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Abstract. This paper presents several novel algebraic perturbation formulas for the m-weak group inverse
and the m-weak core inverse of a matrix A. The nonsingular matrix utilized in these formulas is contingent
upon a basis for the nullspace of (Ak)∗, where k denotes the index of the matrix A. In particular, some new
algebraic perturbation formulas for the Drazin inverse and core-EP inverse are presented for a special case.

1. Introduction

Throughout the paper, we adopt the standard notations. For A ∈ Cm×n, where Cm×n is the set of m × n
complex matrices, let rank(A), A∗, R(A) and N(A), respectively, be its rank, conjugate transpose, range space
and null space. In is the identity matrix of order n and the n will be omitted when the order is not ambiguous
from the context. The symbol PA represents the orthogonal projector onto a subspace R(A). Let V∗ ∈ Cn×(n−s)

n−s
be a matrix whose column form a basis for N(Ak)∗. The Moore-Penrose inverse of A ∈ Cm×n is defined as
the unique matrix X = A† ∈ Cn×m satisfying the equations [3]

AXA = A,XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For A ∈ Cn×n and k = Ind(A), where Ind(A) represents the index of A (i.e., the smallest nonnegative integer
k such that rank(Ak) = rank(Ak+1)), the Drazin inverse of A is the unique matrix X = AD

∈ Cn×n satisfying
the equations [3]

XAX = X,XAk+1 = Ak,AX = XA.

In the spacial case Ind(A) = 1, AD reduces to the group inverse of A. The core-EP inverse of A ∈ Cn×n is the
unique matrix X = A †O

∈ Cn×n which satisfies XAX = X,R(Ak) = R(X) = R(X∗) [15]. If Ind(A) = 1, A #O = A †O

is the core inverse of A [2].
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Research supported by Natural Science Research of Jiangsu Higher Education Institutions of China (No.23KJB110004).
* Corresponding author: Xiaofeng Chen
Email addresses: xfchen@cczu.edu.cn (Xiaofeng Chen), 2516856280@qq.com (YuKun Zhou)
ORCID iDs: https://orcid.org/0000-0002-6041-2002 (Xiaofeng Chen), https://orcid.org/0000-0001-9470-2748 (YuKun

Zhou)



X.F. Chen, Y.K. Zhou / Filomat 39:28 (2025), 10077–10087 10078

The m-weak group inverse was defined of an element in a ring with involution by Zhou et al. [25]. For
m ∈N, the m-weak group inverse of A ∈ Cn×n with index k is the unique matrix X = AWOm ∈ Cn×n satisfying

AX2 = X,XAk+1 = Ak, (Ak)∗Am+1X = (Ak)∗Am.

It was proved that the m-weak group inverse of A can be also characterized by the core-EP inverse,
defined by AWOm = (A †O)m+1Am. In the case m = 1, the m-weak group inverse reduces to the weak group
inverse [23], that is AWO1 = AWO. If m = 2, the m-weak group inverse coincides with the generalized group
inverse [9]. Moreover, if m ≥ k = Ind(A), AWOm = AD. Further results related to the m-weak group inverse
were presented[6, 18–20].

Recently, Ferreyra and Malik [10] introduced another generalization of the core inverse by using the
m-weak group inverse. If m ∈N, the m-weak core inverse A #Om ∈ Cn×n of A ∈ Cn×n with index k is expressed
as A #Om = AWOm PAm . If m = 1, then the m-weak core inverse coincides with the weak core inverse [8], that is
A #O1 = AWO,†. If m ≥ k = Ind(A), then the m-weak core inverse coincides with the core-EP inverse, that is,
A #Om = A †O.

This paper focus on algebraic perturbation methods to compute the m-weak group inverse and the m-
weak core inverse. These methods were initially introduced for addressing nonsingular linear systems in [1].
Subsequently, the algebraic perturbation method for the Moore-Penrose inverse of a singular square matrix
A was studied [14]. Since that time, this technique has been broadened to encompass the Moore-Penrose
inverse of rectangular matrices, the Drazin inverse, the core-EP inverse, and several other generalized
inverses, as referenced in [7, 11, 12, 21].

