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Abstract. This paper investigates first the existence and uniqueness of solutions for McKean-Vlasov
forward-backward doubly stochastic differential equations (MV-FBDSDESs) in infinite-dimensional real
separable Hilbert spaces. These equations combine the features of forward-backward doubly stochastic
differential equations with the mean-field approach, allowing the coefficients to depend on the solution
distribution. We establish the existence and uniqueness of solutions for MV-FBDSDEs using the method of
continuation and provide an example and a counterexample to illustrate our findings. Moreover, we extend
the practical applicability of our results by employing them within the context of the stochastic maximum
principle for a control problem governed by MV-FBDSDEs. This study contributes to the field of stochastic
control problems and presents the first analysis of MV-FBDSDEs in infinite-dimensional spaces.

1. Introduction

Pardoux and Peng [20] introduced backward doubly stochastic differential equation (BDSDE) in 1994
to give probabilistic interpretation for the solutions of a class of semilinear stochastic PDEs. Since then,
the theory of BDSDEs has developed and found applications in various fields, including stochastic control,
stochastic PDEs, and finance.

Motivated by BDSDEs, there has been a growing interest in doubly stochastic optimal control problems
(see e.g., [7, 24]). Stochastic Hamilton systems, derived from the stochastic maximum principle of stochas-
tic optimal control problems, fall under the category of forward-backward doubly stochastic differential
equations (FBDSDEs). The existence and uniqueness of solutions for these equations, which can be fully
coupled, have been studied in various works such as [3-5, 22], along with references therein. Peng and Shi
[22] established the existence and uniqueness of FBDSDE solutions under certain monotone assumptions
using the method of time continuation. Zhu et al. [26] extended the results of [22] to FBDSDEs in different
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dimensional Euclidean spaces, relaxing the imposed monotonicity assumptions. Additionally, Al-Hussein
and Gherbal [5] studied FBDSDEs with Poisson jumps, while Al-Hussein [3] explored FBDSDEs in infinite
dimensions.

Mean-field stochastic differential equations (SDEs), also known as SDEs of McKean-Vlasov type, repre-
sent another type of SDEs where the coefficients can depend on the distribution of the solution, as shown
in [14] and the references therein. In accordance to Lasry and Lions [16] and the related references therein,
these equations have been widely used in finance, quantum chemistry, and game theory. Mean-field
backward stochastic differential equations, called also BSDEs of McKean-Vlasov type (MV-BSDEs), were
introduced by Buckdahn et al. [10] as the mean square limit of an interacting particle system of BSDEs.

It is worth knowing that the stochastic maximum principle approaches to the solutions of optimal
control problems for mean field SDEs naturally reduce to the solutions of mean field FBSDE systems; cf.
e.g., [9,12-14, 23]. The existence of solutions for MV-BSDEs and McKean-Vlasov FBSDEs (MV-FBSDEs) has
been investigated in various works, including [1, 9, 13, 14, 18, 19], along with relevant references therein.
Additionally, the works [2] and [17] provide insights into McKean-Vlasov equations in Hilbert spaces and
their applications.

In this paper, we have two main objectives. Firstly, we aim to establish the existence and uniqueness of
the solution for the following McKean-Vlasov forward-backward doubly stochastic differential equations
(MV-FBDSDEs):

P
dy, = f (t, Yo Y, 21, 2y, ]P(yt,Yf,zt,Zf)> dt+g (t, Yo Y, 21, 2y, ]P(yt,Yf,zt,Zf)> AWy — z¢dBy,
h
dYy=F (t/ v Yoz, Zy, ]I)(yithZt/Zt)) dt+G (f, Y, Y, 20, Zy, ]P(yz,Yz,zf,Zf)) dB; + Zy dWi, 1)
Yo =X, YT =h (yT, ]PyT).

We consider these equations in infinite dimensional real separable Hilbert spaces. The system (1) incorpo-
rates mutually independent cylindrical Wiener processes (W), and (B;),», on real separable Hilbert spaces
E; and E,, respectively. The mappings f, g, F, G are allowed to depend on all random variables (y, Y, z, Z)
in addition to their distribution P vzz) thereby enhancing the generality of the system, besides being

fully-coupled.

Secondly, we demonstrate that this work contributes to laying a solid foundation for studying stochastic
control problems governed by MV-FBDSDEs. Specifically, in Section 4.1, we apply the results here to the
stochastic maximum principle for MV-FBDSDEs. As is well-known, dynamic programming requires the
solution to satisfy the Markov property, which does not hold in general due to the presence of distributions
in the system (1). Therefore, the maximum principle remains the suitable tool for studying such control
problems. To the best of our knowledge, our present work is the first to address MV-FBDSDE:s in infinite-
dimensional spaces and their applications to stochastic optimal control.

The paper is organized as follows: Section 2 introduces the problem formulation by presenting the MV-
FBDSDEs and stating the assumptions on the coefficients. In Section 3, we rigorously establish the existence
and uniqueness of the solution for MV-FBDSDEs (1), providing detailed proofs. At the end of Section 3, an
illustrative example and a counterexample are given to highlight the implications of our results. Finally,
Section 4 demonstrates practical applications of MV-FBDSDEs to stochastic optimal control.

2. Notation and Formulation of the Problem

Consider a complete probability space (Q2, ¥, IP) with a fixed time duration T > 0. The class of P-null sets
of ¥ is denoted as NV. Let E; and E; be real and separable Hilbert spaces. We suppose that (W) and (B;),so
are two mutually independent cylindrical Wiener processes on E; and E,, respectively. For each t € [0, T,
we define the g-algebra F; := ﬁf’TVTtW, which is generated by ﬁ?TUTtW. Here, 7—'5% =0(6,— 0,5 <r<t)VN
and 77 = 7—'0%, for any process 0. The collection (¥¢)<;<r is neither increasing, nor decreasing, and thus
does not form a filtration on (Q, ¥).
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We shall investigate systems governed by nonlinear MV-FBDSDEs. These systems are described by
<_

the equations, presented in (1). In these equations, the integral with respect to dB; represents a backward
Itd integral, while the integral with respect to dW; is a standard forward It6 integral. These two types of
integrals are particular cases of It6-Sokorohod integral. Here, for a random variable X in a separable Hilbert
space, IPx denotes the probability measure induced by X. The term “nonlinear” used to describe the system
(1) refers not only to the fact to the fact that the coefficients f, g, F, and G could be nonlinear functions of
the vector process (v, Y, 21, Z;) at time t, but also to the fact that they depend on its distribution P, v, -,z,).

If S is a separable real Hilbert space with norm || - ||, we denote by $(S) to the space of all probability
measures on (S, B(S)), and by P (S) to the subspace of P (S) of all probability measures having finite second
order moments on S. We endow P> (S) with the 2-Wasserstein distance as follows:

1

_ . R :
Wy (U1, o) = 1nf{ ( £x5 llx = ylI~ A(dx, dy))
- inf{(]E [ - Y||2])%

This definition makes P, (S) a complete separable metric space. We observe that if X; and X» are two square
integrable random variables taking their values in S, then the following inequality holds:

A€ P(SxS) with marginals pq and yz}

X,Y:Q =S with Py, = 1 and Py, = yz}. @)

IEB] - Xl | < @ (P, Px,) < (E[1% - 12 ])° )

