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A new generalization of Kantorovich operators having three parameters
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Abstract. This paper mainly deals with Kantorovich variant of generalized Stancu operators with three
parameters. Initially, we exhibit approximation theorems in the space of real valued continuous functions
on compact interval and next L,-space. Additionally, we obtain some estimates for the rate of convergence
by making use of modulus of continuity and L, modulus of smoothness of the first order. Ultimately, we
yield some graphical examples showing the relevance of the results.

1. Introduction

One of the most important results in the Approximation Theory is the Weierstrass approximation
theorem, stating that every continous function defined on a compact interval can uniformly be approximated
by algebraic polynomials. After that, the most fundamental problem is how to construct such polynomials.
In order to present one of the easiest and briefest proofs of the Weierstrass approximation theorem, Bernstein
[3] introduced the classical Bernstein polynomials, given by

u :
B‘u (9/5) = Zpy,j (5)9(%), peN, 1)
=0

for g € C[0,1] and

e [ ()EA =T 0<j<p
Py,](é)—{ : 0; j<O0orj>u » £€[01]) ()

Since Bernstein polynomials have elegant construction and many beneficial approximation properties, the
exploration of their some modifications in different ways has been an important topic. Bernstein-Durrmeyer
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operators, Bernstein-Stancu operators and Bernstein-Kantorovich operators are some examples of the well-
known modifications of Bernstein polynomials. In [17], Stancu modified Bernstein polynomials by using a
probabilistic method as

n .
Ly,T (!]/ 5) = Z wp,j,’[(é)g (ﬁ) , &€ [0/ 1]/ (3)
=0

where g € C[0,1], 7 is a non-negative integer parameter, p € IN such that 7 < u/2, for which

(1= &) pu—j(&); 0<j<rt
w‘Ll,j,T(é) = (1 - 5) Pu-,j (5) + 5}7#—1,]‘—7 (5), < ] fpu—-t (4)
épy—”(,j—’r (é)/ u—-T < ] < 1%

is a generalization of Bernstein’s fundamental functions p,,;j(¢) defined by (2). The operators L, . are
called as u-th Stancu operators. We note that for the cases 7 = 0 and 7 = 1, Stancu operators expressed
by (3) reduce to the Bernstein polynomials. Stancu obtained an expression for the remainder of the
approximation notation by means of the second order divided differences, an asymptotic Voronovskaya
result, the order of approximation by the sequence of the operators L, . via modulus of continuity and also
spectral properties of the operator L, . in [17]. Later on, many authors have studied Stancu operators and
their some generalizations in the real and complex cases that we refer the readers to [5-7, 9, 11, 13, 18, 19].

As Bernstein operators are not applicable for approximation of discontinuous functions, Kantorovich
[12] constructed a linear positive operator known as Kantorovich operators in the literature given by

fazy
u+1

u
K6 =Y @@+ D) [o0d| nen,
j=0 o

u+l

to obtain approximation of Lebesgue integrable function on [0, 1] . Depending on two given real parameters,
Stancu [16] introduced and studied any other generalization of Bernstein operators which is called as
Bernstein-Stancu operators. On the other side, in [2], Barbosu defined the Kantorovich shape of Stancu-
type operators K‘;’b :1,]0,1] - C[0,1] as

ja+l
u+b+1

H
K (3:6) =) pui(© (u+b+1>fg<l>dl ,peN,

=0

where € € [0,1], g € L; [0, 1], the space of all functions defined on [0, 1] that is Lebesgue integrable, two real
parameters a,b providing 0 < a < b and p,, ; (§) is Bernstein’s fundamental functions given in (2).

