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S-Weyl’s theorem for bounded linear operators on Banach spaces

Pietro Aiena?®

*Universita di Palermo (Italia) Viale delle Scienze, I-90128 Palermo, Italy

Abstract. In this paper we consider a new variant of the classical Weyl type theorems for operators
defined on Banach spaces. This variant, called S-Weyl'’s theorem entails two other variants, a-Weyl’s theorem
and property (w), studied by different authors in the last two decades. The theory is also exemplified by
considering many classes of operators that satisfy it. In particular, the theory is exemplified for Toeplitz
operators defined on the Hardy space H(T), where T is the unit circle.

1. Introduction

A classical result by H. Weyl [20] states that for self-adjoint operators on Hilbert spaces the spectral
points A of T for which AI — T is Weyl (i.e., AI — T is Fredholm operator having index 0) are exactly all
isolated points of the spectrum that are eigenvalues having finite multiplicity. A similar result has been
observed for operators that are non-normal, see Chapter 6 of the monograph [1]. A bounded linear operator
T € L(X) on an infinite dimensional Banach space X, whose spectrum has the structure above mentioned for
self-adjoint operators, is said, in the modern literature, to satisfy Weyl’s theorem. Weyl’s theorem admits
several stronger variants, among these a-Weyl theorem and property (w) for many reason seem to be the
more important, and have been studied in several papers by different authors. Property (w) and a-Weyl’s
theorem are independent one each other, but each one of them entails Weyl’s theorem.

In order to give a certain order to the intricate variety of variants of Weyl’s theorem, we introduce
another variant of Weyl’s theorem, that we call S-Weyl’s theorem, (abbreviation of Strong Weyl’s theorem),
that implies both a-Weyl theorem and property (w). S-Weyl's theorem is a rather strong property, the same
self-adjoint operators satisfy a-Weyl’s theorem, as well as property (w), but may fail S-Weyl’s theorem.
Another example of operator which satisfies both a-Weyl theorem and property (w), but not S-Weyl’s
theorem, is given by every finite-dimensional operator. Nevertheless, the classes of operators that satisfy
S5-Weyl’ s theorem is considerably large, and deserve to be studied. For instance, Riesz operators having
infinite spectrum, and a less trivial examples are provided by Toeplitz operators Ty, where ¢ € H*(T), or
with a continuous symbol ¢ on T for which the orientation of the curve ¢(T) with respect to each hole is
counterclockwise. If the orientation of the curve ¢(T) is clockwise then the adjoint of T, satisfies S-Weyl’s.
In particular, if ¢ is a trigonometric polynomial on T then S-Weyl’s theorem holds for T;,. Other important
examples that satisfy S-Weyl’s theorem are given by the dual T* of a non-invertible symmetry T which is
not quasi-nilpotent.
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2. Definitions and preliminary results

Let X be an infinite-dimensional complex Banach space and let T € L(X) be a bounded linear operator
defined on X. By a(T) and (T), the dimension of the kernel ker T and the codimension of the range
R(T) := T(X), respectively. Recall that T € L(X) is said to be upper semi-Fredholm, T € ®,(X), if a(T) < oo
and T(X) is closed, while T € L(X) is said to be lower semi-Fredholm, T € ®_(X) if B(T) < oco. The class
of Fredholm operators is defined by ®(X) := @, (X) N ®_(X), while the class of semi-Fredholm operators is
defined by @, (X) := ©.(X) U D_(X). If T € P,(X) then the index is defined by ind (T) := a(T) — B(T). The
set of Weyl operators is defined by W(X) := {T € O(X) : ind T = 0}, the class of upper semi-Weyl operators
is defined by W.(X) = {T € ®,(X) : ind T < 0}, and the class of lower semi-Weyl operators is defined by
W_(X) :={T € ®_(X) : ind T > 0}. Clearly, W(X) = W, (X) N W_(X). The classes of operators above defined
generate the Weyl spectrum, defined by oy (T) := {A € C : AI-T ¢ W(X)}, the upper semi-Weyl spectrum o, (T)
and the lower semi-Weyl spectrum o1,,(T), defined similarly.

The ascent p := p(T) of an operator T is the smallest non-negative integer p, if it does exist, such that
ker TP = ker TP*1. Analogously, the descent q := q(T) of T is the smallest non-negative integer g, if it
does exist, such that T7(X) = T7(X). If p(T) and g(T) are both finite then p(T) = q(T). Moreover, if
0 <p(AI =T) = g(Al - T) < oo if and only if A is a pole of the resolvent, see [19], Proposition 50.2].

The class of all Browder operators is defined as the set B(X) := {T € ®(X) : p(T),q(T) < oo}; the class of
all upper semi-Browder operators is defined B (X) := {T € ®.(X) : p(T) < oo}, and the class of all lower semi-
Browder operators is defined B_(X) := {T € ®_(X) : g(T) < oo}. Obviously, B(X) € W(X) and B.(X) € W.(X)
and B_(X) € W_(X).

In the sequel we denote by 0., (T) the classical approximate point spectrum, and os(T) surjectivity spectrum.
Evidently, ouw(T) € 0ap(T) and o1 (T) S os(T).