As for the m-weak group inverse, algebra perturbation expressions are given [17]

AWOm = (Ak(Ak)∗A + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†Am

= (Ak + (AD)m+1Ak(Ak)†AmV∗V)(Ak+1 + V∗V)−1.
(1)

The formulas incorporate not only the index k but also the m-th power of the matrix A, in addition to the
basis of the null space of (Ak)∗. Since V∗ is of full column rank and R(V∗) = N((Ak)∗), we have

(V∗)† = (VV∗)−1V and R(V∗) = R(Ak)⊥,

giving that

Ak(Ak)† = PR(Ak) = I − PR(V∗) = I − V∗(V∗)† = I − V∗(VV∗)−1V. (2)

Considering equation (2), it is possible to eliminate the index k from the matrix A, thereby deriving the
expression for the m-weak group inverse of A based on a basis of the nullspace of (Ak)∗, independent of the
index k.

In this paper, we will further study the algebraic perturbation expressions for the m-weak group inverse
of A and present several alternative formulas that do not explicitly rely on the index of A and involve
a nonsingular matrix. One of these formulas is derived from the bordering technique, which effectively
reorganizes the computational process to circumvent unnecessary calculations by inverting only a smaller-
sized matrix. Additionally, since there is currently no established algebraic perturbation expression for the
m-weak core inverse, we will also present pertinent results related to this concept.

2. Alternative expressions for the m-weak group inverse

In this section, we will present different expressions for the m-weak group inverse. We begin by
introducing a different formula of the m-weak group inverse that differs from the expression presented in
(1).

Proposition 2.1. Let A ∈ Cn×n, k = Ind(A), m ∈N and V∗ be the matrix whose columns form a basis for N((Ak)∗).
Then

AWOm = (Ak(Ak)∗(AD)mAk(Ak)†Am+1 + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†Am.
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Proof. Let P = Ak(Ak)∗(AD)mAk(Ak)†Am, T = PA. Firstly we observe that R(T) ⊆ R(Ak). Further by
TAk−1(Ak)†((Ak)†)∗ = Ak, we have R(Ak) ⊆ R(T). Therefore R(Ak) = R(T) and R(T2) = R(TAk). Since
TAk(AD)m+1(Ak)†Am+1 = T, it gives R(T) ⊆ R(T2), consequently, rank(T) = rank(T2) and T #O exits. From
R(V∗) = N((Ak)∗), we obtain

N(V) = R(Ak) = R(AWOm ), VAWOm = 0 and VT #O = VT(T #O)2 = 0.

Let X = T #O + (V∗V)† − AWOm A(V∗V)†. Then

TAWOm = Ak(Ak)∗(AD)mAk(Ak)†Am+1AWOm

= Ak(Ak)∗(AD)m((Ak)†)∗(Ak)∗Am+1AWOm

= Ak(Ak)∗(AD)m((Ak)†)∗(Ak)∗Am = P.

Hence,

(T + V∗V)X = (T + V∗V)(T #O + (V∗V)† − AWOm A(V∗V)†)

= TT #O + T(V∗V)† − T(V∗V)† + V∗V(V∗V)†

= TT #O + V∗V(V∗V)† = PR(T) + PR(V∗V)

= PR(Ak) + PR(V∗) = PR(Ak) + PR(Ak)⊥

= I,

which implies T + V∗V is nonsingular. Since (T + V∗V)AWOm = TAWOm = P, we have

AWOm = (T + V∗V)−1P

= (Ak(Ak)∗(AD)mAk(Ak)†Am+1 + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†Am.