In the present paper, motivated by the earlier mentioned works, we will define a new generalization
of Kantorovich-Stancu-type operators, depending upon a non-negative integer parameter 7 and two real
parameters g, b providing the prerequisite 0 < a < b, having the form

Jra+1
u+b+1

u
K (3:6) = Y 0 (u+b+1) f g()dl, £€10,1] (5)
=0

jt+a
u+b+1

where g € [4[0,1], u € N such that 7 < /2 and w,, ;(&) is the Stancu’s fundamental functions given by
(4). We name KLbT as generalized Kantorovich-Stancu operators. By means of the definition of Stancu’s



N. Cetin et al. / Filomat 39:28 (2025), 1006510075 10067

fundamental functions w,, ;.(&), the generalized Kantorovich-Stancu operators can be expressed as

. o e

K@) = Y pues © (b4 1) (1—£)fg(l)dl+£ f gdl|.
j:O j+a jrtta
u+b+1 u+b+l

Obviously, for the special cases 7 = 0 and 7 = 1, the generalized Kantorovich-Stancu operators K:fT give
the Kantorovich-Stancu-type operators studied in [2]. If 7 = 0 and 7 = 1 with a = b = 0, the operators
K:ZT become the Kantorovich operators investigated in [12]. For a = b = 0, the operators K“Hl"T yield the
Stancu-Kantorovich operators defined in [4]. Here, at first we get approximation results in the space of real
valued continuous functions on compact interval and then L,-space. Later, we establish some estimates for
the rate of convergence with the help of modulus of continuity and L, modulus of smoothness of the first

. . . . . b
order. In conclusion, we give some numerical examples to show approximation by the new operator KL -

2. Approximation by the generalized Kantorovich-Stancu operators

Throughout the paper, let us denote the test functions by e¢; () = &, j € NU {0} and (sz @ :=(t- é)i ,
ieN.
In the following, we have the first three moments and the central moments of the generalized Kantorovich-

b .
Stancu operators KZ,T, successively.

b

Lemma 2.1. For the operators K’;m given by (5), one has

K (e0;é) = 1, (6)
b . _ 1% 2a+1
I{,/T(el,é) pu+b+1 +2(y+b+1)’ @)
2
K (o) = H 2[2+(1+T(T—1))5<1—a]+ #£(2a+1)2+ 3a2+3a+12' @
(u+b+1) IS (L+b+1)y 3(u+b+1)

Lemma 2.2. For the central moments of the operators KLHT given by (5), one has

b b+1 2a+1
, 1. _
K;”(%’é)_ y+b+1é+2(y+b+1)

and

2 2
K (02 8) = b+1)° , ptr(r-1) 1 (2a+1)(b+1), 3a +3a+1.
“'T((PE ) (y+b+1)2 +(y+b+l)2 ( ) (y+b+l)2 +3(y+b+1)2

By implementing the Korovkin theorem to the sequence of K‘L, from (6)-(8) we immediately obtain the
following convergence theorem in C [0, 1].

Theorem 2.3. If g € C[0, 1], 7 is a non-negative fixed integer and 0 < a < b, then we have
. ,b
lim K, (9) = g
uniformly on [0, 1].

Remark 2.4. For © = 0 and t = 1, the operators K:Lb,f become the Kantorovich-Stancu-type operators studied in [2].
L,-approximation can be obtained as a special case in [14, Theorem 2.5].
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Now, we prove L,-approximation by the sequences of these operators only for 7 > 1.
Theorem 2.5. Ifge€L,[0,1],1<p<oco,7>1and0 <a <b,then we have
lim K. (9) = 9
in L, [0,1].

Proof. Let “ K ” denote norm of K’ acting from L, [0, 1] into L, [0,1], where 7 > 1 and u € IN such that

u

T < u/2. We show that there exists an N > 0 such that H HT“ < N. Taking into account of the facts that