An operator T € L(X) is said to satisfy Browder’s theorem if 0.,(T) = o,(T), , where the operator T € L(X)
is said to satisfy a- Brower’s theorem if ouw(T) = ouw(T), or equivalently 04p(T) \ ouw(T) = pg,(T), where
Poo(T) := 0ap(T) \ oup(T). It is known that a-Browder’s theorem entails Browder’s theorem.

Recall that given a compact set o C C, a hole of ¢ is a bounded component of the complement C \ 0. Since
C\ 0 has always an unbounded component, C \ ¢ is connected precisely when ¢ has no hole.

For a proof of the following result see [6]

Lemma 2.1. Let T € L(X). Then
(i) ouw(T) has no hole if and only if 6.p(T) has no hole and T satisfies a-Browder’s theorem.
(ii) ow(T) has no hole if and only if 05(T) has no hole and T satisfies a-Browder’s theorem.

Recall that T € L(X) has the single valued extension property at Ay, abbreviated the SVEP at Ay, if for every
open disc U of Ay, the only analytic function f : U — X which satisfies the equation (Al — T)f(A) = 0 for all
A € U is the function f = 0. An operator T € L(X) is said to have SVEP if T has SVEP at every point A € C.
Evidently, an operator T € L(X) has SVEP at every point of the resolvent p(T) := C \ ¢(T), and both T and
T have SVEP at the isolated points of o(T).

Remark 2.2. We have

p(AI = T) < co = Thas SVEP at A (1)
and dually
g(AI = T) < co = T"has SVEP at A (2)

If T is semi-Fredholm then p(Al — T) < oo & T has SVEP at A, and dually, g(AI = T) < oo & T* has SVEP
at A, see [1, Chapter 2]. Furthermore, if T has SVEP then o(T) = 04(T), if T* has SVEP then o(T) = 0,,(T),
see [1, Theorem 2.68].
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The concept of Drazin invertibility has been introduced in a more abstract setting than operator theory.
In the case of the Banach algebra L(X), T € L(X) is said to be Drazin invertible (with a finite index) if
p(T) = q(T) < oo. Clearly, AI - T € L(X) is Drazin invertible if and only if AI — T is invertible or A is a pole of
the resolvent. Drazin invertibility for bounded operators suggests the following definition:

The concept of pole of the resolvent suggests the following definition:

Definition 2.3. An operator T € L(X), is said to be left Drazin invertible, if p := p(T) < oo and TP*1(X) is closed.
T € L(X), is said to be right Drazin invertible, if q := q(T) < oo and T9(X) is closed. If AI — T is left Drazin invertible
and A € 04p(T) then A is said to be a left pole. If AI — T is right Drazin invertible and A € os(T) then A is said to be
a right pole.

It should be noted that there is a perfect duality, i.e., T (respectively, T*) is left Drazin invertible if and
only if T* (respectively, T) is right Drazin invertible. Furthermore, T € L(X) is Drazin invertible if and only
if T is both left Drazin invertible and right Drazin invertible.

Denote by I'I(T) and I1,(T) the set of all poles, the set of left poles of T, respectively. Clearly, I(T) =
0(T) \ 04(T), I1o(T) = 0ap(T) \ 014(T). Let iso A denote the set of all isolated points of a subset A C C.

Lemma 2.4. If T € L(X) then
I1,(T) Cis004p(T) and TI(T) < iso os(T). (3)

Proof. In fact, if Ay € I1,(T) then AI — T is left Drazin invertible and hence p(A¢l — T) < o0. Since AI - T
has topological uniform descent (see [18]], for definition and details), it then follows, from [18, Corollary
4.8], that AI — T is bounded below in a punctured disc centered at Ag. An analogous reasoning shows that
IM,(T) Cisoos(T) for all T € L(X). "

The Drazin spectrum is defined as
04(T) :={A € C : Al — T is not Drazin invertible}.
The left Drazin spectrum 014(T) and the right Drazin spectrum o,q(T) are defined similarly. Evidently, 04(T) =

01d(T) U 01a(T).
The next lemma has been proved in [3, Lemma 2.4].

Lemma 2.5. Let T € L(X). Then we have
01(T) = 04(T) & 0a(T) = a(T).

Analogously,
0:d(T) = 04(T) & 05(T) = o(T).

Let now consider an analytic function defined on an open disc containing the spectrum o(T)). Then
(Ty) is defined by the classical functional calculus:
¢ y

1 _
£ = o fr FAL-T)" d),

where I' is a contour that surrounds ¢(T) in U. The set of all analytic functions defined on an open disc
containing the spectrum o(T) will be denoted by H(o(T)). In the sequel we shall need the following simple
result.

Lemma 2.6. Let T € L(X) and f € H(o(T)). Then isooap(f(T)) S f(iso 0ap(T)), isoos(f(T)) S f(iso os(T)) and
isoa(f(T)) C f(isoa(T))
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Proof. The proof of the first inclusion may be found in [2]. This proof may be adapted in very simple way
to prove the second and the third inclusion. .

A bounded operator T € L(X) is said to be polaroid (respectively, a-polaroid) if every A € iso o(T) (respec-
tively, A € iso 0,p(T)) is a pole of the resolvent. Every a-polaroid operator is polaroid. T is said finite-polaroid
if every A € iso o(T) is a pole of finite rank, in other world AI — T € B(X). The next Lemma has been proved
in [7].