Let H be a separable real Hilbert space H with inner product (:, -)y and norm |-|y. We denote by L, (E;, H)
to the space of all Hilbert-Schmidt operators from E; into H, where i = 1, 2. The inner product on L, (E;, H)
is denoted by (-, ‘),,m), and the norm induced by this inner product is denoted by |||l m)- For any

ol = (]/1, Yl,Zl,Zl), 02 = (]/2, Y2, 72, ZZ) € H? := H x H X L, (E5, H) X L, (E1, H), we define
(Ul’vz) = <y1' y2>H + <Y1' Y2>H + <Zl’ZZ>L2(Ez,H) + <Zl,ZZ>L2(E1'H) ’

and let |vl| = [(vl, vl)]E be its norm. Finally, for a separable Hilbert space E, we denote by M? ([0, T], E) to
the space of all E-valued stochastic processes (X;)y<;<r such that for each t € [0, T], X; is F;-measurable, and

E [ foT X2 dt] < +o0. Then it is evident that M? ([0, T], E) is a Hilbert space endowed with the canonical

o = e | fOT i

Definition 2.1. A quadruple (y,Y,z,Z) € M? ([0, 1, ]I—I2) is called a solution of MV-FBDSDEs (1) if it satisfies
(IP-almost surely) the following integral systems for each t € [0, T]:

1/2

t

t t
&
yr=x+ f f (5; Ys, Ys, 25, Zs, ]P(ys,Ys,Zs,Zs)) ds + f g (5/ Ys, Ys, 25, Zs, ]P(ys,Ys,Zs,Zs)) dW; — f zs dBs,
0 0 0

T
Yi=h(yr,Py,) - ft F(s Yo Yo 20, 26 Py o 7)) s = f

t

T T

h
G (s ¥s Yo 2,26, P, y. .. 7)) dBs = f Z, dWL.
t

For convenience, we introduce the notation:
0= (y/ Y/Z/ Z) 7 A (t/ U; [J) = (F/ f/ Gr g) (tr U, [J) 7 (A/ U) = <F/ y>H + <f/ Y>H + <Gr Z)LZ(EZ,H) + <g/ Z>L2(E1,H) 7

where u is a probability measure on H2.
We now state our main assumptions on the mappings:
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(£, F): Qx [0, TI x H? x P, (H?) - H,
7:Qx[0,T] x H? X P, (H?) - Ly (E1, H),
G:Qx[0,T] x H2 x P, (H2) - Ly (o, H),

h:QxHxPz(]I—IZ)—)H.

(A1) (Lipschitz conditions) There exist C > 0 and y € (0, 3) such that for every (vi, yi) = (yi, Yz, 7, [ui)
inH?x P, (]H2>, if we denote v'# = (y Y, Z’) and v = (y Yl z ) fori = 1,2, then the following inequalities
hold for each t € [0, T]:

@) '(f, F) (t, 1, yl) -(f,F) (t, 2, /,12)|H <C (|v1 - vz| + Wy (yl, yZ))

(ii) HG(t,Ul,yl) - (t %, ) < Clo"* - 2Z| +7/(||Z1 Z2||L2(E] + ) (yl,yz))

Lz(Ez H)
LELH) = Clo* - UZ'Z|2 - 7’(”Zl B ZZHiz(Ez,H) + @ (”l'yz))

@) [i (v ) = (12 12)], < € (9" = 92l + 2 (s 12)

Gii) |7 (&, 2", 1) - 9 (1,22, )

(A2) (Monotonicity conditions) Assume that there exist non-negative constants 61, 6, and a; with
01+ 02 > 0, a1 + O, > 0 such that for any random variables o' := (yl,Yl,zl,Zl) and 2 := <y2, Y2, 22, Zz)
taking values in H? and for any ¢ € [0, T], we have

1) E [ (A (t, vl, IP(yl,Yl,Zl,Zl)) -A (t, v2, ]P(yZ,YZ,ZZ,ZZ))’ vl - vz)]
<=0l = 4 - | - [ - 2 2]
i) E[(n(y', Pp) = n(s2Py), 5" - ), | 2 n E [!yl - y2|H]-

(As) For each element v = (y, Y, z, Z) of IH? and for each 1 € P, (H2), we have A (-,0, 1) € W2 ([0, T], H?)
and h(y, u) € L*(Q, Fr, P, H).

Condition (A,) is sometimes referred to as the Lasry-Lions monotonicity condition.

The observation that Wasserstein’s distance of two probability measures is bounded below by the Eu-
clidean norm of the difference of their respective expectations, as demonstrated in (3), motivates considering
the same research problem under different influences of various Lipschitz constraints.

Remark 2.2. (i) As a special case, when h does not depend on (y, 1), i.e., h (y, u) = & fora given & € L* (Q, Fr, P, H),
the two monotonicity conditions imposed in (Ay) collapse to the following condition:

E [ (A (i’, vl, ]P(yl,Yl,zl,Zl)) -A (t, Uz, lp(yz Y222 ZZ))’ vl - vz)]

<-6,E [‘yl -y | + “Z - Z2”L2 (E» H)] 02 E [|Y1 Y2| + ”Z1 Z2”L2 (E1 H)]
for some constants 61 > 0 and 6, > 0.

(ii) The assumption (Ay) can be replaced by the following conditions, while preserving the essential structure of the
proofs for the theorems and their corresponding lemmas in the next section.
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(Ay) : Forall o' := (yl,Yl 1 Zl) (yz Y?, 22 Zz) € H?, and for all t € [0, T],

E| (A0 Pl rn2) = AL Paiez) ' = 07)|

>0 |y = 7+ = 2| + B[V - Y 2 - 22

Ly(E2,H Ly(Eq H)]

and

E[(n(s'Py) = (12 Py). v = 12), | < - ca B[y - 2 |

3. Existence and Uniqueness Theorems

In this section, we establish our main result of the existence and uniqueness of the solution to MV-
FBDSDES, which is a system of nonlinear fully coupled FBDSDEs of McKean-Vlasov type.

3.1. Uniqueness of the Solutions of MV-FBDSDEs (1)
The following theorem gives conditions that guarantee the uniqueness of the solution of MV-FBDSDEs (1).

Theorem 3.1. Under (A1)—~(A3), MV-FBDSDEs (1) has at most one solution (y,Y,z,Z) in N2 ([O, T], ]I—IZ).

Let us begin by introducing the integration by parts formula, commonly referred to as It6’s formula.
This formula is derived from the classical It6’s formula, as it can be gleaned, for instance, from [20].

Proposition 3.2. Let (a,B,y,0) and (a B, 7, ) be elements of M> ([0 ], I[—Iz) and IMN? ([0 1, 1[—12) respectively.
Assume that

t t P t
at=a0+fﬁsds+f6sst+fydeS,
0 0 0
t~ t~ — t
dt:0~50+fﬁsds+f6sst+f775dW51
0 0 0

forallt € [0, T]. Then, foreach t € [0, T],

¢ ¢ ¢
{ay, Ay = {ao, @o)y + f (s, daisyy + f (A, dasyy + f d{as,ds)y P—as,
0 0 0

t
f <d51 das )H]
0 t

t
—-E [f (b, 55 >L2(E2,H) ds] +E |: <)/5, 775>L2(E1,H) dS] .
0 0

and

¢
E [{at, anyl = E[{ao, do)u] + E [f (as, dds)y |+ E
0

Proof of Theorem 3.1. Let v' = (yi, Yz, Zi), for i = 1,2, be two solutions of system (1). To simplify the
notation, we denote

Av = (Ay,AY, Az, AZ) = (v} =2, Y = Y2, 21 = 22,71 - 72),

Afi= f(t,y},Yl,zl,Zl,]P(yl Y},z},z})) _f<t/yt/Y2 z, Zt’]P(yZ Y2, 2ZZ))
Age =g (b v Yz ZL Py ) =9 (692 Y222 22 P ey 2 o)),
AF; = F(t v Yz Zt']P(y1 Yl 1Zl)) (t’yt’Yt’ t']P(y2 Y2, 2ZZ))
MG =Gt} Y2l ZL P az) = G (R VR 2 22 P )
Ahy = h(le’ ]Py‘r) - (}/T, y%)’
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where0 <t <T.

