

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Curvature invariants of Lagrangian Riemannian submersions from locally product spaces

Mehraj Ahmad Lone^{a,*}, Towseef Ali Wani^a, Yanlin Li^b

^aDepartment of Mathematics, National Institute of Technology Srinagar, 190006, Kashmir, India
^bDepartment of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China

Abstract. In this paper, we obtain various inequalities which involve the Ricci and scalar curvatures of horizontal and vertical distributions of Lagrangian Riemannian submersion defined from locally product spaces onto a Riemannian manifold. Also, we obtain the Chen-Ricci inequality for the said Riemannian submersion. In the end, we give a non-trivial example.

1. Introduction

Riemannian invariants are of primary importance in Riemmanian geometry. These invariants determine the extrinsic and intrinsic properties of Riemannian manifolds which in turn affect the behaviour of the manifold in general form. The relationship between intrinsic and extrinsic invariants was established by Chen [10]. He established a link between main intrinsic invariants and main extrinsic invariants in the form some inequalities. Chen [8] also established a relationship between the squared mean curvature and Ricci curvature of a submanifold in the form of an inequality. In 2005, Chen [7] proved the generalized version of this inequality, know as Chen-Ricci inequality, for arbitrary submanifolds in an arbitrary Riemannian manifold. Later, this inequality was studied by many authors in different settings. On the other hand, the theory of Riemannian submersions was initiated by Neill [24]. A Riemannian submersion gives rise to two orthogonal complementary distibutions, horizontal and vertical, the vertical being always integrable. In addition to being of fundamental importance in Riemannian geometry, Riemannian submersions are also of great interest in many areas of theoretical physics like Yang-Mills theory [6, 38], Kaluza-Klein theory [5, 16], supergravity and string theories [19]. To explore the theory further see [18, 20, 22, 23, 29, 33–35, 37].

Chen [9] connected the theory of Riemannian submersions and minimal immersions via a simple optimal inequality. Later, Chen derived the case of equality of this inequality. Alegre et al. [2] established relationship between Riemannian submersions with totally geodesic fibers and δ -invariants. The notion of anti-invarinat Riemannian submersions from almost Hermitian manifolds was introduced by Sahin [27].

²⁰²⁰ Mathematics Subject Classification. Primary 53C12; Secondary 53C25, 53C40.

Keywords. Lagrangian Riemannian Submersion, Locally product manifolds, Chen-Ricci Inequality, Curvature Invariants, δ-invariants.

Received: 23 October 2024; Revised: 31 May 2025; Accepted: 28 June 2025

Communicated by Mića S. Stanković

^{*} Corresponding author: Mehraj Ahmad Lone

Email addresses: mehraj.jmi@gmail.com (Mehraj Ahmad Lone), towseef_02phd19@nitsri.ac.in (Towseef Ali Wani), yanlinmath@163.com (Yanlin Li)

ORCID iDs: https://orcid.org/0000-0002-4764-9224 (Mehraj Ahmad Lone), https://orcid.org/0000-0003-3992-2507 (Towseef Ali Wani), https://orcid.org/0000-0003-1614-3228 (Yanlin Li)

A Lagrangian submersion is a special case of anti-invariant submersions [31]. Gunduzalp [14] studied anti-invariant Riemannian submersions from almost product manifolds. Tastan et al. [32] studied anti-invariant Riemannian submersions from locally product manifolds. Gubahar et al. [13] obtained sharp inequalities which involve the Ricci curvature of Riemannian submersions. Aytimur et al. [3] investigated the sharp inequalities of anti-invariant Riemannian submersions from Sasakian space forms. Gunduzalp [15] investigated slant submersions from almost proct manifolds. We recently studied conformal bi-slant Riemannian submersions from locally product manifolds. Our main goal is to study the optimal inequalities which involve the scalar curvature and Ricci curvature of Lagrangian Riemannian submersion from Locally product spaces and prove the Chen-Ricci inequality for the said submersion.

2. Preliminaries

In this section we mainly follow [3, 13, 25, 30].

2.1. Riemannian Submersions

Let $\psi: M_1 \longrightarrow M_2$ be a smooth map from a Riemannian manifold M_1 of dimension m onto the Riemannian manifold M_2 of dimension n where m > n. Then ψ is said to be a Riemannian submersion [24] if it satisfies the following conditions:

- 1. ψ is of maximal rank.
- 2. The differential map ψ_* of ψ preserves the lengths of horizontal vectors.

By a horizontal vector field Y on M_1 we mean a vector field which is orthogonal to the kernel of ψ_* at each point p of M_1 and by a vertical vector field V on M_1 we mean a vector field which is tangent to the kernel of ψ_* at each point $p \in M_1$. Denote by $\mathscr{H}_p = \{\text{set of all horizontal vectors at } p\}$ and by $\mathscr{V}_p = \{\text{set of all vertical vectors at } p\}$. Thus a Riemannian submersion defines two complementary ortogonal distributions \mathscr{H} and \mathscr{V} , called horizontal and vertical distribution respectively, on M_1 . Further the vertical distribution \mathscr{V} is always integrable.