Lemma 2.7. Ifiso 0uw(T) = 0 then T is finite-polaroid.

Proof. Assume that iso 0w (T) = 0 and A € isoo(T). Then there exists ¢ > 0 for which AI — T is invertible
forall 0 < |A — Ag| < €. We have either Ag € ouw(T) or Ay & ouw(T). If Ag € ouw(T) then Ay € iso ouw(T) = 0,
and this is impossible. Hence Ay ¢ 0yw(T), so AI =T € W, (X). Since both T and T* have SVEP at Ay we have
p(Aol = T) = g(Apl = T) < o0, and this implies a(Aol — T) = f(Aol — T) < co. Therefore Aol — T € B(X), so Ay is
a pole of finite rank. .

3. S-Weyl’s theorem

Semi-Fredholm operators have been generalized by Berkani ([11] and [12]) in the following way: if
T € L(X) and n € IN by T},;; we denote the restriction of T to T"(X), viewed as a map from the space
T"(X) into itself (we set Tjo) = T). T € L(X) is said to be semi B-Fredholm, (resp. B-Fredholm, upper semi
B-Fredholm, lower semi B-Fredholm,) if for some integer n > 0 the range T"(X) is closed and T, is a semi-
Fredholm operator (resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case T, is a
semi-Fredholm operator for all m > n ([12]) with the same index of T[,;. This enables one to define the index
of a semi B-Fredholm as ind T = ind Ty,

A bounded operator T € L(X) is said to be B-Weyl (respectively, upper semi B-Weyl, lower semi B-Weyl)
if for some integer n > 0 the range T"(X) is closed and T7,; is Weyl (respectively, upper semi-Weyl. lower
semi-Weyl). The B-Weyl spectrum is defined by opw(T) := {A € C : AI-T is not B-Weyl}, the upper semi B-Weyl
spectrum oupw(T) and the lower semi B-Weyl spectrum oipw (T) are defined similarly. We have, see [1, Chapter
3]:

O_ubw(T) c old(T) and O-bw(T) c Gd(T)'

Lemma 3.1. Ifiso oyw(T) = 0 then oyw(T) = oupw(T).

Proof. The equality

Ouw(T) = Oupw(T) Uiso oyw(T) (4)
holds for every operator T € L(X), see [1, Theorem 3.55]. If iso 0w (T) = 0 then ouw(T) = ouww(T). n
Define

AY(T) := 0ap(T) \ 0ubw(T) and  AJ(T) := o(T) \ Gube(T)-

Since oupw(T) C 014(T), we have
I1,(T) € AJ(T) € A(T).

Let poo(T) := o(T) \ ou(T), and pfiy(T) := 0ap(T) \ 0up(T). It is easy to check that poo(T) < pg,(T) forall T € L(X)
and, obviously, every point of py(T) is an isolated point of o(T), and hence of 0,,(T), since 0,,(T) contains
the boundary of o(T).

The following property has been introduced in [22] and succesively studied in [3]].

Definition 3.2. An operator T € L(X) is said to verify property (gaz) if Nl’ (T) =TL,(T).
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Define
100(T) :={A €iso o(T) : 0 < a(Al — T) < oo}.
and
T150(T) := {A €150 0ap(T) : 0 < (Al = T) < oo}.
It is easily seen that
poo(T) € moo(T) € mg(T) and  po(T) S oo (T). )
Property (gaz) entails remarkable spectral equalities:

Theorem 3.3. Let T € L(X). Then the following statements are equivalent:
(i) T has property (gaz);
(ii) a-Browder’s theorem holds for T and 0,,(T) = o(T), or equivalently 014(T) = o4(T).
(iii) o(T) \ ouw(T) = Poo(T)-
(iv) T* has SVEP at every A & ouww(T);
(v) T* has SVEP at every A ¢ ouw(T).
Furthermore, if T has property (gaz) then

oubw(T) = obw(T) = 01a(T) = 04(T). (6)
and
ouw(T) = ow(T) = 0w (T) = 0b(T). )
Consequently, TI(T) = Il,(T).

Proof.  The equivalences (i) & (ii) & (iii)& (iv) have been shown in [3]. Evidently, (iv) = (v), since
Oubw(T) = ouw(T).
(v) = (iii) Suppose that (v) holds, and let A € o(T) \ ouw(T). Then T* has SVEP at A and, since AI - T is upper
semi-Weyl, we have q(AI — T) < oco. This implies, ind (AI — T) > 0, and hence, since AI - T € W, (X) we have
ind(AI - T) =0,i.e. Al - T € W(X). From [}, Theorem 1.22] it then follows that A € poo(T) C p(,(T). On the
other hand, the inclusion

Poo(T) = 0ap(T) \ 0un(T) € 0(T) \ ouw(T)
is immediate, so the equality (iii) holds.

Also the equalities @) have been shown in [3]], so it remains to prove @) The equalities ouw (T) = o (T)
and o (T) = op(T) are true, since T satisfies a-Browder’s theorem and hence Browder’s theorem. It suffices
to prove the inclusion oy (T) C ouw(T). Let A € ouw(T). As above, the SVEP for T* at A entails that AI — T is
Weyl, hence A ¢ o (T). "

In the sequel we set pap(T) := C \ 04p(T) and puw/(T) := C\ ouw(T).