By applying It6’s formula (see Proposition 3.2) and (A,) (i) to (Ay;, AY}),, we obtain

T
E[(Ayr, M)y | = E [ fo (A (60 P ) = A (62 Pprazn) Avf)dt}
T T
e [ T e s 7 R I (R R e P T

Hence, according to (A;) (ii), it follows that

0< aq E [)AyTLz{]

T T
<-0.E [ I (1 =52+ =) df] - 0, [ [ (=i izt - 22 ) dt]-

If both 6; > 0and 6, > 0 (e.g., when 67 = 0,), this inequality directly proves the uniqueness of (v, Y, z, Z),
so that we would not need to assume that 0 <y < 1/2 for the purpose of establishing the uniqueness of the
solutions of MV-FBDSDE (1). Therefore, let us consider the general case in the remaining part of the proof.

If 6, > 0, we obtain

2

E[[Y}-Y2[,]=0 and E[|Z}-Z , ., ]=0.
H Lr(E1,H)

which imply that Y} = Y? and Z! = Z? a.s. for all 0 < t < T. Hence, according to (1), we have

£ t t
Ay = f Afsds+f Ags AW —f Az,dB;, te]0,T],
0 0 0
where Aﬁ: Afi and Ag; = Ag; in this case. Specifically,

R 141 1 ~1 241 2 1
Afi=f(t, yt/Yt/Zt/Zt']P(y},Y},z},Z})) -f(t Vi Ye, 2 2o Py 2 m )
and

—~ 141 1 1 2\l 2 Sl
Ag: = g(t, YirYio 2, thlp(y},y},z},z})) -9 (tr Vi Yi 2,24, ]P(yf,y},zf,z}))'

Applying Itd’s formula to 'Ayt yields

.
2 ' 2 AT oz
E[|Ayt|H]+IE[ fo 1AZ[lz, 2, 1 ds] ZZ]EM) (A Ay >Hds] HEUO L ds]
P ¢
< Z]E[L VAT |Ays|Hd5] ”E[j(; ”A%”Z(ELH) ds]'
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Hence, based on (A;) and the inequality ab < é a2+ 5 b2, for any ¢ > 0, it follows that
¢ ¢
fo IAZ e, 10 ds] <2C fo E [( Ay, + 1Al iy A
oy (B ]) + v (B[ ] ) )
+ ft ((C +y)E [(Aysm +2yE [ IAZSIIE e, ])ds

schot((2+—+—) [\A (] ( ) |AZS||L2E2H)])
; fo ((c ) E [(Ays(:] + 2y E[IAzIE o, ])ds

fot ((5c vy 4 2 )E[lanf ]+ @ + 20 B[ 182 e ])

E||an, |+ E

12y
Tic

2 1-2y\ (* 8C? ' 2
IEHA%)H]Jr( > )j;]E[||Azs||iz(E2,H)]dss(5C+7/+1_27/)1(;]E[.Ays(H]ds

Now, Gronwall’s inequality implies y! = y? a.s. for all 0 < t < T. This leads to fot]E [”AZS”%Z(EZ,H)] ds =0,
which yields z} =22 as. forall0<t<T.

If &y > 0 and 6; > 0, we have lE“y} —yﬂi] =0, ]E[)Ayﬂil] = 0, and IE[”zt1 —zf”iz(EZ/H)] = 0.

Since 0 < y < 1/2, if we choose in this case ¢ = B2 we get

Consequently, y! = y? and z! = z? a.s. for all 0 < t < T. Therefore, h (le, p ) =h (y%, P ), and so

T T T
AY, = — f AF, ds — f AG; dB; — f AZsdWs,
t t t

where here
T _ 1 v1 1 1 1v2 1 2
AF; = F(t/ %/Yt/thZt/P(y},y},z},z})) - F(f/ J/tfYtquZuH’(yg,yg,zg,zg))/
-~ _ 141 1 ~1 142 1 52
AG = G(t, ytrYtrzthtrH)(y},y},z},z})) - G(t, ytrYtththrH)(y},Yf,z},zf))-

Next, apply Itd’s formula to [AY;[;, and utilize (A;) to find that

E[IAY] + E U (VA ds] < 21EU INAFIINE |Hd5] +E U IAGHIR ¢, 1 ]
<2CE [ ft (IAYelst + IAZelly e, ) IAY iy ds]
+ 2C1EMT ((]E[|AYS|%I])% ¥ (IE[HAZSHiZ(ELH)])%)|AYS|Hds]
+ IE[ ft ' (Clav.f + ylE[mYs@])ds] +E [ [ Ty(llAZSH%Z(ELH) +1E[||AZS||§2(ELH)])0IS}.

(4)
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For any ¢ > 0, we then observe
E[IAY}] + E [ ft T||Azs||§z(Eer) ds]
<2C ft T]E[(|AYS|§{ +IAZdllgy(e, iy IAY iy + 1AY <y (E [IAYslﬁ])% +|AYly (E[||AZS||i2<El,H>])%)] ds
o [ (€ BIAYE] -2 B[O 0]
<2C IT((Z + % + %)]E [INEFIE (g + E)IE [IAZI e, 1 ])ds
+ ft ! ((C+y) E[lAYE] + 2y E[IAZAIE ¢, 1 | ) ds
) jt.T ( (5c s %)E [IAY.R ] + @y +2C &) E[IAZAIE iz, ]) ds.

Thus, choosing ¢ = 1;—?/ (recalling 0 < y < 1/2) yields the following inequality:

1-2y T 8C* '
1E[|Ayt|§i]+( > )E[ft ||AZSI|%2(E1,H)ds]§(5C+7/+ 1_2y)ft E[lAYslil]ds.

Consequently, by Gronwall’s inequality, we deduce that Y} = Y? and Z! = Z? a.s. for all t € [0, T]. O

3.2. Existence of Solutions of MV-FBDSDEs

In this section, we establish the existence of solution for the MV-FBDSDEs (1) under assumptions (A;)-
(A3). We will follow the method of continuation, a method which is explained in [21] for the purpose of
solving BSDEs with an arbitrary terminal time and also [25] for FBSDEs.

Theorem 3.3. Under (A1)—~(A3), MV-FBDSDEs (1) has a solution (v, Y, z, Z) in M> ([0, T], ]Hz) .

We shall employ the method of continuation and divide the proof of this theorem into two separate
cases.

Case 1: Let 01 > 0,0, > 0, and a7 > 0. We shall need first Lemma 3.5 below which involves a priori
estimates of solutions of the following family of MV-FBDSDEs parameterized by « € [0, 1]:

P
dyt = (foé (t, Ut, ]Pvr) + (Pt) dt + (ga (t, U, ]P‘Uf) + (Pt) th — Z dBt,
dY; = (F* (t, 01, Py,) + ) dt + (G* (t, 01, Py,) + k) B, + Z: dW,, ()
yo=x,  Yr=h(yr, Py, )+,
where v; = (1, Y1, 21, Z1), P, = P, v, 2), (0,1, %, ) € M2 ([0, T], H?) and & € L*(Q, F7, P, H), and for any
givena € [0,1] :
fa (t/ Ot, ]PU;) =a f (t/ ]/t/ Yf/ Zt, Zt/ ]Pvt) 7
ga (t/ Ot, ]PZ),) =« g (t/ ]/t/ Yt/ Zt, Zf/ ]PZ),) ’
F* (t, U, ]P‘U,) =aF (t/ yt/ Yt/Zi‘/ Zt/ IPTM) + (1 - a) 61 (_yt) /
Ga (t/ O, ]P‘UI) =a G (t/ ]/t/ Yt/ Zt, Zt, ]PU[) + (1 - 0() 91 (_Zt) 7
1 (yr, Py,) = ah(yr, Py, ) + (1 - a) yr.
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When a = 1, the existence of the solution of (5) implies clearly that of (1) by letting ((p, v, 9, K) =(0,0,0,0).
On the other hand, if @ = 0 then (4) reduces to the following linear FBDSDEs:

dyt = Q¢ dt + (Pt th — Z d<_Bt,
dYt = (61 (_yt) + ll)t) dt + (91 (—Zt) + Kt) ?d_Bt + Zt th, (6)
Yo=x, Yr=yr+<&

Lemma 3.4. The system (6), which is that of (5) when a = 0, has a unique solution (y, Y,z,Z) € M> ([O, T] ,IHZ) .