Example 2.2. Using Proposition 2.1 to compute the m-weak group inverse of the matrix A in [8] where A =
1 1 1 0
0 1 1 3
0 5 2 6
0 −2 −1 −3

, for this matrix, Ind(A) = 3 and perform elementary row operations on (A3)∗,

(A3)∗ =


1 0 0 0

10 0 0 0
7 0 0 0

18 0 0 0

→

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and take V =

0 −1 0 0
0 0 1 0
0 0 0 1

 so that the columns of V∗ form a basis for N((A3)∗). Using proposition 2.1, the weak

group inverse of A is given by

AWO = (A3(A3)∗ADA3(A3)†A2 + V∗V)−1A3(A3)∗ADA3(A3)†A =


1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3)

The generalized group inverse of A is given by

AWO2 = (A3(A3)∗(AD)2A3(A3)†A3 + V∗V)−1A3(A3)∗(AD)2A3(A3)†A2 =


1 7 4 9
0 0 0 0
0 0 0 0
0 0 0 0

 .
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The m-weak group inverse of A for each m ≥ Ind(A) = 3 is given by

AWOm = (A3(A3)∗(AD)3A3(A3)†A4 + V∗V)−1A3(A3)∗(AD)3A3(A3)†A3

=


1 10 7 18
0 0 0 0
0 0 0 0
0 0 0 0

 = AD.

Although different expressions were obtained, the calculation of the above formula is more complex,
and not only does it involve index k, but it also involves the m-power of matrix A, as well as the basis of the
nullspace of (Ak)∗. In the following, we remove the index k of A and obtain the expression for the m-weak
group inverse of A on a basis of the null space of (Ak)∗. Before introducing this conclusion, let’s first present
the following result.

Bott and Duffin [4] defined the Bott-Duffin inverse of A ∈ Cn×n by A(−1)
L = PL(APL + PL⊥ )−1 = PL(APL +

I − PL)−1 when APL + PL⊥ is nonsingular. In [5, 24], the authors showed the weak group inverse by a
special Bott-Duffin inverse and the different expressions for weak group inverse are given using different
Bott-Duffin inverses.

Lemma 2.3. [22] Let A ∈ Cn×n, k = Ind(A) and rank Ak = r. Then

A = U
(
T S
0 N

)
U∗ (4)

where U ∈ Cn×n is unitary, T ∈ Cr×r is nonsingular upper-triangular and N ∈ C(n−r)×(n−r) is nilpotent of index k.
For m ∈N, it follows by [13]

AWOm = U
(
T−1 T−(m+1)T̃m

0 0

)
U∗,

where T̃m = Σ
m−1
j=0 T jSNm−1− j.

Theorem 2.4. Let A ∈ Cn×n, k = Ind(A) and m ∈N. Then

AWOm = (Am+1)(−1)
R(Ak)

Am = (PAk Am+1PAk )†Am.

Proof. Assume that A is given by (4), we have Ak = U
(
Tk T̃k
0 0

)
U∗, where T̃k = Σ

k−1
j=0T jSNk−1− j. Then

PR(Ak) = Ak(Ak)† = U
(
I 0
0 0

)
U∗. Thus,

(Am+1)(−1)
R(Ak)

Am = PR(Ak)(A
m+1PR(Ak) + I − PR(Ak))

−1Am

= U
(
I 0
0 0

) (
Tm+1 0

0 I

)−1 (
Tm T̃m
0 Nm

)
U∗

= U
(
T−1 T−(m+1)T̃m

0 0

)
U∗

= AWOm .

Similarly, by a direct calculation, we can derive that AWOm = (PAk Am+1PAk )†Am.

Theorem 2.5. Let A ∈ Cn×n, k = Ind(A), m ∈ N and V∗ be the matrix whose columns form a basis for N((Ak)∗).
Define T1 = Am+1(I − V∗(VV∗)−1V) + V∗(VV∗)−1V. Then T1 is nonsingular and AWOm = (I − V∗(VV∗)−1V)T−1

1 Am.
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Proof. From Theorem 2.4, we have I + (Am+1
− I)Ak(Ak)† is nonsingular, and

AWOm = Ak(Ak)†(I + (Am+1
− I)Ak(Ak)†)−1Am.