Theorem 3.4. Let T € L(X).

() If ouw(T) has no hole then T satisfies property (gaz).

(ii) If o1 (T) has no hole then T satisfies property (gaz).
Proof. (i) By Lemma T satisfies a-Browder’s theorem, so it suffices, by Theorem to prove
that 0ap(T) = o(T). Since p,p(T) is connected, by Lemma then there is no bounded open connected
component of p,p(T). Let A € 0,p(T). Then A € pap(T), and if Q is the unique unbounded open connected
component of p,p(T), we have

p(T) € Q C pap(T).

Now, T* has SVEP at A, see [9], so g(AI = T) < oo by [1, Theorem 2.98], and hence f(AIl = T) < a(AI - T) =0,
by [1, Theorem 1.22]. Thus A ¢ o(T), and hence o(T) C 0.p(T). The reverse inclusion is clear.

(ii) This follows from (i), since ouw(T*) = o1 (T). "

The classical Weyl type theorems are defined as follows, see [1, Chapter 6] for details.
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Definition 3.5. A bounded operator T € L(X) is said to satisfy Weyl’s theorem if 6(T) \ 0w (T) = moo(T), T € L(X)
is said to satisfy a-Weyl’s theorem if 0p(T) \ ouw(T) = 7G5 (T), T € L(X) is said to satisfy property (w) if
Gap(T) \ ouw(T) = 1100(T).

The following diagram resume the relationships between Weyl’s theorems, a-Browder’s theorem and
property (w).

Property (w) = a-Browder’s theorem

U T

Weyl’s theorem <«  a-Weyl's theorem

(see [1] and [5]). Examples of operators satisfying Weyl’s theorem but not property (w) may be found in [5].
Property (w) is not intermediate between Weyl’s theorem and a-Weyl’s theorem, see [5] for examples. Note
that property (w) and a-Weyl’s theorem are satisfied by a certain number of Hilbert space operators, see [1]
Chapter 6].

We now introduce a stronger variant of Weyl’s theorem.

Definition 3.6. A bounded operator T € L(X) is said to satisfy the S-Weyl’s theorem, abbreviated (SW), if
(T) \ oubw(T) = 100(T).

S-Weyl’s theorem may be characterized as follows:

Theorem 3.7. An operator T € L(X) satisfies S-Weyl's theorem if and only if T has property (gaz) and T1,(T) =
o (T).

Proof. Suppose that o(T) \ oupw(T) = moo(T). We show first that T satisfies property (gaz). Let A & oupw(T)
arbitrary given. Then there are two possibilities: A ¢ o(T) or A € o(T). If A ¢ o(T) = o(T") then, trivially,
T* has SVEP at A. Suppose that A € o(T). Then A € o(T) \ ouww(T) = poo(T), so A is a pole of T and hence
an isolated point of ¢(T) = o(T”), thus T* has SVEP at A. By Theorem [3.3| then T satisfies property (gaz).
Therefore, o(T) \ oupw(T) = I1,(T).

We show now that I'T,(T) = mgo(T). From @ we know that property (gaz) entails 0,,(T) = o(T) and
Oubw(T) = Uld(T)r SO

I1(T) = 04p(T) \ 014(T) = (1) \ oubw(T) = 100 (T).

Conversely, assume that T satisfies property (gaz) and I'l,(T) = mo(T). Then

(1) \ ouww(T) = dap(T) \ 014(T) = I1o(T) = 100(T).

Since the SVEP for T* ensures property (gaz) for T, we have:
Corollary 3.8. Suppose that T* has SVEP. Then T satisfies S-Weyl's theorem if and only if 7too(T) = I'ly(T).

Theorem 3.9. Suppose that T* has SVEP and o(T) is connected. Then f(T) satisfies S-Weyl's theorem for every
f € H(o(T)).

Proof. If T* has SVEP then f(T*) = (f(T))" has SVEP for every f € H(d(T)), see [1, Theorem 2.86], hence
a(f((T)) = oap(f((T)). Since o(T) is connected then f(o(T)) = o(f(T)) is connected, hence isoo(f(T)) =
iso 0ap(f(T)) = 0. This show that IT,(f(T)) = meo(f(T)) = 0. By Corollarythen f(T) satisties S-Weyl’s
theorem. "

Recall that if T is upper semi B-Weyl and a(T) < oo then T is upper semi-Weyl.

Theorem 3.10. If T € L(X) satisfies S-Weyl’s theorem then T satisfies both a-Weyl's theorem and property (w).
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Proof.  Suppose that S-Weyl’s theorem holds for T. Then T has property (gaz), by Theorem hence
0ap(T) = 0(T) and i, (T) = m0o(T). Moreover, the property (gaz) is equivalent, by Theorem to the equality
o(T) \ ouw(T) = pg(T), and since pg (T) € 75,(T) = moo(T) we have o(T) \ ouw(T) € moo(T). Conversely, if
A € moo(T) = 15(T) then A € o(T) \ oupw(T), i.e. AI —T is upper semi B-Weyl. But a(Al — T) < oo, since
A € moo(T), so AI — T is upper semi-Weyl, hence A € o(T) \ ouw(T) = 0ap(T) \ 0uw(T). This shows that

To0(T) = 15(T) = 0ap(T) \ Guw(T).

