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Abstract. This study establishes the canonical connection and Kobayashi-Nomizu connection within the
Heisenberg group (H3, 1) through a systematic derivation based on the Levi-Civita connection framework.
Following this, explicit expressions for Killing vector fields are determined, and analytical formulae for
Killing magnetic curves associated with both the canonical connection and the Kobayashi-Nomizu connec-
tion are derived.

1. Introduction

In electromagnetism, the trajectory analysis of charged particles under the action of magnetic fields
constitutes a fundamental research area. Within the framework of differential geometry, these trajectories
are mathematically modeled as magnetic curves. A particularly significant case arises when the magnetic
field corresponds to a Killing vector field, in which case the magnetic curves are termed Killing magnetic
curves.

The investigation of magnetic curves corresponding to various manifolds has emerged as a pivotal
direction in both differential geometry and theoretical physics. Extensive studies have been conducted in
various geometric settings, including Euclidean spaces [21], Sasakian manifolds [9], cosymplectic manifolds
[10], Walker manifolds [6], and the 3-torus [23]. Notable contributions also include characterizations of
these curves in Thurston geometries by Erjavec and Inoguchi (see [14, 15, 17]).

For Killing magnetic curves specifically, significant results have been established in Euclidean 3-space
[11], Minkowski 3-space [12], S2

×R [22], and SL(2,R) [13]. Recent advancements include explicit formulas
for Heisenberg group configurations under Riemannian and Lorentzian metrics (see [2, 8]), as well as
comprehensive characterizations in 3-dimensional almost paracontact manifolds [7]. The geometric analysis
of Killing magnetic curves has further expanded to include local properties and specialized connections
(see [18, 25, 26]). With recent works [20], Liu, Hua, and Chen addressed some explicit formulas for Killing
magnetic curves in Bott connection formulations.
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The canonical connection and Kobayashi-Nomizu connection have demonstrated significant applica-
bility in geometric analysis. For instance, in [3, 4], Azami investigated affine generalized Ricci solitons
under perturbed canonical and Kobayashi-Nomizu connections in 3-dimensional Lorentzian Lie groups.
In [28], Wang classified algebraic Ricci solitons linked to these connections in 3-dimensional Lorentzian
Lie groups with product structures, while in [27], Tao characterized left-invariant Ricci collineations for
such connections. In [1], the authors further analyzed geodesic equations via symmetry methods for the
canonical connection in related Lie groups. Additional applications include Gauss-Bonnet theorem studies
in Lorentzian Heisenberg groups (see [19, 29–31]).

This paper integrates canonical and Kobayashi-Nomizu connections with Killing magnetic curves,
deriving trajectory equations for these curves in the 3-dimensional Heisenberg group. The structure is as
follows: Section 2 reviews fundamental concepts of magnetic curves and Killing magnetic curves. Section 3
establishes the geometric framework ofH3 and defines the canonical and Kobayashi-Nomizu connections.
Sections 4–5 derive Killing magnetic curves via Lorentz equations and present explicit formulas for these
curves under the canonical and Kobayashi-Nomizu connections in (H3, 11) and (H3, 12).

2. Preliminaries

Let (M, 1) be a semi-Riemannian manifold. Magnetic curves on (M, 1) model the trajectories of charged
particles moving under the influence of a magnetic field F, represented as a closed 2-form:

F(X,Y) = 1(φ(X),Y),

where X,Y ∈ X(M) and φ is a skew-symmetric (1, 1)−tensor field encoding the Lorentz force. For a regular
curve γ : I ∈ R → (M, 1), γ is termed a magnetic curve if its tangent vector t = γ′ satisfies the Lorentz
equation:

∇
i
tt = φ(t), i ∈ {0, 1}, (1)

where ∇0 and ∇1 denote the canonical connection and the Kobayashi-Nomizu connection associated to 1,
respectively. The magnetic curve generalizes the geodesic curve under arc-length parametrization, that is,
when φ = 0 the geodesic is a particular magnetic trajectory, and the solution of the Lorentz equation is a
geodesic curve.

The cross product of the vector fields X,Y ∈ X(M) is defined via the volume form dv1 as:

1(X ∧ Y,Z) = dv1(X,Y,Z),

for all vector fields Z on M and X ∧ Y represents the skew-symmetric (2, 0)-tensor induced by X and Y.
Let FV = iVdv1 denote the Killing magnetic field associated with a Killing vector field V on M, where iV

is the interior product and dv1 is the volume form. The Lorentz force φ induced by FV is defined as:

φ(X) = V ∧ X, ∀X ∈ X(M),

Substituting into (1), we can rewrite the Lorentz equation (1) as:

∇
i
tt = V ∧ t, i ∈ {0, 1}. (2)

Solutions to this equation are termed Killing magnetic curves with respect to V. For brevity, these curves
are referred to as V−magnetic curve.

3. Geometry structure of Heisenberg Spaces

The Heisenberg groupH3 is a quasi-Abelian Lie group diffeomorphic toR3, represented in GL(3,R) as:

H3 =


0 x z
0 0 y
0 0 0

 |(x, y, z) ∈ R3

 ,
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equipped with the group operation:

(x1, y1, z1)(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 − x1y2).

Every left-invariant Lorentzian metric onH3 is isometric to one of the following forms:

11 = −
1
λ2 dx2 + dy2 + (xdy + dz)2,

12 =
1
λ2 dx2 + dy2

− (xdy + dz)2, λ > 0,

13 =dx2 + (xdy + dz)2
− ((1 − x)dy − dz)2.

(3)

These metrics are pairwise non-isometric, with 13 being flat (see [5, 24]). This work focuses on the metrics
11 and 12.

Let ∇ denote the Levi-Civita connection associated with 1i in (3). The tangent bundle TH3 is spanned
by {e1, e2, e3}, with D = span{e1, e2} as the horizontal distribution onH3 and D⊥ = span{e3}. Define a product
structure J via Je1 = e1, Je2 = e2, and Je3 = −e3. Then J2 = id and 1(Jei, e j) = 1(ei, e j) for all ei, e j ∈ Γ(H3), and J
is a product structure.

Following [16], the canonical connection ∇0 and Kobayashi-Nomizu connection ∇1 are defined as:

∇
0
XY = ∇XY −

1
2

(∇X J)JY,

∇
1
XY = ∇0

XY −
1
4

[(∇X J)JY − (∇JX J)Y],
(4)

for X,Y ∈ X(M).