In view of (2), we can write

I + (Am+1
− I)Ak(Ak)† = I + (Am+1

− I)(I − V∗(VV∗)−1V)

= Am+1(I − V∗(VV∗)−1V) + V∗(VV∗)−1V,

which immediately implies the result.

It is shown in [13] that the m-weak group inverse of A can be extracted from the regular inverse of
nonsingular bordered matrix of A when V∗ and W are the full column rank such that R(W) = N((Ak)∗Am)
and R(Ak) = N(V),(

A W
V 0

)
(5)

due to the fact that(
A W
V 0

)−1

=

(
AWOm (I − AWOm A)V†

W†(I − AAWOm ) W†(AAWOm A − A)V†

)
. (6)

This bordering technique requires calculating the inverse of a larger matrix, but only a portion of that
inverse is utilized for the m-weak group inverse of A. Given that the complexity of matrix inversion grows
rapidly with size, a significant amount of the computation involved in this bordering method appears to
be inefficient. Therefore, it is important to develop methods for constructing the (1, 1)-block of the inverse
of the bordered matrix without having to compute the entire inverse directly. To support this, let’s revisit
famous Schur’s lemma that can be easily confirmed.

Lemma 2.6. (Schur’s lemma) Let A22 and (
A11 A12
A21 A22

)
be nonsingular. Then T = A11 − A12A−1

22 A21 is also nonsingular and(
A11 A12
A21 A22

)−1

=

(
T−1

−T−1A12A−1
22

−A−1
22 A21T−1 A−1

22 + A−1
22 A21T−1A12A−1

22

)
.

Theorem 2.7. Let A ∈ Cn×n, k = Ind(A) and m ∈ N. Let V∗ and W be the matrix whose columns form bases
for N((Ak)∗) and N((Ak)∗Am) respectively. Define T2 = A − (AV∗ +W)(VV∗)−1V. Then T2 is nonsingular and
AWOm = (I − V∗(VV∗)−1V)T−1

2 .

Proof. Obviously, VV∗ is nonsingular. From the nonsingularity of bordered matrix (5),(
A W
V 0

) (
I V∗

0 I

)
=

(
A AV∗ +W
V VV∗

)
is also nonsingular and(

A W
V 0

)−1

=

(
I V∗

0 I

) (
A AV∗ +W
V VV∗

)−1

. (7)

From Lemma 2.6,(
A AV∗ +W
V VV∗

)−1

=

(
T−1

2 −T−1
2 (AV∗ +W)(VV∗)−1

−(VV∗)−1VT−1
2 (VV∗)−1 + (VV∗)−1VT−1

2 (AV∗ +W)(VV∗)−1

)
. (8)
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Substitute equation (8) into (7), and then compare with (1, 1)-block of (6), we have

AWOm = (I − V∗(VV∗)−1V)T−1
2 .

Similar to Theorem 2.5, the algebraic perturbation expression for the m-weak group inverse in Theorem
2.7 also uses the nonsingular matrix VV∗. The difference is that Theorem 2.7 uses two bases for calculation,
making the calculation more complex. However, as can be seen from the following example, the calculation
of a basis for N((Ak)∗Am) can be done using the operation process of a basis for N((Ak)∗).

Example 2.8. Use the algebraic perturbation expressions in Theorems 2.5 and 2.7 to compute the m-weak group
inverse of the matrix in Example 2.2.

(1) If the algebra perturbation method of Theorem 2.5 is chosen, then we have

G = V∗(VV∗)−1V =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Therefore the matrix T1 = Am+1(I − G) + G, since different values of m correspond to different generalized inverses,
we will only take the case when m = 1, in this case T1 = I, compute (I − G)T−1

1 A, obtaining the same result as in (3).
(2) If the algebra perturbation method of Theorem 2.7 is chosen and m = 1, then perform elementary row operations

on (A3)∗A,

(A3)∗A =


1 0 0 0
10 0 0 0
7 0 0 0
18 0 0 0

 A→


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



1 1 1 0
0 1 1 3
0 5 2 6
0 −2 −1 −3

 =

1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Take W =


1 1 0
−1 0 0
0 −1 0
0 0 1

, so that the columns of W form a basis for N((A3)∗A). Then

T2 = A − (AV∗ +W)(VV∗)−1V =


1 1 −1 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .
Compute (I−G)T−1

2 , with this W and V, the algebraic perturbation expression of Theorem 2.7 does produce accurately
the weak group inverse as in (3).

