ∅ and that T∗ has SVEP. By [1, Theorem 3.29] then iso σap(T + K) =
iso σap(T) = ∅, and from Lemma 2.6 we obtain that iso σap( f (T + K)) ⊆ f (iso σap(T + K)) = ∅. Since a finite-
dimensional operator is algebraic, then T∗ + K∗ has SVEP, see [4], and consequently, by [1, Theorem 2.86],
f (T∗ + K∗) = [ f (T + K)]∗ has SVEP for every f ∈ H(σ(T + K)). By Theorem 3.12 we conclude that f (T + K)
satisfies S-Weyl’s theorem.

Analogously, suppose that iso σap(T∗) = iso σs(T) = ∅ and that T has SVEP. Since K∗ is finite-dimensional
and T∗K∗ = K∗T∗, we have, always by [1, Theorem 3.29], that

iso σs(T + K) = iso σap(T+K∗) = iso σap(T∗) = ∅.

Moreover, the SVEP for T is transmitted to T+K and hence to f (T+K). Again by Theorem 3.12 we conclude
that f (T∗ + K∗) satisfies S-Weyl’s theorem.

Theorem 3.15. If T∗ has SVEP and T is finite-polaroid then T satisfies S-Weyl’s theorem.

Proof. By Theorem 3.8 it suffices to prove the equality π00(T) = Πa(T). Now, the SVEP for T∗ entails
property (1az), hence σap(T) = σ(T) and this is equivalent to saying σld(T) = σd(T). Therefore, we have

Πa(T) = σap(T) \ σld(T) = σ(T) \ σd(T) = Π(T).

Let λ ∈ Π(T) arbitrary given. Then 0 < α(λI − T) < ∞, since λ is an eigenvalue of T and T is finite-polaroid.
Therefore, λ ∈ π00(T), so

Πa(T) = Π(T) ⊆ π00(T).

On the other hand, if λ ∈ π00(T), then λ ∈ iso σ(T) and the finite-polaroid condition entails that λ is a pole of
T having finite rank. But p(λI − T) = q(λI − T) implies, by [1, Theorem 1.22], that α(λI − T) = β(λI − T) < ∞,
so λI − T is Browder. Hence

λ ∈ σ(T) \ σb(T) = p00(T) ⊆ pa
00(T) ⊆ Πa(T),

from which we conclude that π00(T) = Πa(T).

Recall that the spectral mapping theorem holds for σ(T) and σap(T).

Theorem 3.16. Suppose that T ∈ L(X) commutes with a quasi-nilpotent operator Q ∈ L(X). If σ(T) = σap(T) and
σ(T) is connected then f (T) satisfies S-Weyl’s theorem for every f ∈ H(σ(T)).

Proof. Evidently Q commutes with (λI − T)−1 for every λ < σ(T), hence f (T)Q = Q f (T), so σap( f (T)) =
σuw( f (T)), by [8, Theorem 3.8]. If σ(T) = σap(T) then

σ( f (T)) = f (σ(T)) = f (σap(T)) = σap( f (T)).

Consequently, σ( f ((T)) = σuw( f (T)).
Let λ ∈ π00( f (T)). Then 0 < α(λI − f (T)) < ∞, and this is impossible, by [8, Theorem 3.1]. Hence

π00( f (T)) = ∅. Since iso σuw( f (T)) = ∅, by Lemma 3.1 we also have σuw( f (T)) = σubw( f (T)). Hence

π00( f (T)) = ∅ = σap( f (T)) \ σuw( f (T)) = σ( f (T)) \ σubw( f (T)),

so S-Weyl’s theorem holds for T, by Theorem 3.7.

The Volterra operator V on L2[0, 1] is defined by means

(V f )(x) :=
∫ x

0
f (t)dt for all f ∈ X and x ∈ [0, 1].
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The Volterra operator is injective and quasi-nilpotent, so Theorem 3.16 applies to the operators T ∈
L(L2([0, 1])) that commute with the Volterra operator.

