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Quasiconformal extensions of harmonic univalent mappings
of the unit disk
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Abstract. This note examines sufficient conditions for the quasiconformal extendibility of harmonic
mappings defined in the unit disk. It is demonstrated that a harmonic strongly starlike mapping admits
a quasiconformal extension to the entire plane, and an explicit formulation of its extension function is
provided. Additionally, the quasiconformal extendibility of harmonic mappings defined in the exterior of
the unit disk is explored.

1. Introduction

LetD = {z : |z| < 1} denote the unit disk in the complex planeC. LetT andD be the unit circle {z : |z| = 1}
and the closed unit disk {z : |z| ≤ 1}, respectively. A complex-valued function f (z) = u(z)+ iv(z) defined in a
domain Ω ⊂ C is harmonic if u and v are both real harmonic for z = x + iy ∈ Ω. If Ω is simply-connected,
then any harmonic function f has a canonical decomposition f = h+ 1, where h, 1 are analytic functions on
Ω.

Consider a class of harmonic functions f defined on D with f (0) = fz(0) − 1 = 0, denoted by H . Each
function f = h + 1 ∈ H has the power series expansions for h and 1 by

h(z) = z +
∞∑

n=2

anzn, 1(z) =
∞∑

n=1

bnzn, z ∈ D. (1)

The Jacobian of f is given by

J f (z) = | fz(z)|2 − | fz̄(z)|2 = |h′(z)|2 − |1′(z)|2, z ∈ D.

A well-known result asserts that f is locally univalent (one-to-one) if and only if J f (z) , 0 for z ∈ D. If
J f (z) > 0 (or J f (z) < 0), then f is said to be sense-preserving (or sense-reversing).

A sense-preserving harmonic mapping f is said to be k-quasiconformal (k-q.c.), if f has the complex
dilatation µ f (z) = fz̄(z)/ fz(z), with |µ f (z)| ≤ k < 1 for almost every point in Ω. In the most literature,
f is known as a K-quasiconformal mapping with K = (1 + k)/(1 − k) ≥ 1. See [2, 20] for basic theory of
quasiconformal mappings.
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Let S denote a class of functions h analytic and univalent inD, normalized by h(0) = h′(0) − 1 = 0, and
S
∗(α) (0 ≤ α < 1) be its subclass of functions satisfying∣∣∣∣∣arg

zh′(z)
h(z)

∣∣∣∣∣ ≤ πα2 , z ∈ D,

named as strongly starlike functions. A result given by Fait, et al. [9] shows that each f ∈ S∗(α) has a
quasiconformal extension to the whole plane. It is also proved that f ∈ S satisfying

∑
∞

n=2n|an| ≤ k < 1 is
strongly starlike, and hence quasiconformally extendible on the plane, with |µ f | ≤ k a.e. in C.

Now it is natural to ask if the same results hold for harmonic strongly starlike functions. To answer the
question, we first introduce the notion of harmonic hereditarily strongly starlike functions. A subclass of
H consisting of functions which are sense-preserving and univalent inD is denoted by SH. This class has
been investigated by Clunie and Sheil-Small [7] (see also Duren [8]). For 0 < α ≤ 1, the class of functions
f ∈ SH is said to be harmonic hereditarily strongly starlike of order α if it satisfies∣∣∣∣∣∣arg

z fz(z) − z fz(z)
f (z)

∣∣∣∣∣∣ < πα
2
, z ∈ D\{0},

denoted by SSH(α) (see [21]). It leads to the inequality

Re
(

z fz(z) − z fz(z)
f (z)

)
> 0, z ∈ D\{0},

if α = 1. Then f is harmonic fully starlike. Here, harmonic full starlikeness (harmonic full convexity
mentioned below) means that f is harmonic starlike (convex) and maps each disk rD (0 < r < 1) univalently
onto a starlike (convex) domain(see [6]).