O' Neill defined two fundamental tensors *T* and *A* of a Riemannian submersion. These are (1,2)-tensors and are defined by the following formulae:

$$T_{E}F = \mathcal{H}\nabla_{\mathcal{V}E}\mathcal{V}F + \mathcal{V}\nabla_{\mathcal{V}E}\mathcal{H}F,\tag{1}$$

$$A_{E}F = \mathcal{V}\nabla_{\mathcal{H}E}\mathcal{H}F + \mathcal{H}\nabla_{\mathcal{H}E}\mathcal{V}F,\tag{2}$$

where ∇ denotes Riemannian connection on M_1 , E, F are arbitrary vector fields on M_1 and \mathcal{V} , \mathcal{H} denote the projection morphisms on the distributions $\ker\psi_*$ and $(\ker\psi_*)^\perp$ respectively. These tensors are called O'Neils integrability tensors. For any $F \in \Gamma(TM_1)$, T_F and A_F are skew-symmetric operators on $(\Gamma(TM_1), g)$ and they reverse the horizontal and vertical distributions. It can be easily verified that T is vertical i.e. $T_F = T_{\mathcal{V}F}$ and $T_$

The tensor field *T* and *A* also satisfy:

$$T_V U = T_U V, \quad \forall \quad U, V \in \Gamma(\ker \psi_*),$$
 (3)

$$A_X Y = -A_Y X = \frac{1}{2} \mathcal{V}[X, Y], \quad \forall \quad X, Y \in (\ker \psi_*)^{\perp}. \tag{4}$$

The above equations imply that T restricted over vertical distribution $\mathscr V$ is a symmetric operator and A restricted over horizontal distribution $\mathscr H$ is skew-symmetric operator. Also, operator A measures the obstruction of the horizontal distribution from being integrable.

On fibers, T acts as second fundamental form of submersion and upon restriction to vertical vectors the condition T = 0 translates to the condition that the fibers are totally geodesic. If T is identically equal to zero then we say that the Riemannian submersion has totally geodesic fibers. Let $V_1, V_2, ..., V_n$ be an orthonormal

frame of (ker ψ_*). Then $H=\frac{1}{n}\sum_{j=1}^n T_{V_j}V_j$, a horizontal vector field, is called the *mean curvature* vector field of the fibre. The Riemmanian submersion is called a minimal submersion if H=0. A Riemannian submersion is said to have totally umbilical fibers if

$$T_{U}V = g_1(U, V)H.$$

Let R, R^* and \hat{R} denote the Riemannian curvature tensors of M_1 , M_2 and any fiber of ψ respectively. The version of Gauss-Codazzi equations for a Riemannian submersion is given by

$$R(V_1, V_2, V_3, V_4) = \hat{R}(V_1, V_2, V_3, V_4) + g(T_{V_1}V_4, T_{V_2}V_3) - g(T_{V_1}V_3, T_{V_2}V_4)$$
(5)

$$R(Y_1, Y_2, Y_3, Y_4) = R^*(Y_1, Y_2, Y_3, Y_4) - 2g(A_{Y_1}Y_2, A_{Y_3}Y_4) + g(A_{Y_2}Y_3, A_{Y_1}Y_4) - g(A_{Y_1}Y_3, A_{Y_2}Y_4)$$

$$(6)$$

$$R(Y_1, V_1, Y_2, V_2) = g((\nabla_{Y_1} T)(V_1, V_2), Y_2) + g((\nabla_{V_1} A)(Y_1, Y_2), V_2) -g(T_{V_1} Y_1, T_{V_2} Y_2) + g(A_{Y_1} V_1, A_{Y_2} V_2)$$
(7)

where $V_1, V_2, V_3, V_4 \in \mathcal{V}(M_1)$ and $Y_1, Y_2, Y_3, Y_4 \in \mathcal{H}$.

2.2. Locally Product Manifold

Let M be an *m*-dimensional manifold with a tensor F of type (1, 1) such that

$$F^2 = I$$
, $(F \neq I)$.

Then, we say that *M* is an almost product manifold with almost product structure *F*. We put

$$P = \frac{1}{2}(I+F), Q = \frac{1}{2}(I-F).$$

Then we get

$$P + Q = I$$
, $P^2 = P$, $Q^2 = Q$, $PQ = QP = 0$, $F = P - Q$.

Thus P and Q define two complementary distributions P and Q. We easily see that the eigenvalues of F are +1 or -1.