P@) =f,1 <p<oo,veR,isconvex and ): wy,i«(&) = 1 for wy,;.(&) = 0, by Jensen’s inequality and
=0
integral Jensen’s inequality (see, e.g., [1]) we can write

jra+l P
u+b+1

wa@ (wrbs)) [ g

]‘HZ
u+b+1

IN

|K;zb7 (7 é)‘p

jra+l
u+b+1

Zwy”(cs) (u+b+1) f lg | di

j=0

IA

]+ﬂ
u+b+1

j+a+1

= u b1
= {Z (1 =8 pu—sj(&)+ Z EPu-rj— (é)} (+b+1) f lg @) a1,
j=0 j=t

jt+a
u+b+1

which follows that

ja+l
u+b+1

u-t

1
K (g0 de < ( ) G- A @ rb+1) [ |gof d
ij . (0:0) f wrbe) [ g

j=0 j+a
u+b+1

ja+l
u+b+1

+2( _T)f,g] 1+1(1 5)#1d5(y+b+1)f|g(l)lpdl

]+ﬂ
T

From the well-known Beta integral, one has

/+a+1 ]+n+1

1
PN & (u-t-j+1D)(u+b+1) ) —t+1)(u+b+1) »
f|Ki"T(g'é)| a < Z (u-—1+2)(u—7+1) f’ (l)| dl+2 —t+2)(u—-7+1) f| (l)| dl.
0 j+a j+a

Because u > 2t for t > 1, we get u — v > 7. Therefore, we can write

| ue (G é)| de

O%H
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jHa+1 jHa+l
-1 u-t AT p-t u+b+1
p+b+1 |3 ]+1f » y+b+1 ]—T+1f p
< — D] a1 + DI dl
Tu-—t+2 ;+j=T -t+1 ‘ )| ZT ];H -1t+1 |_l]()|
;4-/;7111 y-{-;il
r
-1 ‘u 1+b+
p+b+1l | p-—1—j+1 - 2T+2 f .
<
Tu-T1+2 Z pu—t+1 Z p—t+1 y u—-t+1 |g(l)| dl. ©)
j=0 ]HT“ jra

u+b+1
ForO0<j<t-1,wegetu—1—j+1<pu—-7+1. Whenu—-21+1<pu—-t+1,weobtainu—-2tr+2<u-t+1.
For y—t+1<j<yu,weacquire j—7+1 < -7+ 1. By these arguments, (9) reduces to

ja+1
b+

1
" p p+b+1 g & ¢
f'K:m(g}E)| de TEETY) Z+ + f|9(l)|pdl
0

=0 j=t  j=u-t+l

IN

/+ﬂ
u+b+1

(10)

IA
=
+
oy
+
—_
Q
=
=

Taking sup,>2; Lfort > 1, we get

‘u ’l'+2

p+b+1 2t+2+0b

=:C;.
s“)uf p—t+2  T+3 !
Hence, (10) gives

f'K” (g,é)’ d§<C1f(g O d.

Going by the L,-norm, we have ”K';,bT @) Lol S Ci/p lo ”L,,[o,ll for every g € L, [0,1]. It implies that K‘;ZT isa

bounded operator with ”KLI"T” < Ci/ P for every u € N such that u > 27. Let € > 0 be given. Since the density
of C[0,1] in L, [0,1], there exists a ¢ € C[0,1] such that ||g - (p”L 01 < € Then, from Theorem 2.3, there
pLY,

exists an pp € N with y > g such that || e (@) - (p“ < €. By the following inequality

we arrive at

| @) - o]

C[o,1]

*;’T L,[0,1] ”K:‘bT @) - “ T ((P)H ,[0,1] ” wr (@) - (PHC[O,l] * ||(p B g”Lp[O,l] ¢

L[0A] < ” T ”g - (P”L,,[o,l] + HK;IT (p) - (P”qo,u + “(P - g”Lp[O,ll
< Cl/pe+€+e = (2+C1/p)€,

which completes the proof. [
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Next, we give the rate of convergence for the sequence {K:lbf (g)}HEN

Now, firstly we remember that if ] C R is a given interval and g is a real valued function described on |
and bounded on this interval, modulus of continuity of g, is the function w; given by for any 6 > 0

01 (g;0) =sup{lg ) - g (®)]: L,E €], 1-&l<d).

In the following theorem, we give an estimate regarding local approximation via modulus of continuity
inC[0,1].