Proof. Itis easy to verify that MV-FBDSDEs (6) satisfies (A1)—(A3). From Theorems (5.3, 5.4) in [3], we know
that (5) has a unique solution (y, Y, z,Z) in N2 ([O, T] ,IHZ). For more details, we refer the readers to the
arguments presented in [3,4]. O

The following lemma is a key step in the proof of the method of continuation.

Lemma 3.5. Assume that (A1)—(As) holds with 61 > 0, 02 > 0, and oy > 0. Suppose that there exists a constant
ap € [0,1) such that, for any & € L*(Q, Fr,P,H) and ((p, U, K, qb) e M2 ([O, T] ,]I—IZ), MV-FBDSDEs (5) has a
unique solution.

Then there exists Oy € (0, 1), which only depends on C,y, a1, 01,02, and T, such that for any a € [ay, ap + o],
MV-FBDSDEs (5) has a unique solution.

Proof. Assume that for each & € L? (Q, Fr, P, H), ((p, Y, x, (1)) € M? ([O, T], ]Hz), MV-FBDSDEs (5) has a unique
solution for a constant @ = ag € [0,1). Then, for each element 7 = (7, Y, z, Z) of N2 ([0, T], ]Hz), there exists
a unique quadruple v = (y, Y, z, Z) € M2 ([O, T], I[—Iz) satisfying the following MV-FBDSDEs:

dys = (f% (t,01,Py,) + 6 f (00, Po,) + pp) i + (9% (t,01, Py,) + 5.9 (1,01, Py) + 1) AW, — 2, By,

dYt = (FUCO (t, U4, IP-gt) +0 (91 yt +F (t, Ot, ]P-[)t)) + lpt) dt
&
+ (Gao (t, Ut ]Pv,) +0 (61 Zr + G (t, O¢, ]Pl_if)) + Kt) dBt + Zt th,

yo=x Yr=h"(yr,Py)+06(h(7r,Py) - gr) + &

(7)

We will show that the mapping Iy,+s (3, J) := (v, yr) from the space > ([0, T] ,IHZ) x L2 (Q, Fr,P,H)
into itself is a contraction, provided that 6 > 0 is sufficiently small. To this end, let I,,+s (ﬁi, le) = (vi, y’T)
for elements ¢ = (gi, Yi,Zi,Zi) of M2 ([0, T],]I—Iz), and define v = (gi, Yi,zi) and 0% = (yi, Y, Zi) for
i = 1,2. Next, introduce the notations: A% = (Ay,AY,Az,AZ) = (yl A R G AR VAR Zz), and
AT_J = (Ay,AY,Az,AZ) = (yl e G G A LV AR ZZ). Also, set Ay = h (le, ]Ple) - h (y%, ]Py%) and
Alir = h (71, Py, ) = h (7 Pyz)

By applying It6’s formula to (Ay;, AY})y, it follows that

a0 B[(Ayr, M)y | + (1 - ao) E [|Ayt|2] + 0 E[(Ayr, Alr — Agr), |
= aF UT (A (t, vtl,]l’v}) —A(t, vf,n’vg),Avt)dt} —(1-ay)6 E [fT(|Ayt|i + ||Azt||i2<E2,H))dt]
0 0

+ OE [ f ' (A(t51,Py) — A(,72, Py, Ay dt] +56,E [ fT (CAyt, ATY gy + Dzt A2, ) dt] _
0

0
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Based on the conditions imposed in (A;), we can derive the following inequality:

2
(@oar + (1 - o) E [|Ayr|H]
_ ! 2 2 _ ! 2 2
a O E| | (Y +IAZAE ¢, 1) dt| - a0 61 Ay, + 1Az, 1) |t
0 0
T
+5]Ef A(t, 0!, P,) - Alt, 52, P ]
[ It pg)- a7 p)
T
1 2 1 2

+691]E[f (§|Ayt)H+§|Ayt|H ||Az,||LZ(E2H)+ ||Azt||L(E2H))dt]

0

1 1, 7
o 3l + 3ol + v, i, |

Therefore, we can rewrite the inequality as follows:

T
2
(@0 + (1 — ao) E [|AyT|H] tag 0 F [ fo (A, + ||AZt||i2(El,H))dt]

T
2
+ ap GllE[ f ()Ayt|H+ ||Azt||%2(E2,H))dt]
0
T 2 09 Cliz 2z
< fo 5 8o +C (1424 +w2(]Pvt1,]Pvf))+§’vt' — o ‘

()(Azt”w o+ @3(P 1,113-2)) T % (||Azt||L et + D3P, 1,H’-z)))dt]

+ 506, IE[ fo (5 (4, + gl ) + (0822 ey + 10208 5,1 ) dt]
+ SE [% Ayl + 5 agef + 2 Ay, + (|AyT| +ad(Py, Pp))|
We also know from inequality (3) that @2 (P, P2 ) < [E[|Av?]. As a result,
(a0 o + (1 — o)) E [|AyT| ] N [ f (A, + ||AZt||i2(E1/H))dt]
+ GllE[ fo T(|Ayt|; + ||Azt||§z(EZ,H))dt}

T
< 5LJEU (|Avt|2 + |Az7,|2) dt
0

for some generic constant L > 0, which from here on may vary from place to place and depends at most on
the constants C, y, a1, 01, 02, and T. Next, since

+6LE [|AyT|iI + |AyT|i],

agar + (1 —ag) > min{l, ¢} =: @

and &; > 0, then by letting § = min {&;, 01}, we deduce that 0 < < 1 and

T
]E[)Ayﬂi] +1EU (|avil, + 182?51y ) dt| < ‘5; (1}3 [fo (102 + |Az7t|2)dt] +]E[|AyT|iI+ |AyT|Z]), (8)

T
after neglecting the term o 6, E [ fo ( IAYtlé + ||AZt||i2(E1,H) )dt] that contains «ag, as we aim to find a value

of ¢ that is independent of ay.
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X . T . A7
We therefore need to find estimates for E [ fo (lAYtﬁ{ + ||AZt||%2(E1,H))dt]. To this end, we apply Itd’s

formula to |AY;[?; and take the expectation. Eventually, we find that

T
E[AY, ]+ E [ f IAZAE, e, 1 ds] =E [ Ak (yr, ) + 6 (A - A?T)m
t
e [fT(<AF“° (5,05, o), AYs)y + (6 (61 (AYs) + AF (5,35, P5,)) , AYs )y )ds]
t

+E U AG™ (00 P) + 501 (42) + AG (6,8 Po )1 ds]’
where
AF® (5,05, Py ) = ag AF (s, vSf]P(yS,YS,ZS,ZS)) + (1 - ag) 61 (—(Ays)),
AG® (s,0v5,1Py,) = ag AG (s, s, ]P(yg,n,zg,z,.)) + (1 = ap) 01 (- (Az)),
Ah® (yT/ ]Pyr) = ag Ahr + (1 = ao) (Ayr),
AF (5,3, P) = F(t,0L P .)) = F (62 P na s

AG (S, 'st, ]P-(-;s) = G (t, 'ng, ]P(y;x@,z;z;)) - G (t, 53, ]P(]_/E/YZ/ZE/ZSZ)) .