4. The metric 11

An orthonormal basis for (H3, 11) is provided by:

e1 =
∂
∂z
, e2 =

∂
∂y
− x
∂
∂z
, e3 = λ

∂
∂x
, (5)

where e3 is timelike. The non-zero components of the Levi-Civita connection ∇ for 11 are:

∇e1 e2 = ∇e2 e1 =
λ
2

e3,

∇e1 e3 = ∇e3 e1 =
λ
2

e2,

∇e2 e3 = −∇e3 e2 =
λ
2

e1.

(6)

Using (4) and (6), the non-vanishing components of ∇0 and ∇1 are:

∇
0
e3

e1 =
λ
2

e2, ∇
0
e3

e2 = −
λ
2

e1, ∇
1
e3

e1 = −λe1. (7)

A vector field V on M is termed a Killing vector field if it satisfies the Killing equation:

1(∇i
YV,Z) + 1(∇i

ZV,Y) = 0, (8)

for all Y,Z ∈ X(M), and i ∈ 0, 1.
Assume the Killing vector field takes the form:

V = f1(x, y, z)e1 + f2(x, y, z)e2 + f3(x, y, z)e3,



J. Jiang, Y. Yang / Filomat 39:28 (2025), 10027–10048 10030

where fi ∈ C∞(H3) for i = 1, 2, 3. Substituting V into (8) with Y = ei, Z = e j defined by (5), yields a system
of differential equations for Killing vector fields associated with ∇0:

(LV11)(e1, e1) =
∂
∂z

f1 = 0, (9)

(LV11)(e1, e2) =
∂
∂z

f2 +
∂
∂y

f1 − x
∂
∂z

f1 = 0, (10)

(LV11)(e1, e3) = −
∂
∂z

f3 + λ
∂
∂x

f1 −
λ
2

f2 = 0, (11)

(LV11)(e2, e2) =
∂
∂y

f2 − x
∂
∂z

f2 = 0, (12)

(LV11)(e2, e3) = −
∂
∂y

f3 + x
∂
∂z

f3 +
λ
2

f1 + λ
∂
∂x

f2 = 0, (13)

(LV11)(e3, e3) =
∂
∂x

f3 = 0, (14)

where LV11 is the Lie derivative in the direction of V.

Proposition 4.1. The Lie algebra of infinitesimal isometries for (H3, 11,∇0) is 5-dimensional, with a basis given by
the following vector fields:

V1 = λ
∂
∂x
, V2 =

2
λ
∂
∂z
+ λy

∂
∂x
, V3 =

x
3
∂
∂z
+ (
∂
∂y
− x
∂
∂z

) −
λ2

6
z
∂
∂x
,

V4 = sin
x
2
∂
∂z
+ cos

x
2

(
∂
∂y
− x
∂
∂z

), V5 = cos
x
2
∂
∂z
− sin

x
2

(
∂
∂y
− x
∂
∂z

).
(15)

Proof. Differentiating (11) with respect to x and z yields:

∂2 f2
∂x∂z

= 0. (16)

Differentiating (10) with respect to x and incorporating (16) gives:

∂2 f1
∂x∂y

= 0. (17)

Differentiating (11) with respect to x and y, and using (17), leads to:

∂2 f2
∂x∂y

= 0. (18)

Differentiating (12) with respect to x and using (16), (18) gives:

∂ f2
∂z
= 0. (19)

Thus, (12) simplifies to:

∂ f2
∂y
= 0, (20)

implying f2 = f2(x), then we can put f2(x) = B(x). Similarly, (10) reduces to:

∂ f1
∂y
= 0, (21)
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so f1 = f1(x), then we put f1(x) = A(x). Differentiating (11) with respect to x and (13) twice with respect to x
yields:

λ
∂2 f1
∂x2 −

λ
2
∂ f2
∂x
= 0,

λ
2
∂2 f1
∂x2 + 2λ

∂3 f2
∂x3 = 0. (22)

Solving these equations gives:

f2(x) = 2c1 sin
x
2
− 2c2 cos

x
2
+ c3, (c1, c2, c3 ∈ R). (23)

Differentiating (11) with respect to z and y yields:

∂2 f3
∂z2 = 0, (24)

∂2 f3
∂y∂z

= 0. (25)

Differentiating (13) with respect to y and using (25) gives:

∂2 f3
∂y2 = 0. (26)

So f3(y, z) = c4z + c5y + c6, where c4, c5, c6 ∈ R. Substituting into (13) and (11) yields:

f1(x) = −2c1 cos
x
2
− 2c2 sin

x
2
−

2c4

λ
x +

2c5

λ
. (27)

and:

∂ f1
∂x
=

1
2

f2 +
c4

λ
, (28)

implying c4 = −
λ
6 c3. The final expressions for f1, f2, f3 are:

f1(x) = −2c1 cos
x
2
− 2c2 sin

x
2
+

1
3

c3x +
2
λ

c5,

f2(x) = 2c1 sin
x
2
− 2c2 cos

x
2
+ c3,

f3(y, z) = −
λ
6

c3z + c5y + c6.

(29)

Substituting these into the vector field V and expressing in terms of the basis {e1, e2, e3} yields the stated
result.

Then, using the same process, we present the Lie algebra of the Killing vector field of (H3, 11,∇1), which is
generated by Killing vectors by the following proposition.

Proposition 4.2. The Lie algebra of infinitesimal isometries for (H3, 11,∇1) is 5-dimensional, with a basis given by
the following vector fields:

V1 =
∂
∂z
, V2 = λ

∂
∂x
, V3 = x

∂
∂z
+ (
∂
∂y
− x
∂
∂z

),

V4 =
x2

2
∂
∂z
+ x(

∂
∂y
− x
∂
∂z

) + λ2y
∂
∂x
,V5 = (

x3

3
− 2x)

∂
∂z
+ x2(

∂
∂y
− x
∂
∂z

) − 2λ2z
∂
∂x
.