For m = 1 and m = 2 in Proposition 2.1, Theorems 2.5 and 2.7, we get new expressions for the weak
group inverse and the generalized group inverse respectively.

Corollary 2.9. Let A ∈ Cn×n, k = Ind(A) and V∗ be the matrix whose columns form a basis for N((Ak)∗). Then
T1 = A2(I − V∗(VV∗)−1V) + V∗(VV∗)−1V is nonsingular and

AWO = (Ak(Ak)∗Ak(Ak+1)†A2 + V∗V)−1Ak(Ak)∗Ak(Ak+1)†A

= (I − V∗(VV∗)−1V)T−1
1 A.

In addition, if W is the matrix whose columns form a basis for N((Ak)∗A), then T2 = A − (AV∗ +W)(VV∗)−1V is
nonsingular and AWO = (I − V∗(VV∗)−1V)T−1

2 .
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Corollary 2.10. Let A ∈ Cn×n, k = Ind(A) and V∗ be the matrix whose columns form a basis for N((Ak)∗). Then
T1 = A3(I − V∗(VV∗)−1V) + V∗(VV∗)−1V is nonsingular and

AWO2 = (Ak(Ak)∗Ak(Ak+2)†A3 + V∗V)−1Ak(Ak)∗Ak(Ak+2)†A2

= (I − V∗(VV∗)−1V)T−1
1 A2.

In addition, if W is the matrix whose columns form a basis for N((Ak)∗A2), then T2 = A − (AV∗ +W)(VV∗)−1V is
nonsingular and AWO2 = (I − V∗(VV∗)−1V)T−1

2 .

Proposition 2.1, Theorems 2.5 and 2.7 also imply representations for Drazin inverse when m = k. Then
we can conclude that the first formula of AD in the following is the result of [17, Corollary 2.5].

Corollary 2.11. Let A ∈ Cn×n, k = Ind(A) and V∗ be the matrix whose columns form a basis for N((Ak)∗). Then
T1 = Ak+1(I − V∗(VV∗)−1V) + V∗(VV∗)−1V is nonsingular and

AD = (Ak(Ak)∗A + V∗V)−1Ak(Ak)∗Ak(A2k)†Ak

= (I − V∗(VV∗)−1V)T−1
1 Ak.

In addition, if W is the matrix whose columns form a basis for N(Ak), then T2 = A − (AV∗ + W)(VV∗)−1V is
nonsingular and AD = (I − V∗(VV∗)−1V)T−1

2 .

Proof. When m = k, from Proposition 2.1, we have

T + V∗V = Ak(Ak)∗(AD)kAk(Ak)†Ak+1 + V∗V

= Ak(Ak)∗ADA2 + V∗V

is nonsingular, (T + V∗V)−1 = T #O + (V∗V)† − AWOm A(V∗V)† and (T + V∗V)−1Ak(Ak)∗(AD)kAk(Ak)†Ak = AD. Let
H = Ak(Ak)∗(A − ADA2). Then

Ak(Ak)∗A + V∗V = Ak(Ak)∗ADA2 + V∗V + Ak(Ak)∗(A − ADA2)
= T + V∗V +H

= (T + V∗V)(I + (T + V∗V)−1H)

From VAk = 0, we have (V∗V)†H = (V∗V)†V∗V(V∗V)†H = (V∗V)†((V∗V)†)∗V∗VH = 0. Therefore, (T +
V∗V)−1H = T #OH+ (V∗V)†H−AWOm A(V∗V)†H = T #OH and (T #OH)2 = T #OHT(T #O)2H = 0. Thus, I+ (T+V∗V)−1H
is invertible. From (I + (T + V∗V)−1H)AD = AD, which gives (I + (T + V∗V)−1H)−1AD = AD. Then