Let {φn}n=2,3,... and {ψn}n=1,2,... be two sequences of non-negative real numbers. We denote byH({φn}, {ψn})
the class of harmonic functions inH , with the form (1), satisfying 0 < |b1| < 1 and

ψ1|b1| +

∞∑
n=2

(φn|an| + ψn|bn|) ≤ 1.

LetH0({φn}, {ψn}) be the subclass ofH({φn}, {ψn}) satisfying b1 = 0 in the last inequality. In particular, Avci
and Zlotkiewic [3] considered the special classesH0({n}, {n}) andH0({n2

}, {n2
}) for full starlikeness and full

convexity, respectively. Their results can be concluded as the following theorem.

Theorem 1.1 ([3]). Let f = h + 1 be of the form (1) with b1 = 0. Then

(i) f ∈ H0({n}, {n}) is harmonic fully starlike and univalent inD;

(ii) f ∈ H0({n2
}, {n2

}) is harmonic fully convex and univalent inD.

Remark 1.2. A refined formulation of this theorem can be found in recent works, such as [1, 4, 18], which provide
further insights and extensions.

Silverman [23] investigated the classH0({n}, {n}) and showed the necessity of Theorem 1.1 if an, bn ≤ 0
for n ≥ 2. Later, Jahangiri [13, 14] generalized Theorem 1.1 to the case that b1 is not necessarily zero and
proved the following result.

Theorem 1.3 ([13, 14]). Let f = h + 1 be of the form (1) with |b1| < 1. Suppose that ψ1 = 1. Then

(i) f ∈ H{n}, {n} is harmonic fully starlike and univalent inD;

(ii) f ∈ H({n2
}, {n2

}) is harmonic fully convex and univalent inD.
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Moreover, Jahangiri [13, 14] proved the necessity of Theorem 1.3 if an ≤ 0 for n ≥ 2 and bn ≤ 0 for
n ≥ 1. In general, Ganczar [10] presented a sufficient condition for function f ∈ H0({ψn}, {ψn}) which can
be extended to a quasiconformal homeomorphism of C. Hamada, et al. [11] then extended his results to
the case b1 is not necessarily 0. Their results are summerized in the following theorem.

Theorem 1.4 ([10, 11]). Let {ψn}n=1,2,... be a sequence satisfying either of the following conditions:

ψn

n
≥ ψ1 > 1 (n ≥ 1); (2)

ψn

n
≥
ψ2

2
> ψ1 = 1 (n ≥ 2). (3)

If f ∈ H({ψn}, {ψn}), then f has a homeomorphic extension to the unit circle T, and the image curve f (T) is a
quasicircle. Moreover, the mapping F of the form

F(z) =
{

f (z), |z| ≤ 1,
z +

∑
∞

n=2anz−n +
∑
∞

n=1bnz−n, |z| ≥ 1,
(4)

is a quasiconformal extension of f to C. Furthermore, the complex dilatation µF satisfies |µF| ≤ 1/ψ1 if 0 < |b1| < 1
under the condition (2), or |µF| ≤ 2/ψ2 if b1 = 0 under the condition (3).

A class of functions f ∈ H({φn}, {ψn}) with two sequences {φn}, {ψn} not exactly same, is considered in
Section 2. As a refinement of Theorem 1.4, we claims that some functions f ∈ H({φn}, {ψn}) have a quasi-
conformal extension to the whole plane. It is known that any convex function f ∈ S has a quasiconformal
extension to C if | f | ≤ C, where C is a constant (see [9]). With a sufficient condition considered in Theorem
1.3, similar result holds for harmonic convex functions.

Sufficient condition for f ∈ H to be harmonic strongly starlike is given as [21, Thm. 4.2]. It is shown
that the mapping f admits a quasiconformal extension to C.

For harmonic functions defined in the exterior of the unit disk, similar problems and corresponding
results can be found in the last section. This class of such functions was first introduced by Hengartner
and Schober [12] in 1987. For more results about harmonic functions of the exterior of the unit disk, see
[5, 16, 17].