It follows that

T
E[IAY7] + ]E[ I IAZAZ ¢, 1) ds] < Iy + L(t) + I3(t) + Ly(t), 9)
where

I =4E [ag ARr + (1= a0)? [Ayrl, + 6 A}, + & |AyT|f{],
T
L(t) =2 [ f (|AF0¢0 (5,06, P, IAYclgs + (6 01 [A |, + [0 AF (5,8, 5, )| ;) IAY < )ds},
t

T(1+
L(t) ::]E[ ft ( zyy)aé ”AG(S,Us,]P(ys,ys,zs,Zs))

1+y ' 2 5 3 2
I4(t) =3 (1 — _)/) E [I ((1 - 0(()) 9% ”AZS”%z(ELH) + 62 6% “AZSH%Z(ELH) + 62 ”AG (S, Us, IP@S)”LZ(EZ,H) )dS] .

2

ds|,
Ly(E2,H)

On the other hand, from the fact that & is a Lipschitz mapping, we obtain
2 R
h < CE|aysl;, + o |agef | (10)

Since F is Lipschitz, we also have

T (16 Ca? 1-
0 2 V4 2, -2 2 2
Iz(t)s]E[ft {( T )lAYs|H+(—16C)C(|AUS| + 3 (P, Pyz) ) + (1 - a0) Oy (|AYS|H+1A]/S|H)

+ 50, (|Ay5|i N |AY5|§I) +5 ( AL+ C (1802 + 0 (I, Pye) ))}ds].
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Thus, by using inequality (3), it follows that
g 2 T 2
L(H) < CE [ ft (IAYl + |Aydl, + ||Azs||i2(E2,H))ds] +COE [ [ INAH ds]

1-y ! 2 L
+| 5| E f IAZIR iz, 1y ds| + COE f AT ds . (11)
t t

For I3(t) and I4(f), we apply (A1) to see that
T(1+y 1Z _ 272 2 2
() < E 5 ) @(C 0% = 02"+ (IAZE g, 1y + @5 (P, P2 )| s
t

T T
2 1+
<CE [f (lAYS|%{ + |Ays)H + IIAZSIIiZ(EZ,H) ) ds] + ( 7 )/) aoE [f ||Azs||iz(51,H) ds] (12)
t t

and
4y ! 202 2 202 1As (12
Ii(t) <3 m E t (1 - ao) 91 ||AZS”L2(E2/H) +6 61 ||AZS||L2(E2,H)
= =112 _ _
o 8l =+ (028 4 03 (0 ) ]|

T ’ 2 o2 5 82 e
<ce|[ qusuu(Ez,H)+6|Ays|H+6IAYslH+6HAZSHL2<E2,H>+6C(—1_y)IIAZs||LZ<ET,H>) ds]- (13)
t

Now substitute (10)—(13) into (9), and use @y < 1 to conclude that there exists a universal constant L > 0,
independent of ay, such that

5+3 T
]E[IAYtI?{] + (1 -3 y)]E[f (VAR ds]
t

T
<CE U AY dS] +LE [(|A3/T(Z o |AyT|i)] +EE
t

T
2
f (|AyS|H + ”Azs”iz(Ez/H) +0 |A775|2)d5] .
t

Recall that 0 < y < 1, and apply Gronwall’s inequality to deduce that, for each t € [0, T],

T
E[AY,3] < €0 (L]E 14y, + 6 |agef, |+ LE [ f (el + 18z e+ 0 |A775|2)ds]),
t

noting that 0 < y < 1is only needed here. As a result, we obtain
' 2 2 2 _ 12
E i (|AYS|H + ||Azs||Lz(EhH))ds <LE [|AyT|H +0 )AyT|H]

T
2
+LE [ f (|Ays|H +IAZE g, 1y + 0 |Az75|2)ds], (14)
0

where the constant L may vary from one line to line.
Next, we combine the crucial results (8) and (14) to find that

2 T 2 oL ! 2 2
E||ayrl | + B fo iAo it < (B fo (180 + A5 ) at

T
+ LE ||y | + L]E[ fo (Il + 1200, dt].

+E[Javif, +[a5rf )
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We then apply (8) once more to the last two terms of this latter inequality to derive

IE[fOT IAv dt] + lEDAyT)i{] < %L (]E Uj(mmz + |Az7t|2)dt] + ]E[|AyT|i{ + |AyT|i{]).

By taking 6 < §¢ := 37, it follows that

3L’

T T
IE[f |\ dt + |AyT|i] < %IE[[ A dt + |AgT|i].
0 0

Therefore, the mapping I.,+s is a contraction for all fixed 6 in [0, dp]. Consequently, I,,+s admits a unique
fixed point (v, Y, z, Z) in M2 ([O, T], I[—IZ) , which is the solution of MV-FBDSDE (5) for @ = ap+96, 6 € [0,09]. O

Case 2: Let 61 > 0, 0, > 0, and a; > 0. Consider the following family of MV-FBDSDEs, parameterized

by a € [0, 1]:
o . —

dyt = (fa (t, Ut ]P'Ut) + (Pt) dt + (ga (t, U4, ]Pv,) + ¢t) th — Zt dBt,
dYt = (Fa (t, Ot, ]Pvf) + lpt) dt + (Ga’ (t, Ot, ]I)'yt) + Kt) (d—Bt + Zt th/ (15)
yo=x,  Yr=k(yr,Py,)+&,
where
FoltouPy) = af(tye Yozt Zu Py, 2)) + (1= @) 02 (=Y,
g (t Ot ]I)Z)z) =ayg (t Yt, Yt/ Zt, Zt/ P(y[ Y.z, Zf ) + (1 (X) 92 ( Zt)

F® (t/ Ot ]Pvt) =aF (t/ Yt, Yt/ Zt, Zt/ }/t Yy,2,Z, ))

Ga (t/ (47 ]P'(),) = G (t/ yt/ Yt/ Zt, Zt/ ]P(yf/Ytth,Zt))’
e (yT, PyT) =ah (yT, ]PyT).

When a = 1, the existence of a solution to (15) immediately implies the existence of a solution to
system (1) by letting (¢, 1, ¢,x) = (0,0,0,0). On the other hand, if @ = 0, (15) is uniquely solvable as
explained in Case 1. We now state a crucial lemma that will help us complete the proof of Theorem 3.3.

Lemma 3.6. Assume that (A1)—(As) hold with 61 > 0, 02 > 0, and a; > 0. Suppose there exists a constant
ag € [0,1) such that, for any & € L*(Q, Fr, P, H) and (¢, ¢, x,¢) € M2 ([0, T],H2), MV-FBDSDESs (15) has a
unique solution.