(Ak(Ak)∗A + V∗V)−1Ak(Ak)∗Ak(A2k)†Ak = (T + V∗V +H)−1Ak(Ak)∗Ak(A2k)†Ak

= ((T + V∗V)(I + (T + V∗V)−1H))−1Ak(Ak)∗Ak(A2k)†Ak

= (I + (T + V∗V)−1H)−1(T + V∗V)−1Ak(Ak)∗Ak(A2k)†Ak

= (I + (T + V∗V)−1H)−1(T + V∗V)−1Ak(Ak)∗(AD)kAk(Ak)†Ak

= (I + (T + V∗V)−1H)−1AD = AD.

The remaining equations follow immediately from Theorems 2.5 and 2.7.

3. Alternative expressions for the m-weak core inverse

In this section, we will give expressions for m-weak core inverse by utilizing the results from m-weak
group inverse and the relationship between m-weak core inverse and m-weak group inverse.



X.F. Chen, Y.K. Zhou / Filomat 39:28 (2025), 10077–10087 10084

Proposition 3.1. Let A ∈ Cn×n, k = Ind(A), m ∈N and V∗ be the matrix whose columns form a basis for N((Ak)∗).
Then

(1) A #Om = (Ak(Ak)∗A + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†AmPAm .
(2) A #Om = (Ak(Ak)∗(AD)mAk(Ak)†Am+1 + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†AmPAm .
(3) A #Om = (Ak(Ak)∗(AD)mAk(Ak)†AmPAm A + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†AmPAm .
(4) A #Om = (Ak + Ak(Ak+m+1)†AmPAm VV∗)(Ak+1 + VV∗)−1.

Proof. (1) and (2) are clear from the equality (1) and Proposition 2.1 and A #Om = AWOm PAm .
(3). Let P = Ak(Ak)∗(AD)mAk(Ak)†AmPAm , T = PA. We firstly observe that R(T) ⊆ R(Ak), further by

T(AD)2m+1A2m+k(Ak)†((Ak)†)∗ = Ak, it gives R(Ak) = R(T). Since R(T2) = R(TAk) and TAk(AD)m+1(Ak)†AmPAm A =
T, we have R(T) ⊆ R(T2). Therefore rank(T) = rank(T2) and T #O exits. From R(V∗) = N((Ak)∗), we obtain

N(V) = R(Ak) = R(A #Om ), VA #Om = 0 and VT #O = VT(T #O)2 = 0.

Since PAm (A †O)m = Am(Am)†(AD)mAk(Ak)† = (AD)mAk(Ak)† = (A †O)m, then

TA #Om = Ak(Ak)∗(AD)mAk(Ak)†AmPAm AA #Om

= Ak(Ak)∗(AD)mAk(Ak)†AmPAm (A †O)mAmPAm

= Ak(Ak)∗(AD)mAk(Ak)†Am(A †O)mAmPAm

= Ak(Ak)∗(A †O)mAm(A †O)mAmPAm

= Ak(Ak)∗(A †O)mAmPAm

= Ak(Ak)∗(AD)mAk(Ak)†AmPAm = P.

Let X = T #O + (V∗V)† − A #Om A(V∗V)†. Then

(T + V∗V)X = (T + V∗V)(T #O + (V∗V)† − A #Om A(V∗V)†)

= TT #O + T(V∗V)† − T(V∗V)† + V∗V(V∗V)†

= TT #O + V∗V(V∗V)† = PR(T) + PR(V∗V)

= PR(Ak) + PR(V∗) = PR(Ak) + PR(Ak)⊥

= I,

which implies T + V∗V is nonsingular. Since (T + V∗V)A #Om = TA #Om = P, we have

A #Om = (T + V∗V)−1P

= (Ak(Ak)∗(AD)mAk(Ak)†AmPAm A + V∗V)−1Ak(Ak)∗(AD)mAk(Ak)†AmPAm .