Theorem 2.6. If g € C[0,1], 7 is a non-negative integer and 0 < a < b, then for every u € IN such that © < u/2
and & € [0,1], we have

K :6) - (0) < 201 (35 o1 ©).

where
Brve (£) =Ky (9% €)

and K ((pé; .5) is as in Lemma 2.2.

u,T

Proof. From the trait of modulus of continuity below

_ 2
l9() - 9(9)| < (1 + 28 )w1 (9:0)

forl,& €[0,1] and 6 > 0, we can write
K @ -g@| = K (-9

) [1 , Kueloi¢)

52 ]w1 (7:0).

;«5)

Choosing 6 = \/ 6‘;;; &= \/ KZ?T ((pé ; 5), the desired result is obtained. O
In the next theorem, we present an estimate regarding global approximation via modulus of continuity.

Corollary 2.7. If g € C[0,1], 7 is a non-negative integer and 0 < a < b, then for every u € IN such that © < /2
and & € [0,1], we have

Ko (7:6) — 9(9)| < 201 (9; 52&),

where

Now, we give the rate of approximation via modulus of continuity in C' [0, 1], which is the space of
once continuously differentiable functions on [0, 1].

Theorem 2.8. If g € C'[0,1], 7 is a non-negative integer and 0 < a < b, then for every y € N such that T < p/2

and & € [0,1], we have
20+1-2(1+b)¢& o P
TTEESY ‘ $2\Jort ©an (75 oL ),

Kie (9:8) - 90| <’ @)

where

Bre () = Ky (93:6).
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Proof. From the result in [15], we have

Ky (0:8)-9@)| < |g@|[Ki: &) -1 + (k)|
N {\/Kl;,f(eo;e)+f Ko (02:6) b (750).

By Lemma 2.1 and Lemma 2.2, taking 6 = \/6"JT &)= \/KH . (p & 5), the desired result is achieved. [J

In the next conclusion, we establish the order of global approximation.

Theorem 2.9. If g € C[0,1], 7 is a non-negative integer and 0 < a < b, then for every y € N such that © < /2
and & € [0,1], we have

|K;’bT 6:8)-g (‘S)| < MA, +28 a1 (9’; wlélbf),
where

M = max
&elo,1]

—m 2a+1 |[—2b + 2a — 1|
2(u+b+1) 2(u+b+1)

and 6:;; = MaXge[o,1] 5:;2 ().

Next, we will prove a theorem providing an upper estimate for the L,-norm of the approximation error

via the operators K:,bf
Firstly, let us recall that L, modulus of smoothness of the first order is defined by for all g € L,[0,1 - ]

w1 (g;8), = sup lgC+m=gOl, 01, A<p<oo),

where ||~||LP[0,1,;,] is the L,-norm defined over [0,1 — ] (see, e.g., [8]).
Peetre’s K-functional is very beneficial means for the error of the convergence in L,-norm. Now, we give

Peetre’s K-functional for functions in L,[0,1]. Let, L [0 1],1 < p < o0, denote
L;l)[O, 1] = {g € L,[0,1] : g is absolutely continuous function
on[0,1]and ¢ €L [0,1]}.

For any g € L,[0,1],1 < p < o0, and 6 > 0, Peetre’s K-functional is given as below

Ky (038) = inf{llg = ¥l o1 + 619/l 0 @ € L1011},

The relationship between Peetre’s K-functional and L, modulus of smoothness of the first order is the
following form

Miw1 (¢;0), < Kip (9;0) < Maw: (g;0),,

in which M;, M, are positive constants not depending upon g and 6 (see, e.g., [10],[8]).
To prove the rate of convergence in L,-space, the following result will be useful.

Theorem 2.10. If i) € L;,l)[O, 1], p > 1, © is a non-negative integer and 0 < a < b, then for every u € N such that
T < u/2, the operators K‘;bT hold the following

|| u,T

where K" ((pé ; é) is given as in Lemma 2.2.