Our approach to quasiconformal extensions constitutes a refinement of the conceptual basis underlying
conventional techniques. Whereas most existing results [1, 3, 4, 10, 11, 13, 14, 18, 23] rely on a single sequence
of bounds to control the dilatation uniformly, we introduce a dual-sequence framework (as in Theorem 2.1) that
independently constrains the coefficients for the analytic and co-analytic parts. The coefficient summation
condition (5) strictly weaker than the requirement in Theorem C, thus admitting broader classes of harmonic
mappings. Additionally, our proofs show bi-Lipschitz continuity with sharp constants rather than merely
quasiconformality. These refinements collectively extend quasiconformal extension theory to a broader
class of mappings, accompanied by stricter geometric constraints.

2. Sufficient condition for quasiconformal extensions

For f ∈ H({φn}, {ψn}), we make a refinement of Theorem 1.4, including the case that sequences {φn}, {ψn}

are different. We obtain the following theorem.

Theorem 2.1. For given two real numbers k1, k2 with 0 < k1 < 1, 0 < k2 < 1, let {φn} and {ψn} be two sequences of
positive real numbers, which satisfy

φn

n
≥

1
k1

(n ≥ 2),

ψn

n
≥

1
k2

(n ≥ 1).
(5)
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Suppose that f ∈ H({φn}, {ψn}). Then f is univalent on D and has a homeomorphic extension to the unit circle.
Moreover, the mapping F of the form (4) is a quasiconformal extension of f to C, satisfying the bi-Lipschitz continuity
on C, with |µF(z)| ≤ k2 for z ∈ D, and |µF(z)| ≤ k1 for z ∈ C\D. Therefore, F is a k-quasiconformal mapping of C,
where k = max {k1, k2}.

Proof. Consider a function f = h + 1 ∈ H({φn}, {ψn}) of the form (1). If f satisfies the condition (5), then we
have

∞∑
n=2

n|an| +

∞∑
n=1

n|bn| ≤ k1

∞∑
n=2

φn|an| + k2

∞∑
n=1

ψn|bn| ≤ max {k1, k2} = k < 1.

For any two points z1, z2 ∈ Dwith z1 , z2, we have

0 < (1 − k)|z1 − z2| ≤ | f (z1) − f (z2)| ≤ (1 + k)|z1 − z2|. (6)

Then f is univalent onD and has a homeomorphic extension toD. The image f (T) is a Jordan curve. For
z1, z2 ∈ ∆, it follows from (4) that

0 < (1 − k)|z1 − z2| ≤ |F(z1) − F(z2)| ≤ (1 + k)|z1 − z2|. (7)

It means that F is bi-Lipschitz continuous on ∆, and has a homeomorphic extension to ∆.
Next suppose z1 ∈ D and z2 ∈ ∆. Let ζ = [z1, z2]∩T, and w0 = [F(z1),F(z2)]∩ F(T) = F(ζ0), where ζ0 ∈ T.

Therefore, by (6) and (7), the upper and lower bounds

|F(z1) − F(z2)| = | f (z1) − f (ζ) + F(ζ) − F(z2)| ≤ | f (z1) − f (ζ)| + |F(ζ) − F(z2)| ≤ (1 + k)|z1 − z2|,

and
|F(z1) − F(z2)| = |F(z1) − w0| + |w0 − F(z2)| ≥ (1 − k)(|z1 − ζ0| + |z2 − ζ0|) ≥ (1 − k)|z1 − z2|.

hold, which verifies the bi-Lipschitz continuity of F on C.
Finally, we compute the dilatation of the mapping F. For z ∈ D, the dilatation satisfies

|µ f (z)| =

∣∣∣∣∣∣
∑
∞

n=1 nbnzn−1

1 +
∑
∞

n=2 nanzn−1

∣∣∣∣∣∣ ≤
∑
∞

n=1 n|bn|

1 −
∑
∞

n=2 n|an|
≤

k2
∑
∞

n=1 ψn|bn|

1 − k1
∑
∞

n=2 φn|an|
≤ k2. (8)

The computation shows by using (4) that

|µF(z)| =

∣∣∣∣∣∣∣
∑
∞

n=2 nanz−n−1

1 −
∑
∞

n=1 nbnz−n−1

∣∣∣∣∣∣∣ ≤
∑
∞

n=2 n|an|

1 −
∑
∞

n=1 n|bn|
≤

k1
∑
∞

n=2 φn|an|

1 − k2
∑
∞

n=1 ψn|bn|
≤ k1, (9)

for z ∈ C\D. Then for any z ∈ C, it comes to a conclusion that |µF(z)| ≤ max {k1, k2} = k. Therefore, F
is k-quasiconformal off T on C, since the unit circle T is removable for quasiconformality. The proof is
complete.