(4). According to [16, Theorem 2.4], it gives that Ak+1 + VV∗ is nonsingular. Hence

A #Om (Ak+1 + VV∗) = A #Om Ak+1 + A #Om VV∗

= Ak + Ak(Ak+m+1)†AmPAm VV∗

implies the result.

From A #Om = AWOm PAm , Theorems 2.4 and 2.5, we have the following results.

Proposition 3.2. Let A ∈ Cn×n, k = Ind(A) and m ∈N. Then

A #Om = (Am+1)(−1)
R(Ak)

AmPAm = (PAk Am+1PAk )†AmPAm .

Proposition 3.3. Let A ∈ Cn×n, k = Ind(A), m ∈N and V∗ be the matrix whose columns form a basis for N((Ak)∗).
Define T1 = Am+1(I−V∗(VV∗)−1V)+V∗(VV∗)−1V. Then T1 is nonsingular and A #Om = (I−V∗(VV∗)−1V)T−1

1 AmPAm .
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Next, we develop a relation between m-weak core inverse and a corresponding nonsingular bordered
matrix.

Theorem 3.4. Let A ∈ Cn×n, k = Ind(A) and m ∈ N. Suppose that V∗ and M are the full column rank such that
R(M) = N((Ak)∗AmPAm ) and R(Ak) = N(V). Then

X =
(
A M
V 0

)
is nonsingular and

X−1 =

(
A #Om (I − A #Om A)V†

M†(I − AA #Om ) M†(AA #Om A − A)V†

)
. (9)

Proof. By [10, Theorem 4.7], we have R(A #Om ) = R(Ak), N(A #Om ) = N((Ak)∗AmPAm ), A #Om AA #Om = A #Om . From

R(I − AA #Om ) = N(A #Om ) = N((Ak)∗AmPAm ) = R(M) = R(MM†) = N(I −MM†),

it gives that (I −MM†)(I − AA #Om ) = 0, that is MM†(I − AA #Om ) = I − AA #Om . Further, R(A #Om ) = R(Ak) = N(V)
implies VA #Om = 0. Let Z be the right hand side of (9). Then

XZ =
(
AA #Om +MM†(I − AA #Om ) A(I − A #Om A)V† +MM†(AA #Om A − A)V†

VA #Om V(I − A #Om A)V†

)
=

(
AA #Om + I − AA #Om (I − AA #Om )AV† − (I − AA #Om )AV†

0 VV†

)
=

(
I 0
0 I

)
= I.

Thus, the matrix X is invertible and its inverse is equal to Z.

Utilizing the (1, 1)-block of the nonsingular bordered matrix, we derive the expression for the m-weak
core inverse.

Theorem 3.5. Let A ∈ Cn×n, k = Ind(A) and m ∈N.
(1) If W and V∗ and are the matrix whose columns form bases for N((Ak)∗Am) and N((Ak)∗) respectively, then

T2 = A − (AV∗ +W)(VV∗)−1V is nonsingular and

A #Om = (I − V∗(VV∗)−1V)T−1
2 PAm .

(2) If M and V∗ are the matrix whose columns form bases for N((Ak)∗AmPAm ) and N((Ak)∗) respectively, then
T3 = A − (AV∗ +M)(VV∗)−1V is nonsingular and

A #Om = (I − V∗(VV∗)−1V)T−1
3 .

Proof. (1). It follows by A #Om = AWOm PAm and Theorem 2.7.
(2). From the proof of Theorem 2.7, replace T3 with T2 in (8) and compare with (1, 1)-block of (9), then

we have A #Om = (I − V∗(VV∗)−1V)T−1
3 .

Example 3.6. Use the algebraic perturbation expressions in Proposition 3.3 and Theorem 3.5 to compute the m-weak
core inverse of the matrix in Example 2.2.