(30)
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Proof. Let V = f1e1 + f2e2 + f3e3 be a Killing vector field for (H3, 11,∇1). Substituting V into the Killing
equation with Y = ei, Z = e j defined in (5) yields the system:

(LV11)(e1, e1) =
∂
∂z

f1 = 0 (31)

(LV11)(e1, e2) =
∂
∂z

f2 +
∂
∂y

f1 − x
∂
∂z

f1 = 0, (32)

(LV11)(e1, e3) = −
∂
∂z

f3 + λ
∂
∂x

f1 − λ f2 = 0, (33)

(LV11)(e2, e2) =
∂
∂y

f2 − x
∂
∂z

f2 = 0, (34)

(LV11)(e2, e3) = −
∂
∂y

f3 + x
∂
∂z

f3 + λ
∂
∂x

f2 = 0, (35)

(LV11)(e3, e3) =
∂
∂x

f3 = 0 (36)

where LV11 is the Lie derivative in the direction of V, and fi ∈ C∞(H3) for i = 1, 2, 3.
Differentiating (33) with respect to x and z gives:

∂2 f2
∂x∂z

= 0. (37)

Differentiating (32) with respect to x and incorporating (37) yields:

∂2 f1
∂x∂y

= 0. (38)

Differentiating (33) with respect to x and y, and using (38), gives:

∂2 f2
∂x∂y

= 0. (39)

Differentiating (34) with respect to x and using (37) and (39) leads to:

∂ f2
∂z
= 0. (40)

Thus, (32) and (34) simplify to:

∂ f1
∂y
= 0,

∂ f2
∂y
= 0. (41)

implying f1 = f1(x) and f2 = f2(x), then we put f1(x) = A(x) and f2(x) = B(x). Differentiating (33) with
respect to y and z, and (35) with respect to y, yields:

∂2 f3
∂y∂z

=
∂2 f3
∂z2 =

∂2 f3
∂y2 = 0. (42)

Thus f3(y, z) = c1y + c2z + c3 for constants c1, c2, c3 ∈ R. Differentiating (35) twice with respect to x gives:

∂3 f2
∂x3 = 0, (43)

so f2(x) = c4x2 + c5x + c6, where c4, c5, c6 ∈ R. Integrating (33) yields:

f1(x) =
c4

3
x3 +

c5

2
x2 + c6x +

1
λ

c2x + c7. (44)
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Using (35) to relate coefficients gives c1 = λc5, c2 = −2λc4, and c2 = λc7−λc6. Substituting these into f1, f2, f3
results in:

f1 =
c4

3
x3 +

c5

2
x2 + (c6 − 2c4)x + c8,

f2 = c4x2 + c5x + c6,

f3 = −2c4λz + c5λy + c3.

(45)

Expressing V in terms of the basis {e1, e2, e3} yields the stated result.

Let γ(t) : I ⊂ R → (H3, 11) be a regular curve parameterized by γ(t) = (x(t), y(t), z(t)). Its velocity vector is
given by:

t = γ′(t) = (x′(t), y′(t), z′(t)).

Expressed in the basis {ei}i=1,2,3 defined in (5), the velocity vector t takes the form:

t = (z′ + xy′)e1 + y′e2 +
x′

λ
e3. (46)

Using the connection formulas from (4), we compute the covariant derivatives:

∇
0
t t = ((z′ + xy′)′ −

y′x′

2
)e1 + (y′′ +

1
2

(z′ + xy′)x′)e2 +
x′′

λ
e3,

∇
1
t t = ((z′ + xy′)′ − x′y′)e1 + y′′e2 +

x′′

λ
e3.

(47)

In the subsequent sections, we derive explicit formulas for Vi-magnetic curves with respect to the canonical
connection ∇0 and Kobayashi-Nomizu connection ∇1 on (H3, 11).

4.1. V1-magnetic curves associate to ∇0.

We consider V1-magnetic curves correspond to the Killing vector field V1 = e3 defined in (15). Using
(46), the wedge product is computed as:

V1 ∧ t = −y′e1 + (z′ + xy′)e2. (48)

The Lorentz equation ∇tt = V1 ∧ t yields the system of differential equations (S1):

S1 :



(z′ + xy′)′ −
y′x′

2
= −y′,

y′′ +
1
2

(z′ + xy′)x′ = z′ + xy′,

x′′

λ
= 0.

(49)

Integrating the third equation of (S1) gives:

x = c1t + c2, (50)

where c1, c2 are constants. Substituting (50) into the first two equations of (S1) leads to:

y′′′ + (
c1 − 2

2
)2y′ = 0.
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1. If c1 = 2, the system (S1) reduces to:

S1 :


x′′ = 0,
y′′ = 0,

(z′ + xy′)′ =
y′x′

2
− y′.

(51)

The general solution is:
x(t) = c1t + c2,

y(t) = c3t + c4,

z(t) = −(
c1c3 + 2c3

4
)t2
− (c2c3 − c5)t + c6.

(52)

where c1, · · · , c6 are constants.
2. If c1 , 2, let c̃ = 2−c1

2 . The general solution of (S1) is:
x(t) = c1t + c2,

y(t) =
c3 sin(c̃t)

c̃
−

c4 cos(c̃t)
c̃

+ c5,

z(t) =
c3c̃ + c1c3 − c2c4c̃ − c1c4c̃t

c̃2 cos(c̃t) +
c4c̃ + c1c4 + c2c3c̃ + c1c3c̃t

c̃2 sin(c̃t) + c6.

(53)

where c1, · · · , c6 are constants.

Theorem 4.3. All V1-magnetic curves of (H3, 11,∇0) are parametrized by:

1. If c1 = 2:

γ(t) =
{
c1t + c2, c3t + c4, −( c1c3+2c3

4 )t2
− (c2c3 − c5)t + c6

}
.

2. If c1 , 2:

γ(t) =


c1t + c2

c3 sin(c̃t)
c̃

−
c4 cos(c̃t)

c̃
+ c5

c3c̃ + c1c3 − c2c4c̃ − c1c4c̃t
c̃2 cos(c̃t) +

c4c̃ + c1c4 + c2c3c̃ + c1c3c̃t
c̃2 sin(c̃t) + c6


T

,

where c1, · · · , c6 are real numbers.

4.2. V2-magnetic curves associate to ∇0.
For V2-magnetic curves associated with the Killing vector field V2 =

2
λ e1 + λye3 (see (15)), the wedge

product is computed as:

V2 ∧ t = yy′e1 + (y(z′ + xy′) −
2
λ2 x′)e2 −

2
λ

y′e3. (54)

The Lorentz equation ∇0
t t = V2 ∧ t yields the system of differential equations (S2):

S2 :



(z′ + xy′)′ −
y′x′

2
= yy′,

y′′ +
1
2

(z′ + xy′)x′ = y(z′ + xy′) −
2
λ2 x′,

x′′

λ
= −

2
λ

y′.