In the sequel we give some examples of operators that satisfy, or do not satisfy, S-Weyl’s theorem.

a) Let Q ∈ L(X) denote a quasi-nilpotent operator for which ker Q is infinite-dimensional, or Q is
injective. Then π00(T) = ∅ and σap(Q) = σld(Q) = {0}. Therefore, Πa(Q) = ∅. Since Q∗ has SVEP then, by
Corollary 3.8, Q satisfies S-Weyl’s theorem.

b) Let R ∈ L(X) be a Riesz operator. Recall that R is said Riesz if λI − R ∈ Φ(X) for every λ , 0, or
equivalently, λI − R ∈ B(X) for every λ , 0. Every Riesz operator has a finite spectrum, or σ(R) consists of
a sequence of eigenvalues (of finite multiplicity) which clusters at 0. Every Riesz operator with an infinite
spectrum satisfies S-Weyl’s theorem. Indeed, in this case π00(R) = Πa(R) = C \ {0}. Moreover, R∗ has SVEP,
so Corollary 3.8 applies.

c) An operator T ∈ L(X) is said to be algebraic if there exists a complex polynomial h such that h(T) = 0.
Examples of algebraic operators are nilpotent operators and operators K for which Kn is a finite-dimensional
operator for some n ∈ N. Every algebraic operator has a finite spectrum, say {λ1, . . . , λn}. Moreover,
σld(K) = ∅, see [1, Theorem 3.93], σap(K) = σ(K), and hence, Πa(K) = {λ1, . . . , λn}. In general an algebraic
operator may not satisfy S-Weyl’s theorem. To see this, we show that every finite dimensional operator
does not satisfy S-Weyl’s theorem. Indeed, let K be a finite-dimensional operator on a infinite-dimensional
Banach space X. Evidently, 0 ∈ σ(K), since K(X) , X. Hence 0 < p := p(K) = q(K) < ∞, since 0 is a pole.
If were α(K) < ∞, from the decomposition X = ker Kp

⊕ Kp(X), see [1, Theorem 1.35], where ker Kp and
Kp(X) are both finite-dimensional, we would have that X is finite-dimensional. Thus, α(K) = ∞, and hence
0 < π00(K) while 0 ∈ Πa(K), from which we conclude that S-Weyl’s theorem fails for K.

d) A self-adjoint operator on a Hilbert space, satisfy both property (w) and a-Weyl’s theorem, but may
fail S-Weyl’s theorem. For instance, let K be the integral operator defined on L2([a, b]) by

(Kx)(s) :=
∫ b

a
p(s, t)x(t)dt,

where the kernel p(s, t) is a polynomial defined on the square [a, b]×[a, b] such that the Hermiticity condition
p(s, t) = p(t, s) holds. Then K is self-adjoint and finite-dimensional. From above we know that K does not
satisfies S-Weyl’s theorem. Note that if kernel is a continuous function which is not a polynomial then
S-Weyl’s theorem holds for K, since K is a compact operator (and hence a Riesz operator) whose spectrum
is infinite.

e) Let T ∈ L(X), X an infinite-dimensional Banach space, be non-invertible isometry. Denotes by r(T) the
spectral radius of T, and set

i(T) := lim
n→∞

k(Tn)1/n,

where the lower bound k(T) is defined by

k(T) := inf{∥Tx∥ : x ∈ X, ∥x∥ = 1}.

If i(T) = r(T) then, see [1, Chapter 3], we have σ(T) = σw(T) = D(0, r(T)), while σap(T) = ∂D(0, r(T)). An
example of operator for which the equality i(T) = r(T) holds is given by a non-invertible operator, see [1,
Chapter 4]. A non-invertible symmetry for which r(T) > 0 (i.e., T not quasi-nilpotent) provides another
example of operator T which satisfies Weyl’s theorem, see [6, Theorem 3.14], while T does not satisfy
S-Weyl’s theorem, since σap(T) , σ(T). However, we have:

Theorem 3.17. If T is a non-invertible isometry which is not quasi-nilpotent, then T∗ satisfies S-Weyl’s theorem.