Then there exists 6y € (0,1) which only depends on C,y,a1, 01,02, and T, such that for any a € [ay, ap + o],
MV-FBDSDEs (15) has a unique solution.
Proof. Assume that, for all & € L?(Q, Fr,IP,H) and ((p, Y, %, qi)) € M? ([O, T] ,1[—12), MV-FBDSDEs (15) has a
unique solution for a constant a = ag € [0, 1). Then, for each element ¢ = (, Y, z, Z) of M2 ([O, T], II—IZ), there
exists a unique quadruple v = (v, Y,z,Z) € M2 ([0, T1, ]I—Iz) satisfying the following MV-FBDSDEs:

dyy = (2 (t,0,Py) +6 (02 Y1 + f (5, P5,)) + ¢ ) dt
_ «—
+ (gag (t, Ut, ]PU[) +0 (92 Zt + g(t, Ot, ]P??[)) + qbt) th — Z dBt,

dy, = (pao (t, v, Py,) + OF (t, 31, Pg,) + Bbt) dt -
+(G% (t,01, Po) + 5 G (t,8,, Py,) + 1) dBy + Zy AW,

Yo = X, Yr =fla0 (yT,IPyT)-l‘(Sh(]?T,]PyT)‘FCS.
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We argue as in Case 1. Let us consider the mapping I,,+s defined in the proof of Lemma 3.4 and retain
the same notations as set there after system (7). By applying It6’s formula to (Ay;, AY;),, and disregarding
the terms involving ap, we obtain

T T
GZIE[ f |Avtlédt] < (SL]E[ f (180 + |Az7t|2)dt] + O |ayrly | + 6L E||agrl | (16)
0

0

On the other hand, we can follow a similar approach as in (9) by applying Itd’s formula to )Aysﬁf to
obtain

T T
2
E layly +]E[ fo 1AZR, 6, dt] < L]E[ fo (10 + 51A5P) dt]. (17)

These two inequalities play a crucial role here.
Now, let p’ := min{6,,1} to observe that 0 < p’ < 1. By combining (16) and (17), we can derive the
following inequality:

4 (JE [IAyT@] +E [ fo . dt] )

T T
<SLE U (a0 + IAﬁtlz)dt} +OLE|[ayil | + o LE ||zl + LE U (1a0rP +51A3P) dt] .
0 0
Furthermore, applying (16) again to the term [E [ fOT |Av, 2 dt] and utilizing the preceding inequality, we

obtain

[ f Av dt+|AyT|H] ( [ (In0rP +1A32)d ] ]E[(AyT(Z]HE“AyﬂZ]).

Thus, if we choose 6 < 0y := =, we conclude that

T
lE[f |\, dt + |AyT|i] < %IE[[ A dt + |AyT|i].
0 0

The remainder of the proof follows a similar approach as in Lemma 3.5. [J

We emphasize that the condition 0 < y < 1/2 in assumption (A1) is needed frankly in Case 2 to establish
the proof of Theorem 3.1 and so the proof of the preceding lemma. The reader can find similar details in [5,
Lemma 3.8].

We are now ready to conclude the proof of Theorem 3.3.

Proof completion of Theorem 3.3. In Case 1 (when 0, > 0), we already know that for each element & of
12 (Q, Fr,P; H) and (qo, v, b, K) e M2 ([0, T] ,]HZ), the MV-FBDSDE:s (5) has a unique solution when a = 0.
It then follows from Lemma 3.5 that there exists a positive constant 6y = 6o (C, y, a1, 01,02, T) such that
for any 6 € [0,60], & € L2(Q, Fr,IP;H), and ((p, U, b, K) e M2 ([O, T],]Hz), (5) has a unique solution for
a = 0. Moreover, since 8 depends only on C,y,a1,01,0,, T, we can repeat this process N times with
1 < Nog <1+ 0p. In particular, for a = 1 with ((p, Y, 9, 1<) =0, ¢ = 0, we deduce that MV-FBDSDEs (1) has a

unique solution in M? ([0, 11, II—IZ).
For Case 2 (when a7 > 0 and 0; > 0), given any & € L?(Q, Fr,IP; H) and ((p, v, b, K) € M2 ([O, T] ,IHZ),

MV-FBDSDEs (15) has a unique solution when a = 0. Consequently, Lemma 3.5 implies that there ex-
ists a constant 69 > 0 that depends only on C,y,a1,601,0,, and T, such that, for any element 6 € [0, 6],
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& e L2(Q, Fr,P;H), and ((p, Y, o, K) € M? ([0, T] ,]I—IZ), system (5) has a unique solution for a = 6. There-
fore, similar to the preceding case, we conclude that the MV-FBDSDEs (1) attains a unique solution in
M2 ([o, T, H?). O

We conclude this section by providing two examples to illustrate the results of Theorems (3.1, 3.3) and
to demonstrate how to handle our conditions.

Example 3.7. Let E and H be two real separable Hilbert spaces. Suppose B and W are cylindrical Wiener processes
on E. Consider the following system on H:

dy: = (LE[Y] - Y,)dt + (L E[Z] - 1 Z,)dW, -z dB,
dY; = (YE[y] - yi)dt + (Y E[z] - 1 z)dB, + Z dW,, (18)
vo=x(eH), Yr=-1E[yr]+yr.
In order to relate this system to MV-FBDSDEs (1), we define for t € [0, T],

Flbye Yoz Zu P, v, . 2y) = SEIYI =Y,

g(tve Yoz, 20 Py 2 ) = FEIZA - 3 Z,

F(ty Yo 2,2, H’(yf,yt,zf,z,)) =3 Elyi] - v,

G (t, i, Yi,2t, Zt, ]P(yt,Y,,z,,Z,)) =1E[z] -3z,

h(yr, Py, ) = -1 E[yr] + yr.

In particular, we have used here

]E[Yt]=fx1 dl[’yt(xﬂ:f W(rt, X2, x3,x0) APy, v 2 7,
H 2

through Fubini’s theorem, where W(x1, X2, X3,X1) = x1-1-1-1 = x1. Similar expressions hold for E [Z,], E [y:], and
E [z]. So the dependence of these mappings f, g, F, G, h on a measure pu € Po(H?) is only through its first moment

f udu.
Now, with the help of (3) and the Cauchy-Schwarz inequality, we observe
£ (01 Py) = £ (107 )

F(t,v}, Py ) = F (1,02, )

< )Y} - Yt2| + %ZTJZ (ﬂjy},]l)y%),

1_ .21~
< |3/t - yt| T W2 (]Py}']Py})'

7(,0hPy) - g (19, P )| <312t - 2] +

G(t,v},Py) -G (1,02, P,)

2 1 2
<zl= -2+

We also have

E[(A(t 0}, Py) - A(t, 0}, P), 0} —7)] < _411 E [ Ayl + IAY 2 + 1Az + AZ,IP
and

E[(1(vhPy) - (15, P) v = 3)] = S B[ Jaf .

Therefore, by setting C =1,y = 4, 61 = 0, = 3, and ay = 5, it follows that assumptions (A1)~(A3) are satisfied.
As a result, based on Theorems (3.1, 3.3), we deduce that system (18) has a unique solution.
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We will now provide a counter example to show that the assumption (A;) in Theorems (3.1, 3.3) is
necessary and cannot be dropped.

Example 3.8. Let us consider the following MV-FBDSDEs on H = R, with spaces E; = E; = R :

h
dyt = IE [Yt] dt — Zt dBt/
dYt = — ]E []/t] dt — Zt :i?;t + Zt dwtl (19)
=0 Yr=-E[yr],

for T = 3%. Here, B and W are 1-dimensional Brownian motions.
Using the notation set in assumption (Ay), we have, for v = (y,Y,z,Z),

A (t, Ut, ]Pvf) = (— E [yt] ,IE [Yt] , —Zt, 0) .
Moreover, noting that
E[(A(t0},P,) - A(t, 0}, P2), 01 - })] = — (B [Aw])* + (E[AY.]) - E[ll(Az)IP],

we realize that assumption (Ay) does not hold. As a result, (19) might not have a unique solution. Indeed,
(sint, cost,0,0) is a solution of (19) in addition to the trivial solution (y:, Yy, z:, Z+) = (0,0,0,0).