With a minor change of Theorem 2.1 we get the following result.

Corollary 2.2. Let {φn}n=2,3,... and {ψn}n=1,2,... be two sequences of positive real numbers, satisfying φn ≥ n, ψn ≥ n,
n = 2, 3, · · · , and ψ1 ≥ 1. If f ∈ H({φn}, {ψn}) satisfies

ψ1|b1| +

∞∑
n=2

(φn|an| + ψn|bn|) ≤ k0 < 1, (10)

then the mapping (4) is a quasiconformal extension of f to C, and |µF(z)| ≤ k0 < 1 for z ∈ C.
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Proof. Replacing the inequality (10) with

ψ1|b1|

k0
+

∞∑
n=2

(
φn

k0
|an| +

ψn

k0
|bn|

)
≤ 1,

the sequences {φn} and {ψn} satisfy (5). The proof is done.

It is shown in Theorem 1.3 that a harmonic function f inH({n2
}, {n2

}) is fully convex. Since the sequences
{φn} and {ψn} of f satisfy the condition (5), f can be extended to the plane quasiconformally.

Corollary 2.3. Suppose that f ∈ H({n2
}, {n2

}). Then f is univalent and convex in D, and has a quasiconformal
extension F of the form (4) to C, with |µF(z)| ≤ 1/2 for z ∈ C.

3. Quasiconformal extension of harmonic strongly starlike functions

In this section, we mainly discuss about harmonic strongly starlike functions of D. For 0 < α < 1, the
following quantities:

φn(α) =
n − 1 +

√

n2 − 2n cosπα + 1
2 sin (πα/2)

,

ψn(α) =
n + 1 +

√

n2 + 2n cosπα + 1
2 sin (πα/2)

,

have been introduced first and [21, Lemma 4.1] shows

n < φn(α) <
n

sin (πα/2)
< ψn(α) (11)

for n ≥ 2.
By using φn(α) and ψn(α) we restate the theorem [21, Theorem 4.2] as follows.

Lemma 3.1 ([21]). Let f = h + 1̄ ∈ H for h(z) = z + a2z2 + a3z3 + · · · and 1(z) = b1z + b2z2 + b3z3 + · · · . Suppose
that the inequality

∞∑
n=2

φn(α)|an| +

∞∑
n=1

ψn(α)|bn| ≤ 1 (12)

holds. Then f ∈ SSH(α).

Lemma 3.2. For 0 < α < 1, we have

(i) φn(α)/n is a strictly increasing function of n with n ≥ 2;

(ii) ψn(α)/n is a strictly decreasing function of n with n ≥ 1.

Proof. We only give the proof of (i).
Let a = 2 sin (πα/2). To prove φn(α)/n is a strictly increasing function of n ≥ 2, we have to verify that

φn+1(α)
n + 1

−
φn(α)

n
=

1 + n
√

n2 + (n + 1)a2 − (n + 1)
√

(n − 1)2 + na2

n(n + 1)a
=

L(n)
n(n + 1)a

is positive. If L(n) ≤ 0, then a simple computation shows a2
≥ 4, which is in contradiction with the fact that

a < 2. Hence L(n) > 0, which means that φn(α)/n is a strictly increasing function of n.
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Using Theorem 2.1, Lemmas 3.1 and 3.2, we obtain the following theorem.