(55)
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Integrating the third equation of (S2) gives:

x′ = −2y + c1, (56)

where c1 is constant. Substituting (56) into the first equation of (S2) yields:

z′ + xy′ =
c1

2
y + c2, (57)

with c2 as another constant. The second equation of (S2) simplifies to:

y′′ +
1
2

(
c1

2
y + c2)x′ = y(

c1

2
y + c2) −

2
λ2 x′. (58)

While the general solution of (58) is complex, we solve it for the particular case c1 = 0. In this case, the
system reduces to:

x′ = −2y,
z′ + xy′ = c2,

y′′ +
c2

2
x′ = c2y −

2
λ2 x′.

Solving these yields:

y(t) = c3e
√

(2c2+
4
λ2 )t
+ c4e−

√
(2c2+

4
λ2 )t
. (59)

and substituting into the remaining equations of (S2) gives:

z(t) = (c2 − 4c3c4)t +
e−2
√

2c2+
4
λ2 t(c2

3e4
√

2c2+
4
λ2
− c2

4)√
2c2 +

4
λ2

− c3e−
√

2c2+
4
λ2 t(c5e2

√
2c2+

4
λ2 t
+ c4) + c6, (60)

where c1, · · · , c6 are real numbers.

Theorem 4.4. The parametric equations for V2-magnetic curves in (H3, 11,∇0) are given by:

γ(t) =



x(t) = c1t − 2 c3e
√

2c2+
4
λ2 t√

2c2+
4
λ2

+ 2 c4e
−

√
2c2+

4
λ2 t√

2c2+
4
λ2

y(t) = c3e
√

(2c2+
4
λ2 )t
+ c4e−

√
(2c2+

4
λ2 )t

z(t) = (c2 − 4c3c4)t +
e
−2
√

2c2+
4
λ2 t

(c2
3e

4
√

2c2+
4
λ2 −c2

4)√
2c2+

4
λ2

−c3e−
√

2c2+
4
λ2 t(c5e2

√
2c2+

4
λ2 t
+ c4) + c6



T

, (61)

where c1, · · · , c6 are real numbers.

4.3. V3-magnetic curves associate to ∇0.

For V3-magnetic curves associated with the Killing vector field V3 =
1
2 xe1+e2−

λ
6 ze3 (see (15)), the wedge

product is computed as:

V3 ∧ t = (
x′

λ
+
λ
6

zy′)e1 − (
λ
6

z(z′ + xy′) +
1

3λ
xx′)e2 + ((z′ + xy′) −

1
3

xy′)e3. (62)
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The Lorentz equation ∇0
t t = V2 ∧ t yields the system of differential equations (S3):

S3 :



(z′ + xy′)′ −
y′x′

2
=

x′

λ
+
λ
6

zy′,

y′′ +
1
2

(z′ + xy′)x′ = −
λ
6

z(z′ + xy′) −
1

3λ
xx′,

x′′

λ
= (z′ + xy′) −

1
3

xy′.

(63)

The general solution of (S3) is non-trivial and not fully solvable in closed form. However, under the special
assumption x(t) = y(t) = z(t), the third equation in (S3) become x′′ + ( 3λ

2 x + 5λ
6 x2 + c1λ

2 )x′ − ( 1
λ +

λ
6 x)x′ = 0

which contains Jacobi elliptic functions as the solution. So, we express the following theorem.

Theorem 4.5. V3-magnetic curves in (H3, 11,∇0) corresponding to the Killing vector field V3 =
1
3 xe1 + e2 −

λ
6 ze3

are solutions of the differential system (63).

4.4. V4-magnetic curves associate to ∇0.
For V4-magnetic curves associated with the Killing vector field V4 = sin x

2 e1 + cos x
2 e2 (see (15)), the

wedge product is computed as:

V4 ∧ t = cos
x
2

x′

λ
e1 − sin

x
2

x′

λ
e2 + ((z′ + xy′) cos

x
2
− sin

x
2

y′)e3. (64)

The Lorentz equation ∇0
t t = V4 ∧ t yields the system of differential equations (S4):

S4 :



(z′ + xy′)′ −
y′x′

2
= cos

x
2

x′

λ
,

y′′ +
1
2

(z′ + xy′)x′ = − sin
x
2

x′

λ
,

x′′

λ
= (z′ + xy′) cos

x
2
− sin

x
2

y′.

(65)

The general solution of the system (S4) is highly non-trivial. We investigate special cases where at least one
component is linear or constant:

1. If we assume x = x0 (constant). The system reduces to:

S4 :


(z′ + xy′)′ = 0,
y′′ = 0,

(z′ + xy′) cos
x
2
− sin

x
2

y′ = 0.
(66)

Solving these yields:
x(t) = x0,

y(t) = c1t cot
x0

2
+ c2,

z(t) = c1(1 − x0 cot
x0

2
)t + c3,

(67)

where x0, c1, ..., c3 ∈ R.
2. If we assume y = y0. Then, the first two equations in (S4) yields z = c1

2 t+ c2, substituting into the third
equation in (S4) leads to contradictions in the equations.

3. Setting z = z0, does not simplify the system. We therefore seek a solution in which at least one
component of the solution is linear.
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• The assumption x(t) = c1t + c2 yields a contradiction.

• Conversely, assuming y(t) = c1t + c2 and substituting it into the first equation of (S4) also results
in a contradiction.

Theorem 4.6. V4-magnetic curves in (H3, 11,∇0) correspond to the Killing vector field V4 = sin x
2 e1 + cos x

2 e2 are
solutions of the system of differential equations (65). In particular, the Killing magnetic curve in (H3, 11,∇0) with at
least one linear component function that corresponds to the Killing vector field V4 = sin x

2 e1 + cos x
2 e2 are

γ(t) =
{
x0, y(t) = c1t cot x0

2 + c2, c1(1 − x0 cot x0
2 )t + c3

}
, (68)

where x0, c1, ..., c3 ∈ R.