4. Application to Stochastic Optimal Control

Let E be a separable real Hilbert space, and let U be a nonempty convex subset of K. A process
u. : [0,T] x Q — K is called admissible if u. € MM ([0,T],K) and u; € U for all ¢ € [0,T]. The dot in u.
distinguishes the control process from the elements of U. The set of all such admissible controls is denoted
by ﬂad-

In this section, we derive sufficient optimality conditions for a stochastic control problem governed by
MV-FBDSDEs in infinite-dimensional separable real Hilbert spaces. Specifically, we consider the problem
of minimizing the cost functional (or objective functional):

T
J(u)=E [(P (% ]Py?) +y (Yg'/IPYS‘) + j(; f(t' v YyzZy ””P(yi",v?‘,z?‘,zi")) dt] ’ (20)
over all U,,4, subject to the state dynamic:

P
u. __ u. Uu. u. Uu. u. Uu. u. Uu. u.
dy, = f(t, v, Yz, 2 ,ut,]lj(y?.lyy.,zfu.’zil.))dt + g(t, v, Yz, 2 ,ut,]I’(yjl./yy./z?.lzlt.))th -z, dBy,

AYE = —F (L y, Y2 2 Py gy )t = G (b Y, Y 2 20 1, Py e ) dBy + Z2 AW,
Yo =X, Yy =cyp+&,
(21)
where the coefficients are given by measurable mappings:
(f,F): [0, TIXH2 xKx P, (H?) > H, g:[0,T]x H? x K x 5 (H?) - Ly (E1, H),
G:[0,T] x H2 x K X P, (IHZ) — Ly (Ey, H),

ensuring that the cost functional is defined. Here, £ is an Fr-measurable random variable, and c is a
constant.
We say that u” € U, is an optimal control if it satisties

Ja) = inf J (1. (22)
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To address this control problem (20)-(22), we need to introduce the concept of L-differentiability with
respect to probability measure. This is necessary due to the dependence of distribution appearing in both
(20) and (21). We can then obtain the adjoint equations of (21), which resemble the MV-FBDSDEs studied
in Section 3.

In our control problem (20)-(22), both the state process and the cost functional depend on the distribution

]I’(y;,.,ytu.,ztu.,zy.) of the state process, providing more generality to cover cases such as those considered in

Examples (3.7, 3.8).

4.1. The L-Differentiability and Convexity of Functions of Measures

In this subsection, we recall the definition of the L-derivative of functions of measures. The L-derivative
was introduced by P. Lions, and in this regard, we refer to [14, Chapter 5] for more details on such a notion.
Bensoussan et al., [8], gave an alternative equivalent definition. We shall be working over Hilbert spaces.
The idea is to view the probability measures in #, (E) over a separable real Hilbert space E as laws of random
variables X € L2 (Q, ¥, P, E) so that u = Px. To be more precise, we assume that probability space (Q3, 7, IP)
is rich enough in the sense that for every u € P, (E), there is a random variable X € L% (Q, F, P, E) such that
p = Px. A function @ : P, (E) — R is said to be L-differentiable at y if there exists X € L2 (Q, ¥, P, E) with
to = Px, such that the lifted function ® : L? (Q, F,P,E) — R, given by & (X) := ® (Px) for X € L>(Q, F, P, E),
is Fréchet differentiable at X, i.e., there exists a continuous linear functional

D® (Xo) : L2(Q, F,P,E) - R
satisfying
D(Xp + AX) — D(Xo) = DD(X0)(AX) + o([|AX]]),

where AX represents a perturbation.

By the Riesz representation theorem, there exists a unique random variable (y in L2 (Q, F, P, E) such that
D (Xy) (X) = (Lo, X), for each X € L?(Q, F, P, E), where (-, -) denotes the inner product in L2 (Q, ¥, P, E).

It is known (see [11] and [14]) that there exists a measurable function p : H — H depending only on pg

such that {y = p(Y) a.s. for all Y with Py = uo. We define the L-derivative 9,® (1) (Y) of @ at g along the
random variable Y by p(Y). Therefore, we have a.s.

9u®@ (Py) (Y) = p(Y) = VO (Xo),

where VO (X,) is the gradient of ® at the point Xj.

The continuity of d,® (x, 1) is understood as the continuity of the mapping X + d,® (IPx) (X) from
L*(Q,F,P,E)to L*(Q, F,P,E).

Similarly, for each fixed ¢t € [0,T], a function ® : P, (]H2) — R is differentiable at u if there exists a
quadruple of random variables (v, Y,z,Z) in H? with u = Py yzz2) 50 that the lifted function ®, given by
) (y,Y,2,2)=® (]P( y,Y,z,Z))’ is Fréchet differentiable at (y, Y, z, Z). The partial L-derivatives 9., D, 8yy D, 0, D,
and dy, @ at p along (v, Y, z, Z) can be viewed uniquely as an element Vd (V) of L (Q, 7,P, ]H2), which can
be represented as

(00, @ (Pv), 0, @ (Py), 9y @ (Py), 3y, @ (P)) (V),
where V = (y,Y,z, 2). o

Finally, let us introduce the following notation. Consider (Q, #,1P) as a copy of the probability space
(QQ,F,P). For any pair~of~ra~ndom ~variables (X, X’) in L2(Q,F,IP,E) x L*(Q),F,P,E), we denote their
independent copies on (Q, #,P) as (X, X’). Furthermore, we denote the expectation under the probability

measure IP as |E.
We say that @ is L-convex (or merely convex) if for every p, pi” € P»(E), we have

D) = D) ~ B [( 9,0()(X), X' - X)] 20, (23)

whenever X, X’ € L2(Q, 7, P) with distributions u and ', respectively.
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4.2. The Maxmum Principle
To establish the maximum principle for optimality, we need the following assumptions.

(A4): Assume that

(i) F f,G,g, ¢ are continuous and continuously Fréchet differentiable with
respect to (v, Y,z,Z,u) € H? x K, and @, Y are continuously differentiable
with respect to y € H and Y € H, respectively.

(if) The Fréchet derivatives of F, f, G, g with respect to the above arguments
are continuous and bounded, uniformly in (t, i) . Moreover, the Fréchet
derivatives of ¢ = g, G satisfy |%¢ t vy Yz Zwo, y)|2 <y and
'%qb(t,y,Y,z,Z,v, y))z <y, with0O<y< i

(iii) The derivatives of ¢ are bounded by

C A +]y|,, + Yl + Melliyey iy + 12011k, rn + @2 (1, 80))-

(iv) The derivatives of ¢ and 1 are bounded by C (1 + |y|H + w3 (1, 60)) and
C(1+ Y]y + @2 (1, 00)), respectively,

for some constant C > 0, where 6y denotes the Dirac measure at 0.
(As): Suppose that the following conditions hold:

(i) E f,G,g,¢ are L-differentiable with respect to u € P» (]HZ) ,and @, 1 are
continuously L-differentiable with respect to p.

(if) The L-derivatives of F, f, G, g are continuous and bounded, uniformly in
(t,v,Y,z,Z,v, u); in particular, we require

sz |8HZ¢) (ty,Y,z,Zo,u) (y’, Y, 7, Z’)

2al‘u(y',Y',z',Z’) < %y, and

/ ’ /7 ’ 2 / 4 ’ 4 1
Lz |8yz<p(t,y,Y,z,Z,v,[u)(y ', 2, Z )| dy(y Y, 2, Z ) <37
(iii) The L-derivatives of £ are bounded by
C A+ |yl + Ml + alliaes ) + 120z, iy + D2 (1, 60)).

(iv) The L-derivatives of ¢ and ¢ are bounded by C (1 + (y( 5+ @2 (v,60))
and C(1 + [Y]g + @, (v, 0p)), respectively.

(A¢): Denoting A (t,v, 1) = (=F, f, =G, g) (t,v, u) as in hypothesis (A), we assume that either ¢ > 0 and A
satisfies (Ay), or ¢ < 0 with A satisfying (Ay)’.