Later we shall give examples which show that the converse of Theorem in general is not true.
Corollary 3.11. If T € L(X) satisfies S-Weyl’s theorem then
T40(T) = moo(T) = I1(T) = TI(T). (8)

Proof. By Theorem[3.7]T satisfies property (gaz), hence o4,(T) = o(T) and by [3, Lemma 2.7] this is equivalent
to saying 014(T) = 04(T). Therefore,

I4(T) = 0ap(T) \ 01a(T) = o(T) \ 0a(T) =TT) and 7150(T) = 700(T).
From Theorem [3.7]then we have IT,(T) = 7g(T). "

Theorem 3.12. Ifis00,p(T) = O and T* has SVEP, then T satisfies S-Weyl's theorem. Analogously, if iso o5(T) = 0
and T has SVEP, then T* satisfies S-Weyl's theorem.

Proof. By Remark[2.2)the SVEP for T* entails 6(T) = 04p(T). Therefore, iso o(T) = is0 0ap(T) = 0, 50
7'[()0(T) Ciso G(T) = @,

and I'T,(T) € iso 04p(T) = 0. Since T" satisfies property (gaz) then S-Weyl’s theorem holds for T, by Theorem

Analogously, the SVEP for T entails property (gaz) for T, see [3, Corollary 3.7], and o(T) = o4(T), by
Remark[2.2] Therefore, iso o(T) = iso o5(T) = 0, so

100(T") Cisoo(T") = isoo(T) = 0,
and
IT,(T") = TI(T) € iso 04p(T) = 0.
By Theorem 3.7)it then follows that T satisfies S-Weyl’s theorem. .

Corollary 3.13. Let T € L(X).

(i) If ouw(T) has no hole and iso 0.p(T) = O then T satisfies S-Weyl's theorem.
(ii) If o1w/(T) has no hole and iso os(T) = O then T* satisfies S-Weyl's theorem.

Proof. (i) By Theorem [3.4 T satisfies property (gaz), and hence, by Theorem 0ap(T) = o(T). Therefore,
iso 04p(T) = isoo(T) = 0, so
IT(T) = moo(T) = 0.

By Theorem [3.7]then S-Weyl's theorem holds for T.
(i) By Theorem T satisfies property (gaz), and hence 0,,(T") = 05(T) = o(T). Consequently,

is0 04p(T") = iso 05(T) = iso o(T) = isoo(T") = 0,
thus IT,(T*) = 7100(T) = 0. By Theorem 3.7 then S-Weyl’s theorem holds for T*. .
The result of Theorem may be, considerably, improved:
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Theorem 3.14. If is00,p(T) = @ and T* has SVEP, then f(T + K) satisfies S-Weyl's theorem for every finite
dimensional operator K € L(X) for which KT = TK and f € H(o(T + K)). Analogously, if iso 05(T) = 0 and T has
SVEP, then f(T* + K*) satisfies S-Weyl'’s theorem.

Proof. Suppose first that iso 0,p(T) = 0 and that T* has SVEP. By [, Theorem 3.29] then iso 0,,(T + K) =
is0 04p(T) = 0, and from Lemma we obtain that iso g.p(f(T + K)) € f(iso 0ap(T + K)) = 0. Since a finite-
dimensional operator is algebraic, then T* + K* has SVEP, see [4], and consequently, by [1, Theorem 2.86],
f(T* + K*) = [f(T + K)]* has SVEP for every f € H(o(T + K)). By Theorem 3.12) we conclude that (T + K)
satisfies S-Weyl’s theorem.

Analogously, suppose that iso 0,,(T*) = iso 05(T) = 0 and that T has SVEP. Since K" is finite-dimensional
and T"K* = K*T*, we have, always by [1, Theorem 3.29], that

150 04(T + K) = i50 00 (T*K*) = i50 0 (T") = 0.

Moreover, the SVEP for T is transmitted to T + K and hence to f(T + K). Again by Theorem 3.12]we conclude
that f(T* + K*) satisfies S-Weyl’s theorem. .

Theorem 3.15. If T* has SVEP and T is finite-polaroid then T satisfies S-Weyl’s theorem.

Proof. By Theorem it suffices to prove the equality mo(T) = IL,(T). Now, the SVEP for T entails
property (gaz), hence 0,,(T) = (T) and this is equivalent to saying 014(T) = 04(T). Therefore, we have

Io(T) = 0ap(T) \ 01a(T) = o(T) \ 0a(T) = II(T).

Let A € II(T) arbitrary given. Then 0 < a(Al — T) < oo, since A is an eigenvalue of T and T is finite-polaroid.
Therefore, A € 1go(T), so
I1,(T) = TI(T) < moo(T).

On the other hand, if A € mp(T), then A € iso o(T) and the finite-polaroid condition entails that A is a pole of
T having finite rank. But p(Al — T) = g(AI — T) implies, by [1, Theorem 1.22], that a(Al = T) = B(AI = T) < oo,
so AI — T is Browder. Hence

A € a(T)\ 0b(T) = poo(T) € po(T) € Iu(T),
from which we conclude that 719o(T) = I1,(T). "
Recall that the spectral mapping theorem holds for o(T) and cap(T).