Proof. Since σap(T) is the boundary of the spectrum then T has SVEP, by [1, Lemma 2.94], and hence
σs(T) = σ(T) = D(0, r(T)). Therefore, iso σs(T) = ∅. By Theorem 3.12 then T∗ satisfies S-Weyl’s theorem.
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Examples of non-invertible isometries are the semishifts , i.e., those isometries for which the hyperrange

T∞(X) :=
∞⋂

n=1

Tn(X) = {0}.

Every right translation operator on Lp([0,∞]), with 1 ≤ p < ∞, as well as every multiplication operator T f on
the disc algebraA(D), is a semishift.

4. Toeplitz operators on Hardy spaces

In this section we shall apply the results of the previous section to Toeplitz operators. Let µ denote
the normalized Lebesque measure on T, and denote by L2(T), T the unit circle, the classical Hilbert space
defined with respect to µ. Let χn be the function on T defined by

χn(eit) := eint for all n ∈N.

The set {χn}n∈Z is a orthogonal basis of L2(T). The Hardy space H2(T) is defined as the closed subspace of
all f ∈ L2(T) for which

1
2π

∫ 2π

0
fχndt = 0 for n = 1, 2, . . . .

The Hilbert space H2(T) is the closed linear span of the set {χn}n≥0. Moreover, H2(T) is a closed subspace of
L∞(T). Let H∞(T) denote the Banach space of all ϕ ∈ L∞(T) such that

1
2π

∫ 2π

0
ϕχndt = 0 for all n = 1, 2, . . . .

H∞(T) is a closed subalgebra of L∞(T), as well as the closed subalgebra of all continuous functions on T,
and H∞(T) = L∞(T) ∩H2(T).

Let P denote the projection of L2(T) onto H2(T). The Toeplitz operator Tϕ on H2(T), with symbol ϕ, is
defined by

Tϕ f := P(ϕ f ) for f ∈ H2(T).

A classical result due to Coburn [13], for a proof see also [1, Chapter 4], shows that if ϕ ∈ L∞(T) is not
almost everywhere 0, then either α(Tϕ) = 0 or β(Tϕ) = α(T′ϕ) = 0. If ϕ ∈ L∞(T) the spectrum σ(Tϕ) and the
essential spectrum σe(Tϕ) are connected, see [15, Chapter 7]. Moreover,

σ(Tϕ) = σw(T) and σe(Tϕ) = ϕ(T).

Furthermore, if ϕ ∈ L∞(T) is not almost everywhere 0, we have

σap(Tϕ) = σuw(Tϕ) and σs(Tϕ) = σlw(Tϕ),

see [2, Theorem 3.3]. Recall that the winding number wn(ϕ, λ) of a closed curve in the plane around a given
point λ is an integer representing the total number of times that curve travels counterclockwise around the
point. It is known that if the symbol ϕ is continuous on T and Tϕ is Fredholm, then

ind Tϕ = −wn(ϕ, 0),

where wn(ϕ, 0) denotes the winding number of the curve ϕ(T) traced by ϕ with respect to the origin, see
Widom [21]. In particular, Tϕ is Weyl (or equivalently, invertible) if and only if wn(ϕ, 0) = 0 and σ(Tϕ)
consists of ϕ(T) and the points λ of the holes for which wn(ϕ, λ) , 0. In [2] it has been proved that if ϕ is
continuous then

ϕ is nonconstant ⇔ iso σw(Tϕ) = ∅ ⇔ iso σuw(Tϕ) = ∅. (9)

In [2] it is shown that a-Weyl’s theorem and property (w) hold for Toeplitz operator Tϕ with continuous
symbol. The following counterexample shows that Toeplitz operator may fail S-Weyl’s theorem.
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Example 4.1. Let ϕ be the continuous function on T, defined as

ϕ(eiθ) :=
{
−e2iθ + 1 if 0 ≤ θ ≤ π,
e−2iθ

− 1 if π ≤ θ ≤ 2π.