As we saw in Section 3, the condition 0 < y < % crucial to guarantee the existence of solutions to the
adjoint equations of MV-FBDSDE (21) in Theorem 4.2 below, which is one of the main theorems of this
subsection. For additional clarification and similar discussions, refer to Remark 4.2 (i) in [6].

The following theorem addresses the existence and uniqueness of the solution of MV-FBDSDEs (21).

Theorem 4.1. For any given admissible control u., if assumptions (A4)—(Ag) hold, then system (21) possesses a
unique solution.

Proof. Considering that C! mappings with bounded derivatives are globally Lipschitz, it is evident and
straightforward to verify that assumptions (A4)—(A¢) imply (A1)—(As). For instance, (A4)(, iii) and (As)(ii),

theorem can be derived from Theorem 3.1 and Theorem 3.3. [
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Let u. be an arbitrary element of U4, and let (y;", Y}", 2", Z}") be the corresponding solution of system (21).

Suppose that (A4)—(Ag) hold. First, we want to introduce the adjoint equations of the MV-FBDSDEs (21), and
then we present our main result regarding the maximum principle for the optimal control of system (21).

To this end, let us define the Hamiltonian H : [0, T] x Q x H? x K x H? x P, (]I—IZ) — R by the formula:

H(t,y,Y,z,Z,0,p,Pq,Q ) :={pEty Y,z,Zv,u) (P ft,yY,z,Zv,u)+{q,Gt Yy Y,z,Z0v,u)
- <Q/ g(t/ y/ Y/ z, Z/ o0, IJ)> - f(t/ y/ Y/ z, Z/ 0, !J)

Using the notation in Section 4.1, the adjoint equations of MV-FBDSDEs (21) are the following MV-
FBDSDEs:

dpy = VyH(, Vi x Py ) + B[00 H(E T 1 Py )(VF)] ) e
+ (VM Vi Py ) + B [0, H(E T 2 e (V)] W, — gl B,
APy = (VyH(E Vi) P ) + B[0uH( V7w, 1 Py )(V1)] )t
+(VH(E Ve, x Py ) + B [0, H(E V1, 2, Py ) (V)] 4B, + Q) dW,
Py = ~Vy (Y5, Py ) ~ E[0,, ¢ (g, Py ) (Y]
Py = Vyp (v, Py ) + B[00 (75, Py ) (v5)] - e

where V" £ (yi", Y}, 2}, Z)), Vit 2 (i), Y 20 Z0), k2 (), YL, Q) and B £ (7Y, P, g, QF). Here,
VyH(t, Vt LUy, )(t , IPV:«- )is the gradient, defmed via the Gateaux differential DH (¢, Yf Y(h) = <Vy7'((t, Y;") , h>
at the point Y}" in the direction i € H, where H(t, Y}") := H(t, v, Y, , 2", Z; , us, X}, Py ye 2 zv)), ete.

(24)

H

In view of our results in Section 3, we observe the following theorem.
Theorem 4.2. Under (A4)—(Ag), there exists a unique solution (p*, P, q", Q") of the adjoint equations (24).

Proof. Thissystem (24) canbe expressed as a linear system of MV-FBDSDEs on the arguments (p*, P*, 4", Q™).
With the assumptions (A4)—(A), it is evident that this linear system satisfies (A1), (A2)’, and (A3). For more
detailed information on a similar approach for FBDSDEs, one can refer to the methodology employed
in our previous work [6]. Therefore, the desired result follows from Theorem 3.1, Theorem 3.3, and
Remark 2.2 (ii). O

Now, we present the main theorem of this section.

Theorem 4.3 (Sufficient conditions for optimality). Assume that conditions (As)—(Ae) hold. Given u. € Uy,
let V? = (y?,Y?,z?,Z?) and (pa, P, ", QE) be the corresponding solutions of MV-FBDSDEs (21) and (24),
respectively. Assume the following:

(i) @ and Y are convex.

(iii) 7—{(t V" 'u\t,)(:,IP ) max?—((t Vt L0, X} ,]PV;A,.), ae.t, P—as.

vek
Then (y*, Y*, 2", Z* 1) is an optimal solution of the control problem (20)-(22).
Proof. Letu. € Uyq be an arbitrary candidate for an optimal control, and denote its assoc:lated trajectory by

V” =( :‘,Y“ z, ,Zt ). For any u. € U,y with corresponding trajectory V" = (v/,Y}",z/", Z}"), we have

J(w) = J(@) = E|p(v, Py) - (v P o) | + w0y, Pre) = w0, o)

T
+ ]E[ f (f(t Vi Pye) =, VY, Py >)df]
0
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By the convexity of ¢ and i (see (23)), we deduce
E o4 Py - ok, Pe)| > B[ (Ve o(v7 P ) v - i), | + B |E[(0u0(v5, 2,2 (7). 75 - 75), ]
= E|(V,o(vF P + E[0,0(75 Py J(05)| vt - ) |
Similarly,
E vy, Pr) - (s, )| = B (Vo (Y5 Pys ), e = YE),, |+ B[ B[00, (x5 Py )(V6). Vo - V), ]
)

=E [(vylp(yg-,ll)yg) + [0, v(Y5 Pye ) (V) ] Yg - YZ>H] .

Therefore, by implementing (24), it follows that
J(w) =] @) 2 E[$PT + cph, vy = ypdn] = E[9f, Y5 = You]

+IE[ f T(f(t, Vi i Py = €0, VI, Py ) dt]
0

Next, by computing E [(Pﬁ, yT yT )H] and E [(po Yy = YE )H] via Itd’s formula (e.g., as in [14] or [15])
applied to (Pt AT Y and (pt Yy = Y[, respectively (cf. e.g., [6]), and then using the equality

E [<CP? vi = Yipu] = E[(F, Y5 = Yiu],

which follows directly from the definition of Y7 in (21), we ultimately obtain

T —
](U) - ]G[) >E [f <Vy7-{< Vu Z[fr)(t ,]PV;T.), y:l B y1¢_>H dt]

T —
+E < [a,WtV“ W7 P Vﬁ], v “-> dt
fo ; t 1y Py ) (V)| v =)
0 i
+E f <V 7-((t Ve, Xt,IPVu ),Yf Yf> dt]
|0 H
) . i
+E f (B [0u,7(:, 77 a;,;z;‘,nvva)(vu')],yg‘-—Y;‘-> dt]
|0 !
all
+]Ef<V7—(( LV X Py ) 2 > ]
0
0 i
+]Ef< [a H(e, V7, 17 Py vu] f> }
VO
o .
+E f (Vo (e, Vi a7 Py ) 22 zg‘-> dt]
0
T —_ —_—
+E f< [ tv“ e, X Py V“] Zf-> dt]
0 H
T — —
~E f (W(t VY up, ", P Vu)—W(t,Vf-,ut,xf‘,PVﬁ))dt}.
0 t

Using the concavity of H (assumption (ii)), it follows that

T — —
() - J@) = ~E [ fo <V,ﬂ{(t, VE T X P ) a;>K dt] . (25)
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However, condition (iii) implies that the function v — ‘H(t, V?, v, )(?, Pz ) is maximal for v = u;, so we have
t

<vu7{(t, VE T X7 P ) a‘t>K <0, aet, P-as. (26)

Consequently, (25) simplifies to

J(u) = J@w) > 0.

Since u. is an arbitrary admissible control, we conclude that u. is an optimal control to the control problem
(200-(22). O

Remark 4.4. 1) As seen in the proof of Theorem 4.3, condition (iii) presented in its global form can be replaced by
the local counterpart (26).

2) The general case of optimal control problems governed by MV-FBDSDEs with a non-convex control set U remains
an interesting research problem which we aim to address in future work.
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