4.5. V5-magnetic curves associate to ∇0.
For V5-magnetic curves associated with the Killing vector field V5 = cos x

2 e1 − sin x
2 e2 (see (15)), the

wedge product is computed as:

V5 ∧ t = − sin
x
2

x′

λ
e1 − cos

x
2

x′

λ
e2 − ((z′ + xy′) sin

x
2
+ y′ cos

x
2

)e3. (69)

The Lorentz equation ∇0
t t = V5 ∧ t yields the system of differential equations (S5):

S5 :



(z′ + xy′)′ −
y′x′

2
= − sin

x
2

x′

λ
,

y′′ +
1
2

(z′ + xy′)x′ = − cos
x
2

x′

λ
,

x′′

λ
= −(z′ + xy′) sin

x
2
− y′ cos

x
2
.

(70)

Analogously to Subsection 4.4, we investigate special cases where components exhibit linear or constant
behavior:

Theorem 4.7. V5−magnetic curves in (H3, 11,∇0) correspond to solutions of the differential system (70) associated
with the Killing vector field V5 = cos x

2 e1 − sin x
2 e2. In particular, when x(t) = x0, the curves admit parametric

solutions with linear components:

γ(t) =
{
x0, c1t tan x0

2 + c2, c1(1 − x0 tan x0
2 )t + c3

}
, (71)

where x0, c1, ..., c3 ∈ R.

4.6. V1-magnetic curves associate to ∇1.
For V1-magnetic curves associated with the Killing vector field V1 = e1 (see (30)), the wedge product is

computed as:

V1 ∧ t = −
x′

λ
e2 − y′e3. (72)

The Lorentz equation ∇1
t t = V1 ∧ t yields the system of differential equations (S1):

S1 :


(z′ + xy′)′ − x′y′ = 0,

y′′ = −
x′

λ
,

x′′

λ
= −y′.

(73)
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Solving the last two equations of (S1) gives:x(t) = −λc1et
− λc2e−t + c3,

y(t) = c1et
− c2e−t + c4,

(74)

where c1, · · · , c4 ∈ R. Integrating the first equation of (S1) yields:

z(t) =
λc2

1

4
e2t
−
λc2

2

4
e−2t
− c1c3et + c2c3e−t + (c5 + 2λc1c2)t + c6, (75)

where c5, c6 ∈ R.

Theorem 4.8. All V1−magnetic curves on (H3, 11,∇1) corresponding to the Killing vector field V2 = e1 are
parametrized by:

γ(t) =


x(t) = −λc1et

− λc2e−t + c3
y(t) = c1et

− c2e−t + c4

z(t) =
λc2

1

4
e2t
−
λc2

2

4
e−2t
− c1c3et + c2c3e−t + (c5 + 2λc1c2)t + c6


T

, (76)

where c1, · · · , c6 ∈ R are constants.

4.7. V2-magnetic curves associate to ∇1.

For V2-magnetic curves associated with the Killing vector field e3 (see (30)), the wedge product is
computed as:

V2 ∧ t = −y′e1 + (z′ + xy′)e2. (77)

The Lorentz equation ∇1
t t = V2 ∧ t yields the system of differential equations (S2):

S2 :


(z′ + xy′)′ − x′y′ = −y′

y′′ = z′ + xy′,
x′′

λ
= 0.

(78)

Integrating the third equation of (S2) gives:

x(t) = c1t + c2, (79)

where c1, c2 ∈ R. Substituting (79) into the first two equations of (S2) reduces the system to:

y′′′ + (1 − c1)y′ = 0. (80)

1. If c1 = 1. The equation simplifies to y′′′ = 0, yielding:

y(t) = c3t2 + c4t + c5.

Substituting into the first equation of (S2), we solve for z(t):

z(t) = −
2
3

c1c3t3
−

c1c4 + 2c2c3

2
t2 + (2c3 − c2c4)t + c6,

where c1, · · · , c6 ∈ R.
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2. If c1 > 1, we have y′′′ + (1 − c1)y′ = 0. The characteristic equation yields exponential solutions:

y(t) =
c3e
√

c1−1t√
(c1 − 1)

−
c4e−
√

(c1−1)t√
(c1 − 1)

+ c5.

The corresponding z(t) is:

z(t) =c3e
√

c1−1t + c4e−
√

c1−1t
−

c3((
√

c1 − 1t − 1)c1 +
√

c1 − 1c2)
c1 − 1

e
√

c1−1t

+
c4(c1 + c1

√
c1 − 1t + c2

√
c1 − 1)

c1 − 1
e−
√

c1−1t + c6,

(81)

where c1, · · · , c6 ∈ R.
3. If c1 < 1, we have y′′′ + (1 − c1)y′ = 0. The characteristic equation yields trigonometric solutions:

y(t) = c3 cos
√

1 − c1t + c4 sin
√

1 − c1t + c5,

The corresponding z(t) is:

z(t) = sin
√

(c1 − 1)t(
c1c3√

(c1 − 1)
− c3

√
(c1 − 1) − c2c4 − c1c4t)

+ cos
√

(c1 − 1)t(
c1c4√

(c1 − 1)
+ c4

√
(c1 − 1) − c2c3 − c1c3t) + c6,

where c1, · · · , c6 ∈ R.

Hence, we write the following theorem.

Theorem 4.9. All V2−magnetic curves of (H3, 11,∇1) corresponding to the Killing vector field V2 = e3 are
parametrized by:

1. If c1 = 1:

γ(t) =


x(t) = c1t + c2

y(t) = c3 + c4t + c5t2

z(t) = −
2
3

c1c5t3
−

c1c4 + 2c2c5

2
t2 + (2c5 − c2c4)t + c6


T

. (82)

2. If c1 > 1:

γ(t) =



x(t) = c1t + c2,

y(t) =
c3e
√

(c1−1)t

√
c1 − 1

−
c4e−
√

(c1−1)t

√
c1 − 1

+ c5,

z(t) = c3e
√

c1−1t + c4e−
√

c1−1t
−

c3((
√

c1 − 1t − 1)c1 +
√

c1 − 1c2)
c1 − 1

e
√

c1−1t

+
c4(c1 + c1

√
c1 − 1t + c2

√
c1 − 1)

c1 − 1
e−
√

c1−1t.