Theorem 3.16. Suppose that T € L(X) commutes with a quasi-nilpotent operator Q € L(X). If o(T) = oap(T) and
o(T) is connected then f(T) satisfies S-Weyl's theorem for every f € H(o(T)).

Proof. Evidently Q commutes with (AI — T)™! for every A ¢ o(T), hence f(T)Q = Qf(T), so oap(f(T)) =
ouw(f(T)), by [8, Theorem 3.8]. If 6(T) = 04p(T) then

o(f(1)) = f(o(T)) = f(0ap(T)) = 0ap(f(T))-

Consequently, o(f((T)) = ouw(f(T)).
Let A € 7oo(f(T)). Then 0 < a(Al — f(T)) < oo, and this is impossible, by [8, Theorem 3.1]. Hence
1io0(f(T)) = 0. Since iso ouw (f(T)) = 0, by Lemmawe also have ouw(f(T)) = ouww(f(T)). Hence

100 (f(T)) = @ = 0ap(f(T)) \ 0uw (f(T)) = o(f(T)) \ Gubw (f(T)),
so S-Weyl'’s theorem holds for T, by Theorem .
The Volterra operator V on L,[0, 1] is defined by means

(VAHx) = fxf(t)dt forall fe X andxe]0,1].
0
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The Volterra operator is injective and quasi-nilpotent, so Theorem applies to the operators T €
L(L*([0, 1])) that commute with the Volterra operator.

In the sequel we give some examples of operators that satisfy, or do not satisfy, S-Weyl’s theorem.

a) Let Q € L(X) denote a quasi-nilpotent operator for which ker Q is infinite-dimensional, or Q is
injective. Then mgo(T) = @ and 0,,(Q) = 01a(Q) = {0}. Therefore, IT,(Q) = 0. Since Q" has SVEP then, by
Corollary 3.8} Q satisfies S-Weyl’s theorem.

b) Let R € L(X) be a Riesz operator. Recall that R is said Riesz if Al — R € ®(X) for every A # 0, or
equivalently, AI — R € B(X) for every A # 0. Every Riesz operator has a finite spectrum, or o(R) consists of
a sequence of eigenvalues (of finite multiplicity) which clusters at 0. Every Riesz operator with an infinite
spectrum satisfies S-Weyl’s theorem. Indeed, in this case po(R) = I1T,(R) = C \ {0}. Moreover, R* has SVEP,

so Corollary 3.8 applies.

c) An operator T € L(X) is said to be algebraic if there exists a complex polynomial / such that h(T) = 0.
Examples of algebraic operators are nilpotent operators and operators K for which K" is a finite-dimensional
operator for some n € IN. Every algebraic operator has a finite spectrum, say {A4,...,4,}. Moreover,
01d(K) = 0, see [1, Theorem 3.93], 0,p(K) = 0(K), and hence, IT,(K) = {A4,...,A,}. In general an algebraic
operator may not satisfy S-Weyl's theorem. To see this, we show that every finite dimensional operator
does not satisfy S-Weyl’s theorem. Indeed, let K be a finite-dimensional operator on a infinite-dimensional
Banach space X. Evidently, 0 € ¢(K), since K(X) # X. Hence 0 < p := p(K) = g(K) < oo, since 0 is a pole.
If were a(K) < oo, from the decomposition X = ker K¥ @ KP(X), see [1, Theorem 1.35], where ker K* and
KP(X) are both finite-dimensional, we would have that X is finite-dimensional. Thus, @(K) = oo, and hence
0 ¢ moo(K) while 0 € I1,(K), from which we conclude that S-Weyl’s theorem fails for K.

d) A self-adjoint operator on a Hilbert space, satisfy both property (w) and a-Weyl’s theorem, but may
fail S-Weyl’s theorem. For instance, let K be the integral operator defined on L?([4, b]) by

b
(Kx)(s) ::f p(s, t)x(t)dt,

where the kernel p(s, t) is a polynomial defined on the square [4, b] X [4, b] such that the Hermiticity condition
p(s,t) = p(t,s) holds. Then K is self-adjoint and finite-dimensional. From above we know that K does not
satisfies S-Weyl’s theorem. Note that if kernel is a continuous function which is not a polynomial then
5-Weyl's theorem holds for K, since K is a compact operator (and hence a Riesz operator) whose spectrum
is infinite.

e) Let T € L(X), X an infinite-dimensional Banach space, be non-invertible isometry. Denotes by #(T) the
spectral radius of T, and set

i(T) := lim k(T™)Y™,
n—oo0
where the lower bound k(T) is defined by
K(T) == inf{||Tx|| : x € X, ||x|| = 1}.