The spectrum σ(Tϕ) has two holes Ω1 and Ω2, see [1, Example 4.101], where the orientation of ϕ(T)
traced out by ϕ in Ω1 is counterclockwise, while the orientation of ϕ(T) traced out by ϕ in Ω2 is clockwise.
Moreover,

σ(Tϕ) = Ω1 ∪Ω2 ∪ ϕ(T) and σap(Tϕ) = Ω2 ∪ ϕ(T).

so, σ(Tϕ) , σap(Tϕ) and hence S-Weyl’s theorem does not hold for Tϕ, since property (1az) fails for Tϕ.

It is known that for a Hilbert space operator T with adjoint T′ we have:

σap(T′) = σs(T) and σs(T′) = σap(T).

Theorem 4.2. Suppose that ϕ ∈ H∞(T) is not almost everywhere 0. Then f (T′ϕ) satisfies S-Weyl’s theorem for every
f ∈ H(σ(Tϕ)).

Proof. The operator Tϕ, ϕ ∈ H∞(T), is subnormal and hence hyponormal, see Conway [14, Proposition
2.4.2]. Every hyponormal operator has SVEP, see [1, §4.3], hence f (Tϕ) has SVEP for every f ∈ H(σ(Tϕ)).
According Remark 2.2 this implies that σs( f (Tϕ)) = σ( f (Tϕ)) and hence

σap( f (T′ϕ)) = σap(( f (Tϕ))′) = σs( f (Tϕ)) = σ( f (Tϕ)) = f (σ(Tϕ)).

Since σ(Tϕ) is connected also f (σ(Tϕ)) is connected, hence σap( f (T′ϕ)) has no isolated points, from which we

deduce that Πa( f (T′ϕ)) = ∅. On the other hand, also σ( f (T′ϕ)) = σ( f (Tϕ)) is connected, so π00( f (T′ϕ)) = ∅. By
Theorem 3.7 we conclude that f (T′ϕ) satisfies S-Weyl’s theorem.

In general, for symbols ϕ ∈ L∞(T), the operator Tϕ is not hyponormal, also if the symbol ϕ is continuous.
For instance, the operator Tϕ defined in Example 4.1 fails the SVEP, see [7], so it cannot be hyponormal. It
is easy to see that for a Hilbert space operator T∗ has SVEP if and only if T′ has SVEP.

Theorem 4.3. Let ϕ be a nonconstant continuous on T, and suppose that σ(Tϕ) has no holes. Then both Tϕ and T′ϕ
satisfy S-Weyl’s theorem.

Proof. Since σ(Tϕ) consists of ϕ(T) and some of its holes, then σ(Tϕ) = ϕ(T) is the boundary of σ(Tϕ), so,
both Tϕ and T′ϕ (or equivalently, the dual of Tϕ) have SVEP and hence σ(Tϕ) = σap(Tϕ) = σs(Tϕ), according
Remark 2.2. Since iso σ(Tϕ) = iso σap(Tϕ) = iso σs(Tϕ) = ∅, being σ(Tϕ) connected, then S-Weyl’s theorem
holds for Tϕ and T′ϕ by Corollary 3.12.

Write ρap(T) := C \ σap(T) and ρs(T) := C \ σs(T).

Theorem 4.4. Suppose that symbol ϕ is continuous and nonconstant.
(i) If the orientation of the curve ϕ(T) traced out by ϕ is counterclockwise then Tϕ satisfies S-Weyl’s theorem.
(ii) If the orientation of the curve ϕ(T) traced out by ϕ is clockwise then T′ϕ satisfies S-Weyl’s theorem.