T

. (83)

3. If c1 < 1:

γ(t) =



x(t) = c1t + c2,
y(t) = c3 cos

√
1 − c1t + c4 sin

√
1 − c1t + c5,

z(t) = sin
√

(c1 − 1)t(
c1c3√

(c1 − 1)
− c3
√

(c1 − 1) − c2c4 − c1c4t)

+ cos
√

(c1 − 1)t(
c1c4√

(c1 − 1)
+ c4
√

(c1 − 1) − c2c3 − c1c3t) + c6,



T

, (84)

where c1, · · · , c6 ∈ R are constants.
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4.8. V3-magnetic curves associate to ∇1.

For V3-magnetic curves associated with the Killing vector field V3 = xe1+e2 (see (30)), the wedge product
is computed as:

V3 ∧ t =
x′

λ
e1 −

xx′

λ
e2 + ((z′ + xy′) − xy′)e3. (85)

The Lorentz equation ∇1
t t = V3 ∧ t yields the system of differential equations (S3):

S3 :



(z′ + xy′)′ − x′y′ =
x′

λ
,

y′′ = −
xx′

λ
,

x′′

λ
= (z′ + xy′) − xy′.

(86)

Integrating the second equation of (S3) gives:

y′ = −
x2

2λ
+ c1, (87)

where c1 ∈ R. Substituting (87) into (S3) reduces the system to:
z′ + xy′ = −

x′′′

6λ
+ (c1 +

1
λ

)x + c2,

x′′

λ
−

x3

3λ
−

x
λ
− c2 = 0.

(88)

In this case, the equation x′′
λ −

x3

3λ −
x
λ + c2 = 0 involves Jacobi elliptic functions, indicating non-elementary

solutions.

Theorem 4.10. V3-magnetic curves in (H3, 11,∇1) corresponding to the Killing vector field V3 = xe1 + e2 are
solutions of the differential system (86). In particular, the system admits solutions expressed in terms of Jacobi elliptic
functions when x(t) satisfies the nonlinear equation x′′

λ −
x3

3λ −
x
λ + c2 = 0.

4.9. V4-magnetic curves associate to ∇1.

For V4-magnetic curves associated with the Killing vector field V4 =
x2

2 e1 + xe2 + λye3 (see (30)), the
wedge product is computed as:

V4 ∧ t = (
xx′

λ
− λyy′)e1 + (λy(z′ + xy′) −

x2x′

2λ
)e2 + (x(z′ + xy′) −

x2y′

2
)e3. (89)

The Lorentz equation ∇1
t t = V4 ∧ t yields the system of differential equations (S4):

S4 :



(z′ + xy′)′ − x′y′ =
xx′

λ
− λyy′,

y′′ = λy(z′ + xy′) −
x2x′

2λ
,

x′′

λ
= x(z′ + xy′) −

x2y′

2
.

(90)

The general solution of (S4) is non-trivial. We investigate special cases where components exhibit linear or
constant behavior:



J. Jiang, Y. Yang / Filomat 39:28 (2025), 10027–10048 10041

1. Case x(t) = x0 (constant): Substituting into the third equation of (S4) yields z′+x0y′ = x0
2 y′. Comparing

coefficients in the first two equations leads to −
x2

0
4 = 1, which is a contradiction.

2. Case y(t) = y0 (constant): Integrating the first equation of (S4) gives z′ = x2

2λ + c1. Substituting into the
third equation yields x′′

λ −
x3

2λ − c1x, which is a nonlinear oscillator equation involving Jacobi elliptic
functions.

3. Other linear assumptions: Assuming z(t) = z0, does not simplify the system. Assuming x(t) = c1t+ c2
or y = c1t + c2 leads to contradictions in the equations.

Theorem 4.11. V4-magnetic curves in (H3, 11,∇1) corresponding to the Killing vector field V4 =
x2

2 e1 + xe2 + λye3
are solutions of the differential system (90). In particular, there exist no V4-magnetic curves with at least one linear
component function.

4.10. V5-magnetic curves associate to ∇1.
For V5-magnetic curves associated with the Killing vector field V5 = ( x3

3 − 2x)e1 + x2e2 − 2λze3 (see (30)),
the wedge product is computed as:

V5 ∧ t = (
x′

λ
x2 + 2λzy′)e1 − (2λz(z′ + xy′) + (

x3

3
− 2x)

x′

λ
)e2 + (x2(z′ + xy′) − (

x3

3
− 2x)y′)e3. (91)

The Lorentz equation ∇1
t t = V3 ∧ t yields the system of differential equations (S5):

S5 :



(z′ + xy′)′ − x′y′ =
x′

λ
x2 + 2λzy′,

y′′ = −2λz(z′ + xy′) − (
x3

3
− 2x)

x′

λ
,

x′′

λ
= x2(z′ + xy′) − (

x3

3
− 2x)y′.

(92)

The general solution of (S5) is non-trivial. We investigate the special case when x(t) = y(t) = z(t). Substituting
into (S5) reduces the system to a nonlinear equation:

y′′ +
1

3λ
y3y′ + 2λy2y′ + (2λ −

2
λ

)yy′ = 0

which admits solutions expressed in terms of Jacobi elliptic functions.

Theorem 4.12. V5-magnetic curves in (H3, 11,∇1) corresponding to the Killing vector field V5 = ( x3

3 −2x)e1+x2e2−

2λze3 are solutions of the differential system (92). In particular, when x(t) = y(t) = z(t), the curves are governed by
a nonlinear oscillator equation solvable via Jacobi elliptic functions.

5. The metric 12

An orthonormal basis for the Lie algebra (H3, 12) is provided by:

e1 =
∂
∂y
− x
∂
∂z
, e2 = λ

∂
∂x
, e3 =

∂
∂z
, (93)

where e3 is timelike. The non-vanishing components of the Levi-Civita connection ∇ of 12 are:

∇e1 e2 = −∇e2 e1 =
λ
2

e3,

∇e1 e3 = ∇e3 e1 =
λ
2

e2,

∇e2 e3 = ∇e3 e2 = −
λ
2

e1.

(94)
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Using the connection formula (4), we derive:

∇
0
e3

e1 =
λ
2

e2, ∇
0
e3

e2 = −
λ
2

e1, ∇
1
ei

e j = 0. (95)

The Kobayashi-Nomizu connection associated with 12 vanishes identically. We focus on (H3, 12,∇0) where
the Killing vector fields are generated by the following proposition.