(1) If the algebra perturbation method of Proposition 3.3 is chosen and let m = 1, then take V and G as in Examples
2.2 and 2.8, by calculation, it follows that

AWO,† = (I − G)T−1
1 APA =


1 9

11
9
11 −

6
11

0 0 0 0
0 0 0 0
0 0 0 0

 . (10)
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(2) If the algebra perturbation method of Theorem 3.5(1) is chosen and let m = 1, then AWO,† = (I−G)T−1
2 PA is the

same as (10).
(3) If the algebra perturbation method of Theorem 3.5(2) is chosen and m = 1, then perform elementary row

operations on (A3)∗APA which can be done using the operation process of ((A3)∗)A,

(A3)∗APA →


1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 PA =


1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0



1 0 0 0
0 10

11 −
1

11 −
3
11

0 −
1
11

10
11 −

3
11

0 −
3
11 −

3
11

2
11


=


1 9

11
9
11 −

6
11

0 0 0 0
0 0 0 0
0 0 0 0

 .

Take M =


6 9 9
0 −11 0
0 0 −11
11 0 0

, so that the columns of M form a basis for N((A3)∗APA). Then

T3 = A − (AV∗ +M)(VV∗)−1V =


1 6 −9 −9
0 0 11 0
0 0 0 11
0 11 0 0

 .
Compute (I − G)T−1

3 , the algebraic perturbation expression does produce accurately the weak core inverse as in (10).

For m = 1 in Propositions 3.1 and 3.3, Theorem 3.5, we get new expressions for the weak core inverse.

Corollary 3.7. Let A ∈ Cn×n, k = Ind(A) and V∗ be the matrix whose columns form a basis for N((Ak)∗). Then
T1 = A2(I − V∗(VV∗)−1V) + V∗(VV∗)−1V is nonsingular and

AWO,† = (Ak(Ak)∗A + V∗V)−1Ak(Ak)∗Ak(Ak+1)†APA

= (Ak(Ak)∗Ak(Ak+1)†A2 + V∗V)−1Ak(Ak)∗Ak(Ak+1)†APA

= (Ak + Ak(Ak+2)†APAVV∗)(Ak+1 + VV∗)−1

= (I − V∗(VV∗)−1V)T−1
1 APA.

In addition,
(1) if W is the matrix whose columns form a basis for N((Ak)∗A), then T2 = A−(AV∗+W)(VV∗)−1V is nonsingular

and AWO,† = (I − V∗(VV∗)−1V)T−1
2 PA.

(2) if M is the matrix whose columns form a basis for N((Ak)∗APA), then T3 = A − (AV∗ +M)(VV∗)−1V is
nonsingular and AWO,† = (I − V∗(VV∗)−1V)T−1

3 .

For m = k, Propositions 3.1 and 3.3, Theorem 3.5 also impliy representations for core-EP inverse. Then
we can conclude that the first formula of A †O in the following is the result of [16, Theorem 2.3].

Corollary 3.8. Let A ∈ Cn×n, k = Ind(A) and V∗ be the matrix whose columns form a basis for N((Ak)∗). Then
T1 = Ak+1(I − V∗(VV∗)−1V) + V∗(VV∗)−1V is nonsingular and

A †O = (Ak(Ak)∗A + V∗V)−1Ak(Ak)∗

= (Ak(Ak)∗ADA2 + V∗V)−1Ak(Ak)∗

= (Ak + Ak(Ak+1)†VV∗)(Ak+1 + VV∗)−1

= (I − V∗(VV∗)−1V)T−1
1 AkPAk
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In addition,
(1) if W is the matrix whose columns form a basis for N((Ak), then T2 = A− (AV∗ +W)(VV∗)−1V is nonsingular

and A †O = (I − V∗(VV∗)−1V)T−1
2 PAk .

(2) if M is the matrix whose columns form a basis for N((Ak)∗AkPAk ), then T3 = A − (AV∗ +M)(VV∗)−1V is
nonsingular and A †O = (I − V∗(VV∗)−1V)T−1

3 .
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