Theorem 3.3. Let 0 < α < 1. Then a function f ∈ H({φn(α)}, {ψn(α)}) belongs toSSH(α) and has a quasiconformal
extension F to C. Moreover, F has the form (4), with the dilatation

|µF(z)| ≤
sin (πα/2)

1 + cos (πα/2)

for z ∈ D, and |µF(z)| ≤ sin (πα/2) for z ∈ C\D. Furthermore, f is a sin (πα/2)-quasiconformal mapping of the
whole plane.

Proof. It is known that φn(α)/n is a strictly increasing function of n ≥ 2, and ψn(α)/n is a strictly de-
creasing function of n ≥ 1, by Lemma 3.2. The inequality (11) shows that the two functions have no
intersection, and both approach to 1/ sin (πα/2) if n tends to infinity. Following Lemma 3.1, the function
f ∈ H({φn(α)}, {ψn(α)}) belongs to the class SSH(α), for 0 < α < 1. Now applying Theorem 2.1 to f , we
obtain

|µF(z)| ≤ k = max
{ 1
ψ1(α)

, sin
(πα

2

)}
= max

{ sin (πα/2)
1 + cos (πα/2)

, sin
(πα

2

)}
= sin

(πα
2

)
< 1,

for z ∈ C, by (8) and (9). Then the function F is a sin (πα/2)-quasiconformal mapping of C.

A simple example of harmonic strongly starlike functions of order α constructed in [21], gives a sharp
bound for the second coefficient of the co-analytic part. Here, by Theorem 3.3, an explicit form of the
extension functions for more general functions is given.

Example 3.4. For α with 0 < α < 1, we consider the function

fn(z) = z + bnzn, n ≥ 2,

where
|bn| ≤

1
ψn(α)

=
2 sin (πα/2)

(n + 1) + |n + eiπα|
.

The coefficients of fn satisfy the condition (12), so fn ∈ SSH(α). Using Theorem 3.3, fn can be extended to C, and the
mapping of the form

Fn(z) =
{

z + bnzn, |z| ≤ 1,
z + bnz−n, |z| ≥ 1,

is a quasiconformal extension of fn, with the dilatation

|µFn (z)| ≤
2n sin (πα/2)

n + 1 + |n + eiπα|

for z ∈ C.

4. Quasiconformal extension of harmonic mappings in the exterior of the unit disk

In this section, we investigate the class of harmonic sense-preserving univalent functions defined in the
exterior of the unit disk ∆ = {z : |z| > 1} that map ∞ to ∞. This class was initiated by Hengartner and
Schober [12], denoted by ΣH. Each function f ∈ ΣH has the representation

f (z) = αz + βz +
∞∑

n=0

anz−n +

∞∑
n=1

bnz−n + A log |z|, z ∈ ∆, (13)
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where 0 ≤ |β| < |α| and A ∈ C. With the assumption α = 1, β = 0 and a0 = 0, a subclass of ΣH, denoted by
Σ′H, consisting of functions f of the form

f (z) = z + h(z) + 1(z) + A log |z|, z ∈ ∆,

where

h(z) =
∞∑

n=1

anz−n, 1(z) =
∞∑

n=1

bnz−n

are analytic in ∆, has been considered. For convenience, a subclass of Σ′H with A = 0 is needed, denoted by
Σ′′H (see [15]).

For function f ∈ ΣH of the form (13), a simple computation shows that a sufficient condition for
|µ f | ≤ k < 1 is

|β| +
k + 1

2
|A| + k

∞∑
n=1

n|an| +

∞∑
n=1

n|bn| ≤ k|α|. (14)

To obtain a stronger form of (14), it suffices to assume

|β| + |A| +
∞∑

n=1

n(|an| + |bn|) ≤ k|α|. (15)

In search of a sufficient condition for the quasiconformal extendibility of functions f ∈ ΣH, a subclass of ΣH
which satisfies (15) is required to be considered, denoted by ΣH(k), for 0 < k < 1. A theorem is then stated
as follows, as a generalization of [24, Thm. 9] for functions f ∈ Σ′′H.