W

1/”— max
—1 &efo1] (P

5’

p
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Proof. From (5), we can write

Kl - )| = (u+b+1)ZwW£)f -9 ©]d

]+Il
u+b+1

jra+l
u+b+1

]+11
pAb+1

jra+l
p+b+1

Q, (é)(u+b+1)2ww(5) [ v-aa

]+H
b+

<

in which Qy, (£) = sup,,

!
Iz f Y (S)| ds (I # &) is the Hardy-Littlewood majorant of 1". By the Cauchy-
Schwarz’s inequality, we get

\ 1 2 "
Ki @& -p@ < Qp@@u+b+1)"” [2 wy,;,T(é)] Zwyn(é) f (-
e s
< Qp (&) max VK (ph€). (11)
From the Hardy-Littlewood theorem (see, [20]), for p > 1 the following holds

de.

PV
f & (&)dE < 2( )
0
Hence, (11) immediately follows that

wT

21/’7— max ;
— 1 ze01] ‘” go‘f

O

In what follows, for the L,-norm of the approximation error via the specified operators
following upper estimate.

K

o We give the

Theorem 2.11. If g € Ly[0,1], p > 1,7 > 1 and 0 < a < b, then for every u € N such that T < u/2, the operators
Kﬁz satisfy

where Cq =

b
bt

21/p
Lo (+C1/p) [1+

p
] AL

22 M, > 0, and F = maxgeo1] /Kjx ((pé; 5).
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Proof. We can write

b ~ (1 + Ci/p) ”g A L,[0,1]
=0~ { 2Tl 91011

where C; = ng—fgb and FL'b,T = maxgep,1] A /K“Hl"T ((pé ; 5) by Theorem 2.10. For arbitrary ¢ € L;,l)[O, 1], one has

|65 @ =l 0y = (=l 0y 2 52 T
e e T
< (1407, [9; %p%r#]
< (1+C")m, [1 + %%le (95T, M2 >0.

O

Remark 2.12. We remark that for t = 0 and © = 1, the similar inequality for K: 70 and K‘; bl was obtained as a special
case in [14, Theorem 3.7].

3. Numerical Examples

In the present section, we will give some graphical and numerical illustrations with a view to demon-

strating the approximation process by the generalized Kantorovich-Stancu operators K“PhT with the help of
Maple.

Example 3.1. The convergence of the generalized Kantorovich-Stancu operators K‘;IbT (@ togd) =&(E-1)(E-2)
is shown in Figure 1 fora = 6,b = 6.3, u = 16 and different values of the parameter . This example gives information
about how the change of non-negative integer parameter t affects the convergence, where i is any natural number
such that © < u/2. As demonstrated in Figure 1, our operators KﬁT get a better approximation for some values of the
parameter T.

Example 3.2. The convergence of the generalized Kantorovich-Stancu operators K‘;fT (9) to g(&) = cos(3né) —
sin (8¢) is illustrated in Figure 2 for a = 0.2, b = 0.3, © = 2 and different values of u. In this example, one can see
that the higher values of 1 gives better approximation.
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0 T T T T
0 02 04 06 08 1

=3 t=?|

|—=(&) =1

Figure 1: Approximation process of the operators K:ibT (9) tog(&) =&E(E-1)(£-2) forTt=1,3,7.

|— &(&) L=20 —— p=40 — p=90|

Figure 2: Approximation process of the operators K';le (9) to g(&) = cos (3n&) — sin (8&) for u = 20,40, 90.

The absolute value of the difference of the new operator K‘;jT (g9) with the function g (£) = cos (3né) —
sin (8&) is given in Table 1 fora = 0.2, b = 0.3, T = 2 and different values of y, &.
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Table 1 Error estimation by the operators of KﬁT (9).

| [ K (6:0.1) — g QD] || K, (9:045) — g (0.45)] || [K,

(7:0.82) - (0.82)] |

u,T
5 0.3851205133 0.2747460561 0.2309736595
50 0.0691645807 0.0891604983 0.2261148328
100 0.0307246684 0.0474667620 0.1780727214
200 0.0095990733 0.0227028337 0.1508059047
1000 0.0083250185 0.0006795308 0.1274005873
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