Proposition 5.1. The Lie algebra of Killing vector fields for (H3, 12,∇0) is 4-dimensional, with basis:

V1 =
∂
∂z
, V2 = (

∂
∂y
− x
∂
∂z

) +
1
2

x
∂
∂z
, V3 = λ

∂
∂x
−
λy
2
∂
∂z
,

V4 = x(
∂
∂y
− x
∂
∂z

) − λ2y
∂
∂x
+ (

x2

4
+
λ2

4
y2)
∂
∂z
.

(96)

Proof. Let V = f1e1 + f2e2 + f3e3 be a Killing vector field of (H3, 12,∇0). Substituting V into (8) with Y = ei,
Z = e j defined by (5), yields a system of differential equations for Killing vector fields associated with ∇0:

(LV12)(e1, e1) =
∂
∂y

f1 − x
∂
∂z

f1 = 0, (97)

(LV12)(e1, e2) =
∂
∂y

f2 − x
∂
∂z

f2 + λ
∂
∂x

f1 = 0, (98)

(LV12)(e1, e3) =
∂
∂z

f1 −
λ
2

f2 −
∂
∂y

f3 = 0, (99)

(LV12)(e2, e2) =
∂
∂x

f2 = 0, (100)

(LV12)(e2, e3) = −λ
∂
∂x

f3 +
λ
2

f1 +
∂
∂z

f2 = 0, (101)

(LV12)(e3, e3) =
∂
∂z

f3 = 0, (102)

where LV12 is the Lie derivative in the direction of V.
Differentiating (101) with respect to x and z yields:

∂2 f1
∂x∂z

= 0. (103)

Differentiating (99) with respect to x and incorporating (103) gives:

∂ f3
∂x∂y

= 0. (104)

Differentiationg (97) with respect to x, and using (103), (104), leads to:

∂ f1
∂z
= 0, (105)

implying f1 = f1(x), then we can put f1(x) = A(x). Differentiating (98) twice with respect to x gives:

∂3 f1
∂x3 = 0, (106)

implying f1(x) = c1x2 + c2x + c3, where c1, c2, c3 ∈ R. Differentiating (99) with respect to z gives:

∂ f2
∂z
= 0, (107)
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so f2 = f2(y), then we put f2(y) = B(y). Differentiating (98) with respect to y leads:

∂2 f2
∂y2 = 0. (108)

Thus, f2(y) = c4y + c5, where c4, c5 ∈ R. Using (98), we deduce:

∂ f2
∂y
= −λA′(x), (109)

implying c1 = 0 and c4 = −λc2. Differentiating (99) with respect to x leads to:

∂2 f3
∂x∂y

= 0. (110)

So f3(x, y) = C1(x) + C2(y) + c6. From (99) and (101), we infer:

C1(x) =
c2

4
x2 +

c3

2
x,

C2(y) =
λ2

4
c4y2
−
λ
2

c5y.
(111)

Substituting these into f1, f2, f3 results in:

f1(x) = c2x + c3,

f2(y) = −λc4y + c5,

f3(x, y) =
c2

4
x2 +

c3

2
x +
λ2

4
c4y2
−
λ
2

c5y + c6.

(112)

Expressing V in terms of the basis {e1, e2, e3} yields the announced result.

Let γ(t) : I ⊂ R→ (H3, 12) be a regular curve parameterized by γ(t) = (x(t), y(t), z(t)). Its velocity vector
is given by:

t = γ′(t) = (x′(t), y′(t), z′(t)). (113)

Expressed in the basis {ei}i=1,2,3 defined in (93), the velocity vector t take the form:

t = y′e1 +
x′

λ
e2 + (z′ + xy′)e3. (114)

Using the connection formulas from (95), we compute the covariant derivatives:

∇
0
t t = (y′′ −

x′

2
(z′ + xy′))e1 + (

x′′

λ
+
λ
2

y′(z′ + xy′))e2 + (z′ + xy′)′e3. (115)

5.1. V1-magnetic curves associate to ∇0.
For V1-magnetic curves corresponding to the Killing vector field V1 = e3 (see (96)), the wedge product

is computed as:

V1 ∧ t = −
x′

λ
e1 + y′e2. (116)

The Lorentz equation ∇0
t t = V1 ∧ t yields the system (S1):

S1 :


y′′ −

x′

2
(z′ + xy′) = −

x′

λ
,

x′′

λ
+
λ
2

y′(z′ + xy′) = y′,

(z′ + xy′)′ = 0.

(117)
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Integrating the third equation of (S1) gives:

z′ + xy′ = c1, (118)

where c1 ∈ R. Substituting (118) into the first two equations of (S1) reduces the system to:
y′′ −

c1

2
x′ = −

x′

λ
,

x′′

λ
+
λc1

2
y′ = y′.

(119)

Differentiating the first equation of (119) yields:

y′′′ + (
λc1 − 2

2
)2y′ = 0. (120)

1. Case λc1 − 2 = 0:
The characteristic equation yields linear solutions:{

x(t) = c2t + c3,
y(t) = c4t + c5.

(121)

Substituting into (118) gives:

z(t) = −
c2c4

2
t2 + (c1 − c3c4)t + c6, (122)

where c1, · · · , c6 ∈ R.
2. Case λc1 − 2 , 0:

The characteristic equation yields trigonometric solutions:

y(t) = c2 sin
λc1 − 2

2
t − c3 cos

λc1 − 2
2

t + c4. (123)

Substituting into (S1) gives:

x(t) =
c2

λ
cos
λc1 − 2

2
t +

c3

λ
sin
λc1 − 2

2
t + c5, (124)

Using (118), z(t) becomes:

z(t) =
2c2

2 − 2c2
3

λ2c1 − 2λ
cos 2

λc1 − 2
2

t +
2c2c3

λ2c1 − 2λ
sin
λc1 − 2

2
t +

2λc3c5 − 2c2c4

λ2c1 − 2λ
sin
λc1 − 2

2
t,

−
2λc2c5 + c3c4

λ2c1 − 2λ
cos
λc1 − 2

2
t + (c1 − c4c5)t + c6

(125)

where c1, · · · , c6 ∈ R.