If i(T) = r(T) then, see [1, Chapter 3], we have o(T) = 0, (T) = D(0,7(T)), while 0,,(T) = dD(0,(T)). An
example of operator for which the equality i(T) = 7(T) holds is given by a non-invertible operator, see [1,
Chapter 4]. A non-invertible symmetry for which r(T) > 0 (i.e., T not quasi-nilpotent) provides another

example of operator T which satisfies Weyl's theorem, see [6, Theorem 3.14], while T does not satisfy
S-Weyl’s theorem, since 0,,(T) # o(T). However, we have:

Theorem 3.17. If T is a non-invertible isometry which is not quasi-nilpotent, then T* satisfies S-Weyl’s theorem.

Proof.  Since 0.p(T) is the boundary of the spectrum then T has SVEP, by [1, Lemma 2.94], and hence
0s(T) = o(T) = D(0,7(T)). Therefore, iso 05(T) = 0. By Theorem then T" satisfies S-Weyl’s theorem. =
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Examples of non-invertible isometries are the semishifts , i.e., those isometries for which the hyperrange
T(X) := ﬂ T"(X) = {0}.
n=1

Every right translation operator on LF([0, co]), with 1 < p < oo, as well as every multiplication operator T¢ on
the disc algebra A(D), is a semishift.

4. Toeplitz operators on Hardy spaces

In this section we shall apply the results of the previous section to Toeplitz operators. Let y denote
the normalized Lebesque measure on T, and denote by L*(T), T the unit circle, the classical Hilbert space
defined with respect to u. Let x, be the function on T defined by

xn(e") :=e™ forall n € N.

The set {xu}nez is a orthogonal basis of L*(T). The Hardy space H*(T) is defined as the closed subspace of
all f € L*(T) for which
1 270
7 ; fxndt=0 forn=1,2,....
The Hilbert space H>(T) is the closed linear span of the set {x,},=0. Moreover, H*(T) is a closed subspace of
L*(T). Let H*(T) denote the Banach space of all ¢ € L*(T) such that
1 27T

7 ; oxndt =0 foralln=1,2,....

H>(T) is a closed subalgebra of L*(T), as well as the closed subalgebra of all continuous functions on T,
and H*(T) = L=(T) N H*(T).

Let P denote the projection of L*(T) onto H*(T). The Toeplitz operator T, on H*(T), with symbol ¢, is
defined by

Tof := P(¢f) for f € HX(T).
A classical result due to Coburn [13], for a proof see also [1, Chapter 4], shows that if ¢ € L=(T) is not
almost everywhere 0, then either a(T,) = 0 or (Ty) = a(T"P) = 0. If ¢ € L*(T) the spectrum o(Ty) and the

essential spectrum o.(Ty) are connected, see [15, Chapter 7]. Moreover,
0(Ty) = ow(T) and 0ce(Ty) = ¢(T).
Furthermore, if ¢p € L*(T) is not almost everywhere 0, we have
0ap(Tp) = ouw(Ty) and  0s(Ty) = ow(Ty),

see [2, Theorem 3.3]. Recall that the winding number wn(¢, A) of a closed curve in the plane around a given
point A is an integer representing the total number of times that curve travels counterclockwise around the
point. It is known that if the symbol ¢ is continuous on T and T, is Fredholm, then

ind Ty, = —wn(¢,0),

where wn(¢, 0) denotes the winding number of the curve ¢(T) traced by ¢ with respect to the origin, see
Widom [21]. In particular, Ty is Weyl (or equivalently, invertible) if and only if wn(¢,0) = 0 and o(Ty)
consists of ¢(T) and the points A of the holes for which wn(¢p, A) # 0. In [2] it has been proved that if ¢ is
continuous then

¢ is nonconstant & isoow(Ty) =0 & isoouw(Ty) = 0. )

In [2] it is shown that a-Weyl’s theorem and property (w) hold for Toeplitz operator T, with continuous
symbol. The following counterexample shows that Toeplitz operator may fail S-Weyl’s theorem.
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Example 4.1. Let ¢ be the continuous function on T, defined as

2i6 i
ol (4 ).—{e_zie_l ift<0<2m.

The spectrum o(T) has two holes 2; and (), see [1, Example 4.101], where the orientation of ¢(T)
traced out by ¢ in () is counterclockwise, while the orientation of ¢(T) traced out by ¢ in €2, is clockwise.
Moreover,

O_(Td)) =0QUU (P(T) and Gap(T¢,) = U (P(T)

50, 0(Ty) # 04p(Ty) and hence S-Weyl’s theorem does not hold for T, since property (gaz) fails for T.
It is known that for a Hilbert space operator T with adjoint T" we have:
0ap(T) = 0(T) and  04(T") = op(T).

Theorem 4.2. Suppose that ¢ € H®(T) is not almost everywhere 0. Then f (T(’p) satisfies S-Weyl's theorem for every
f € 7'[(O(Tqﬁ))

Proof. The operator T, ¢ € H*(T), is subnormal and hence hyponormal, see Conway [14, Proposition
2.4.2]. Every hyponormal operator has SVEP, see [1, §4.3], hence f(T;) has SVEP for every f € H(o(Ty)).
According Remark [2.2] this implies that o5(f(T4)) = 0(f(Ts)) and hence

aap(f(T)) = aap((f(Ty))') = 0s(f(T)) = o (f(Ty)) = f(a(Tp)).