Theorem 4.1. Let f ∈ ΣH(k) be of the form (13) for some k ∈ (0, 1). Then f has a homeomorphic extension to the
unit circle. Moreover, the mapping

F(z) =
{

f (z), |z| ≥ 1,
αz + βz +

∑
∞

n=0 anzn
+

∑
∞

n=1bnzn, |z| ≤ 1,
(16)

is a quasiconformal extension of f with |µF(z)| ≤ k for z ∈ C.

Proof. Let f ∈ ΣH(k) take the form (13). For any points z1, z2 in ∆ with z1 , z2, it is harmless to assume
|z1| ≥ |z2| > 1. We compute

| f (z1) − f (z2)|

=

∣∣∣∣∣∣∣α(z1 − z2) + β(z1 − z2) +
∞∑

n=0

an(z−n
1 − z−n

2 ) +
∞∑

n=1

bn(z−n
1 − z−n

2 ) + A(log |z1| − log |z2|)

∣∣∣∣∣∣∣
≥ |z1 − z2|(|α| − |β|) −

∞∑
n=1

(|an| + |bn|)|z−n
1 − z−n

2 | − |A|(log |z1| − log |z2|)

≥ |z1 − z2|

|α| − |β| − ∞∑
n=1

n(|an| + |bn|)

 − |A|∫ |z1 |

|z2 |

dt

≥ |z1 − z2|(1 − k)|α|.

Similarly, we obtain
| f (z1) − f (z2)| ≤ |z1 − z2|(1 + k)|α|.

Therefore, f satisfies the bi-Lipschitz condition

0 < (1 − k)|α| · |z1 − z2| ≤ | f (z1) − f (z2)| ≤ (1 + k)|α| · |z1 − z2|, z ∈ ∆.
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It means that f has a homeomorphic extension to the unit circle T, and f (T) is a quasicircle.
Next it is necessary to show that the function F of the form (16) is a k-quasiconformal mapping of the

plane. The dilatation satisfies

|µ f (z)| =

∣∣∣∣∣∣∣ β +
∑
∞

n=1nanzn−1

α +
∑
∞

n=1nbnzn−1

∣∣∣∣∣∣∣ ≤ |β| +
∑
∞

n=1n|an|

|α| −
∑
∞

n=1n|bn|
≤ k,

for z ∈ D and

|µF(z)| =

∣∣∣∣∣∣∣β +
A
2z −

∑
∞

n=1nbnz−n−1

α + A
2z −

∑
∞

n=1nanz−n−1

∣∣∣∣∣∣∣ ≤ |β| +
|A|
2 +

∑
∞

n=1n|bn|

|α| − |A|2 −
∑
∞

n=1n|an|
≤

2k|α| − |A|
2|α| − |A|

≤ k

by (16), for z ∈ ∆. Hence, |µF(z)| ≤ k for z ∈ C. The proof is complete.

Example 4.2. Consider the function

f (z) = z −
i
6

z +
i
4

log |z| −
i
8

z−4,

which belongs to ΣH. Since f satisfies (15), we apply Theorem 4.1 to f . Then f has a homeomorphic extension to the
unit circle, and the mapping

F(z) =
{

z − i
6 z + i

4 log |z| − i
8 z−4, |z| ≥ 1,

z − i
6 z − i

8 z4, |z| ≤ 1,
is a k-quasiconformal extension of f with k = 7/9. See Figure 1 for the graph of F.

Figure 1: The graph of F

Before giving the next theorem, we introduce the convolution of harmonic functions defined in ∆. Let
f1(z), f2(z) ∈ ΣH be two harmonic functions in ∆, with the forms

f1(z) = α1z + β1z +
∞∑

n=0

anz−n +

∞∑
n=1

bnz−n + c log |z|, (17)
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and

f2(z) = α2z + β2z +
∞∑

n=0

Anz−n +

∞∑
n=1

Bnz−n + C log |z|, (18)

for z ∈ ∆. Then the harmonic convolution of f1 and f2 is

f1 ∗ f2(z) = α1α2z + β1β2z +
∞∑

n=0

anAnz−n +

∞∑
n=1

bnBnz−n + cC log |z|, z ∈ ∆. (19)

Let Σk (0 < k < 1) be the class of sense-preserving homeomorphisms h of the extended plane Ĉ onto
itself, with h(z) = z+

∑
∞

n=0 anz−n analytic and univalent in ∆, k-quasiconformal in Ĉ. Krzyż [19] investigated
the convolution problem of functions in Σk by using the area theorem. Unfortunately, the area theorem of
harmonic functions (see [22]) cannot be used in the same way. However, we deduce the following theorem.