Proof. (i) Suppose that the orientation of the curve ϕ(T) traced out by ϕ is counterclockwise. We prove that
Tϕ satisfies property (1az). We show first that ρ(Tϕ) is connected. Suppose for this, that ρuw(Tϕ) = ρap(Tϕ)
is not connected, i.e. that σuw(Tϕ) admits some holes Ω. If λ ∈ Ω then λ < ϕ(T) = σe(Tϕ), so λI − Tϕ is
Fredholm and hence ind (λI−Tϕ) = −wn(ϕ, λ) < 0. This implies that λI−Tϕ is upper semi-Weyl, and hence
λ < σuw(Tϕ), a contradiction. Therefore, ρuw(Tϕ) is connected. From Theorem 3.4 it then follows that Tϕ
satisfies property (1az).
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To show that S-Weyl’s theorem holds for Tϕ it suffices, by Theorem 3.7, to prove that Πa(Tϕ) = π00(Tϕ).
We have iso σ(Tϕ) = iso σw(Tϕ) = ∅, by (9), so π00(T) ⊆ iso (σ(Tϕ)) = ∅, and analogously we have Πa(T) ⊆
iso σap(Tϕ) = iso σuw(Tϕ) = ∅. Therefore, π00(T) = Πa(Tϕ) and hence, by Theorem 3.7, Tϕ satisfies S-Weyl’s
theorem.

(ii) Suppose that the orientation of the curve ϕ(T) traced out by ϕ is clockwise. We show first that T′ϕ
satisfies property (1az). Suppose for this, that ρlw(Tϕ) = ρs(Tϕ) is not connected, i.e., σuw(Tϕ) admits some
holesΩ. If λ ∈ Ω then λI−Tϕ is Fredholm and hence ind (λI−Tϕ) = −wn(ϕ, λ) > 0. This implies that λI−Tϕ
is lower semi-Weyl, and hence λ < σlw(Tϕ) = σs(Tϕ), a contradiction. Therefore, ρlw(Tϕ) is connected and by
Theorem 3.4 it then follows that T′ϕ satisfies property (1az). From (9) we have iso (σ(T′ϕ)) = iso (σ(Tϕ)) = ∅,
so π00(T′ϕ) = ∅. Always from (9) we have

iso σap(T′ϕ) = iso σs(Tϕ) = iso σlw(Tϕ) = ∅,

and consequently,Πa(T′ϕ) ⊆ iso σap(T′ϕ) = ∅. By Theorem 3.7 it then follows that S-Weyl’s theorem holds for
T′ϕ.

Part (i) of Theorem 4.4 applies in particular to the case where ϕ is a trigonometric polynomial

ϕ(eiθ) =: Σ−n
k=nakeikθ,

or also in the case that Tϕ is hyponormal, since these operators have SVEP, and hence the index ind (λI−Tϕ)
on a hole is less or equal to 0. Note that if ϕ is a trigonometric polynomial then Tϕ may be not hyponormal,
see [16].

Corollary 4.5. If ϕ is a trigonometric polynomial on T then S-Weyl’s theorem holds for Tϕ.

A conjugation operator on a Hilbert space H is an antilinear operator C for which C2 = I and ⟨Cx,Cy⟩ =
⟨y, x⟩ for all x, y ∈ H. According Garcia and Putnar [17], an operator T ∈ L(H) is said to be complex symmetric
if there exists a conjugation C on H such that CT = T′C.

Theorem 4.6. Let ϕ ∈ C(T) and suppose that Tϕ is complex symmetric. Then both f (Tϕ) and f (T′ϕ) satisfy S-Weyl’s
theorem for all f ∈ H(σ(Tϕ),

Proof. As observed in [2], both Tϕ and T′ϕ have SVEP and hence f (Tϕ) and f (T′ϕ) have SVEP for all
f ∈ H(σ(Tϕ)). Furthermore, iso σap(Tϕ) = ∅ and iso σs(Tϕ) = ∅, since σap(Tϕ) = σs(Tϕ) coincides with the
boundary ∂σ(Tϕ) = ϕ(T), see [2]. By Lemma 2.6 iso σap( f (Tϕ)) = iso σs( f (Tϕ)) = ∅, thus Theorem 3.12
applies.
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