Since 0(T) is connected also f(d(Ty)) is connected, hence oap(f (T:b)) has no isolated points, from which we

deduce that Ha(f(T(’P)) = (). On the other hand, also a(f(T;b)) = 0(f(Ty)) is connected, so noo(f(Té))) =0. By
Theoremwe conclude that f () satisfies S-Weyl’s theorem. .

In general, for symbols ¢ € L*(T), the operator Ty, is not hyponormal, also if the symbol ¢ is continuous.
For instance, the operator T defined in Example [4.1]fails the SVEP, see [7], so it cannot be hyponormal. It
is easy to see that for a Hilbert space operator T* has SVEP if and only if T" has SVEP.

Theorem 4.3. Let ¢ be a nonconstant continuous on T, and suppose that 6(Ty) has no holes. Then both T, and T:P
satisfy S-Weyl'’s theorem.

Proof. Since o(Ty) consists of ¢(T) and some of its holes, then o(T;) = ¢(T) is the boundary of o(Ty), so,
both T, and T(’]5 (or equivalently, the dual of Ts) have SVEP and hence 6(Ty) = 0ap(Ty) = 0s(Ty), according
Remark Since is0 0(T) = is004p(Ty) = iso0s(Ty) = 0, being o(Ty) connected, then S-Weyl’s theorem
holds for T, and T}, by Corollary .

Write pap(T) := C\ 04p(T) and ps(T) := C \ 04(T).

Theorem 4.4. Suppose that symbol ¢ is continuous and nonconstant.
(i) If the orientation of the curve ¢(T) traced out by ¢ is counterclockwise then Ty, satisfies S-Weyl's theorem.
(ii) If the orientation of the curve ¢(T) traced out by ¢ is clockwise then Tép satisfies S-Weyl's theorem.

Proof. (i) Suppose that the orientation of the curve ¢(T) traced out by ¢ is counterclockwise. We prove that
T, satisfies property (gaz). We show first that p(T) is connected. Suppose for this, that puw(Ty) = pap(Ty)
is not connected, i.e. that ouw(Ty) admits some holes Q. If A € Q then A & ¢(T) = 0e(Ty), so AI = T is
Fredholm and hence ind (AI - Ty) = —wn(¢, A) < 0. This implies that AI — T, is upper semi-Weyl, and hence
A ¢ ouw(Ty), a contradiction. Therefore, puw(Ty) is connected. From Theorem it then follows that T}
satisfies property (gaz).
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To show that S-Weyl’s theorem holds for Ty, it suffices, by Theorem to prove that I',(Ty) = 700(T).
We have isoo0(T) = isoow(Ty) = 0, by @I), so 7too(T) € iso (0(Ty)) = 0, and analogously we have T1,(T) €
i50 0ap(Ty) = 150 0uw(Ty) = 0. Therefore, 1109(T) = I1,(T) and hence, by Theorem 3.7, T, satisfies S-Weyl’s
theorem.

(ii) Suppose that the orientation of the curve ¢(T) traced out by ¢ is clockwise. We show first that T(’P
satisfies property (gaz). Suppose for this, that p1,,(Ty) = ps(Ty) is not connected, i.e., ouw(Ty) admits some
holes Q. If A € Q then AI - T, is Fredholm and hence ind (AI - Ty,) = —wn(¢, A) > 0. This implies that AI-T
is lower semi-Weyl, and hence A ¢ 01, (T) = 05(T), a contradiction. Therefore, p1(Ty) is connected and by
Theoremit then follows that T;b satisfies property (gaz). From @) we have iso (O(T:?)) =iso(0(Ty)) = 0,

S0 ﬂoo(Té) = 0. Always from (ﬂ) we have

iso aap(T(’P) = iso 05(Ty) = iso 01w (Ty) = 0,

and consequently, Ha(T(’p) Ciso aap(T(’P) =0. By Theoremit then follows that S-Weyl’s theorem holds for
T". ]
¢

Part (i) of Theorem [4.4]applies in particular to the case where ¢ is a trigonometric polynomial
Pe?) = 5" are™?,

or also in the case that T is hyponormal, since these operators have SVEP, and hence the index ind (A - Tj)
on a hole is less or equal to 0. Note that if ¢ is a trigonometric polynomial then Ty may be not hyponormal,
see [16].

Corollary 4.5. If ¢ is a trigonometric polynomial on T then S-Weyl's theorem holds for T.

A conjugation operator on a Hilbert space H is an antilinear operator C for which C?> = I and (Cx, Cy) =
(y,x) forall x, y € H. According Garcia and Putnar [17], an operator T € L(H) is said to be complex symmetric
if there exists a conjugation C on H such that CT = T'C.

Theorem 4.6. Let ¢ € C(T) and suppose that T, is complex symmetric. Then both f(Ty) and f (T:P ) satisfy S-Weyl’s
theorem for all f € H(o(Ty),

Proof.  As observed in [2], both T and T(’P have SVEP and hence f(T;) and f(T(’P) have SVEP for all

f € H(o(Ty)). Furthermore, iso0.p(T) = @ and iso 05(Ty) = 0, since 0ap(Ty) = 0s(Ty) coincides with the
boundary da(T,) = ¢(T), see [2]. By Lemma [2.6]is0 04p(f(Ts)) = isoos(f(Ts)) = 0, thus Theorem
applies. n
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