Theorem 5.2. All V1-magnetic curves in (H3, 12,∇0) corresponding to the Killing vector field V1 = e3 are
parametrized by:

1. Case λc1 − 2 = 0:

γ(t) =
{
c2t + c3, c4t + c5, −

c2c4

2
t2 + (c1 − c3c4)t + c6

}
. (126)
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2. Case λc1 − 2 , 0:

γ(t) =



x(t) =
c2

λ
cos λc1−2

2 t +
c3

λ
sin λc1−2

2 t + c5

y(t) = c2 sin
λc1 − 2

2
t − c3 cos

λc1 − 2
2

t + c4

z(t) =
2c2

2 − 2c2
3

λ2c1 − 2λ
cos 2

λc1 − 2
2

t +
2c2c3

λ2c1 − 2λ
sin 2

λc1 − 2
2

t +
2λc3c5 − 2c2c4

λ2c1 − 2λ
sin
λc1 − 2

2
t

−
2λc2c5 + c3c4

λ2c1 − 2λ
cos
λc1 − 2

2
t + (c1 − c4c5)t + c6



T

, (127)

where c1, · · · , c6 ∈ R are constants.

5.2. V2-magnetic curves associate to ∇0.

For V2-magnetic curves corresponding to the Killing vector field V2 = e1 +
x
2 e3 (see (96)), the wedge

product is computed as:

V2 ∧ t = −
xx′

2λ
e1 + (

1
2

xy′ − (z′ + xy′))e2 −
x′

λ
e3. (128)

The Lorentz equation ∇0
t t = V2 ∧ t yields the system (S2):

S2 :



y′′ −
x′

2
(z′ + xy′) = −

xx′

2λ
,

x′′

λ
+
λ
2

y′(z′ + xy′) = (
1
2

x′y′ − (z′ + xy′)),

(z′ + xy′)′ = −
x′

λ
.

(129)

Integrating the third equation of (S2) gives:

z′ + xy′ = −
x
λ
+ c, (130)

where c ∈ R. Substituting (130) into the first two equations of (S2) reduces the system to:
y′ = −

3
4λ

x2 + cx + c1,

x′′ +
3
4

x3
−

11cλ
8

x2
− (1 + c1λ −

c2λ2

2
)x +

cλ
2

(2 + c1λ) = 0.
(131)

Without loss of generality, we set c = 0. The system simplifies to:

x′′ +
3
4

x3
− (1 + c1λ)x = 0,

which involves Jacobi elliptic functions as solution. So, we can express the following theorem.

Theorem 5.3. V2-magnetic curves in (H3, 11,∇0) corresponding to the Killing vector field V2 = e1+
x
2 e3 are solutions

of the differential system (129). In particular, when c = 0, the curves are governed by a nonlinear oscillator equation
involving Jacobi elliptic functions.
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5.3. V3-magnetic curves associate to ∇0.
For V3-magnetic curves corresponding to the Killing vector field V3 = e2 −

λ
2 ye3 (see (96)), the wedge

product is computed as:

V3 ∧ t = (z′ + xy′ +
x′y
2

)e1 −
λyy′

2
e2 + y′e3. (132)

The Lorentz equation ∇tt = V3 ∧ t yields the system (S3):

S3 :


y′′ −

x′

2
(z′ + xy′) = z′ + xy′ +

xy′

2
,

x′′

λ
+
λ
2

y′(z′ + xy′) = −
λyy′

2
,

(z′ + xy′)′ = y′.

(133)

Integrating the third equation of (S3) gives:

z′ + xy′ = y + c, (134)

where c ∈ R. Substituting (134) into the first two equations of (S3) reduces the system to:
y′′ − (

λ2

4
y2 + λ2cy + c1)(y + c) = y + c +

1
2

(
λ2

4
y2 + λ2cy + c1),

x′ = −
3λ2

4
y2
−
λ2c
2

y + c1.

(135)

Without loss of generality, set c = 0. The system simplifies to:

y′′ +
3λ2

4
y3
− (λc1 + 1)y = 0,

which involves Jacobi elliptic functions as solution. So, we can express the following theorem.

Theorem 5.4. V3-magnetic curves in (H3, 12,∇0) corresponding to the Killing vector field V3 = e2 −
λ
2 ye3 are

solutions of the differential system (133). In particular, when c = 0, the curves are governed by a nonlinear oscillator
equation involving Jacobi elliptic functions.

5.4. V4-magnetic curves associate to ∇0.

For V4-magnetic curves corresponding to the Killing vector field V4 =
x2

4 e1 + xe2 −
λ
2 ye3 (see (96)), the

wedge product is computed as:

V4 ∧ t = (−λy(z′ + xy′) − (
x2

4
+
λ2

4
y2)

x′

λ
)e1 + ((

x2

4
+
λ2

4
y2)y′ − x(z′ + xy′))e2 − (λyy′ +

xx′

λ
)e3. (136)

The Lorentz equation ∇0
t t = V4 ∧ t yields the system (S4):

S4 :



y′′ −
x′

2
(z′ + xy′) = −λy(z′ + xy′) − (

x2

4
+
λ2

4
y2)

x′

λ
,

x′′

λ
+
λ
2

y′(z′ + xy′) = (
x2

4
+
λ2

4
y2)y′ − x(z′ + xy′),

(z′ + xy′)′ = −(λyy′ +
xx′

λ
).

(137)

Integrating the third equation of (S4) gives:

z′ + xy′ = −
x2

2λ
−
λy2

2
+ c, (138)
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where c ∈ R. Substituting into the first two equations of (S4) yields:
y′′ −

x′

2
(−

x2

2λ
−
λy2

2
+ c) = −λy(−

x2

2λ
−
λy2

2
+ c) − (

x2

4
+
λ2

4
y2)

x′

λ
,

x′′

λ
+
λ
2

y′(−
x2

2λ
−
λy2

2
+ c) = (

x2

4
+
λ2

4
y2)y′ − x(−

x2

2λ
−
λy2

2
+ c).

(139)

The general solution of (S4) is non-trivial. We investigate special cases for c = 1
2 , λ = 1. In this case, the

system admits a solution:

x(t) = sin
t
4
, y(t) = cos

t
4
. (140)

Substituting into the third equation of (S4) gives:

z(t) =
t
8
−

1
4

sin
t
2
+ k1, (141)

where k1 ∈ R.

Theorem 5.5. The space curves parametrized by:

γ(t) =
{
sin t

4 , cos t
4 ,

t
8 −

1
4 sin t

2 + k1

}
, (142)

are V4-magnetic curves in (H3, 12,∇0) for arbitrary k1 ∈ R.
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