Theorem 4.3. Let 0 < k1, k2 < 1. If f1 ∈ ΣH(k1) and f2 ∈ ΣH(k2), then f1 ∗ f2 ∈ ΣH(
√

k1k2).

Proof. Let f1 and f2 be functions defined by (17) and (18), respectively. Given that f1 ∈ ΣH(k1) and f2 ∈ ΣH(k2),
it follows immediately from the definition of the class ΣH that their convolution f1 ∗ f2 also belongs to ΣH.
Condition (15) yields the coefficient bounds

|β1| + |c| +
∞∑

n=1

n(|an| + |bn|) ≤ k1|α1|,

and

|β2| + |C| +
∞∑

n=1

n(|An| + |Bn|) ≤ k2|α2|.

It suffices to show

M =
1
|α1α2|

|β1β2| +

∞∑
n=1

n(|anAn| + |bnBn|) + |cC|

 ≤ √
k1k2.

Define sequences {xm} and {Xm} as

|α1|xm =


√

n|an|
2, m = 2n − 1,√

n|bn|
2, m = 2n,

|β1| + |c|, m = 0,
and |α2|Xm =


√

n|An|
2, m = 2n − 1,√

n|Bn|
2, m = 2n,

|β2| + |C|, m = 0.

Then the quantity M satisfies

M ≤
∞∑

m=0

xmXm.

Finally we obtain

M ≤

 ∞∑
m=0

x2
m


1
2
 ∞∑

m=0

X2
m


1
2

=

(
(|β1| + |c|)2 +

∑
∞

n=1n(|an|
2 + |bn|

2)
|α1|

2

) 1
2
(

(|β2| + |C|)2 +
∑
∞

n=1n(|An|
2 + |Bn|

2)
|α2|

2

) 1
2

≤

(
(|β1| + |c|) +

∑
∞

n=1n(|an| + |bn|)
|α1|

) 1
2
(

(|β2| + |C|) +
∑
∞

n=1n(|An| + |Bn|)
|α2|

) 1
2

≤

√
k1k2.

by the Cauchy-Schwarz inequality.
Thus f1 ∗ f2 ∈ ΣH(

√
k1k2), and the proof is complete.



X.-S. Ma / Filomat 39:28 (2025), 9995–10004 10004

Acknowledgements

The author would like to express sincere gratitude to Prof. Toshiyuki Sugawa, for his expertise and
patience he has provided during the writing of this paper. The author would also like to offer special thanks
to Prof. Saminathan Ponnusamy, Prof. Limei Wang and Prof. Ming Li for their valuable and constructive
suggestions.

References

[1] Y. Abu Muhanna, S. V. Bharanedhar and S. Ponnusamy, One parameter family of univalent biharmonic mappings, Taiwanese J. Math.
18 (2014), 1151–1169.

[2] L. V. Ahlfors, Lectures on quasiconformal mappings, American Mathematical Soc. 38, 2006.
[3] Y. Avci and E. Złotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1991), 1–7.
[4] S. V. Bharanedhar and S. Ponnusamy. Coefficient conditions for harmonic univalent mappings and hypergeometric mappings, Rocky

Mountain J. Math. 44 (2014), 753–777.
[5] D. Bshouty, and W. Hengartner. Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994),

12–42.
[6] M. Chuaqui, P. Duren and B. Osgood, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004),

127–142.
[7] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25.
[8] P. Duren, Harmonic mappings in the plane, Cambridge university press 156, 2004.
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