If an almost product manifold M admits a Riemannian metric g such that

$$g(FX, FY) = g(X, Y)$$

for any vector fields X and Y on M, then M is called an almost product Riemannian manifold, denoted by (M, g, F). Denote the Levi-Civita connection on M with respect to g by ∇ . Then, M is called a locally product Riemannian manifold if F is parallel with respect to ∇ , i.e.

$$\nabla_X F = 0, X \in \Gamma(TM).$$

Let $M_1(c_1)$ and $M_2(c_2)$ be real space forms with constant sectional curvature c_1 and c_2 respectively. Then the Riemannian curvature tensor \bar{R} of locally product Riemannian manifold $M=M_1(c_1)\times M_2(c_2)$ has the form

$$\bar{R}(X_{1}, X_{2}, X_{3}, X_{4}) = \frac{c_{1} + c_{2}}{4} \Big[g(X_{1}, X_{4}) g(X_{2}, X_{3}) - g(X_{1}, X_{3}) g(X_{2}, X_{4}) \\
+ g(FX_{1}, X_{4}) g(FX_{2}, X_{3}) - g(FX_{1}, X_{3}) g(FX_{2}, X_{4}) \Big] \\
+ \frac{c_{1} - c_{2}}{4} \Big[g(X_{1}, X_{4}) g(FX_{2}, X_{3}) - g(FX_{1}, X_{3}) g(X_{2}, X_{4}) \\
+ g(FX_{1}, X_{4}) g(X_{2}, X_{3}) - g(X_{1}, X_{3}) g(FX_{2}, X_{4}) \Big]$$
(8)

where X_1, X_2, X_3, X_4 ∈ $\Gamma(TM)$.

In case of $c_1 = c_2 = c$, the Riemannian curvature tensor \bar{R} of locally product Riemanian manifold $M(c) = M_1(c) \times M_2(c)$ becomes

$$\bar{R}(X_1, X_2, X_3, X_4) = \frac{c}{2} \Big[g(X_1, X_4) g(X_2, X_3) - g(X_1, X_3) g(X_2, X_4) \\
+ g(FX_1, X_4) g(FX_2, X_3) - g(FX_1, X_3) g(FX_2, X_4) \Big]$$
(9)

3. Main Results

3.1. Some Inequalities involing Ricci and Scalar Curvature

In this section, we will derive some inequalities which involve Ricci and Scalar curvature of horizontal and vertical distributions of the Lagrangian Riemannian submersion. The cases of equality of these inequalities will also be discussed.

Let $M(c_1, c_2)$ be a locally product space form and (N, g') be a Riemannian manifold. Let $\psi: M(c_1, c_2) \longrightarrow N$ be an Lagrangian Riemannian submersion from $M(c_1, c_2)$ onto N. For any $p \in M(c_1, c_2)$, we assume that $\{V_1, V_2, ..., V_n, Y_1, Y_2, ..., Y_m\}$ is an orthonormal basis of $T_pM(c_1, c_2)$ such that \mathcal{V}_p is spanned by $\{V_1, V_2, ..., V_n\}$ and \mathcal{H}_p is spanned by $\{Y_1, Y_2, ..., Y_m\}$.

Using (5) and (8), the curvature tensor of the vertical distribution is given by

$$\hat{R}(W_1, W_2, W_3, W_4) = \frac{c_1 + c_2}{4} \left[g(W_1, W_4) g(W_2, W_3) - g(W_1, W_3) g(W_2, W_4) \right] + g(T_{W_1} W_4, T_{W_2} W_3) - g(T_{W_2} W_4, T_{W_1} W_3)$$
(10)

for any $W_1, W_2, W_3, W_4 \in \mathcal{V}(M(c_1, c_2))$.

Using (6) and (8), we get the curvature tensor of the horizontal distribution as follows:

$$\bar{R}^*(Z_1, Z_2, Z_3, Z_4) = \frac{c_1 + c_2}{4} \Big[g(Z_1, Z_4) g(Z_2, Z_3) - g(Z_1, Z_3) g(Z_2, Z_4) \Big] \\
+ 2g(A_{Z_1} Z_2, A_{Z_3} Z_4) - g(A_{Z_2} Z_3, A_{Z_1} Z_4) + g(A_{Z_1} Z_3, A_{Z_2} Z_4), \tag{11}$$

for any $Z_1, Z_2, Z_3, Z_4 \in \mathcal{H}$.

Proposition 3.1. For an Lagrangian Riemannian submersion $\psi: M(c_1, c_2) \longrightarrow N$,

$$\hat{Ric}(V) \ge \frac{c_1 + c_2}{4}(n-1)g(V, V) - ng(T_V V, H)$$

The equality holds if and only each fiber is a totally geodesic.

Proof. Since ψ is anti-invariant, ξ is vertical and T is symmetric over vertical vector fields, for $V = V_1$, using (10) we get

$$\hat{R}(V,V_{i},V_{i},V) = \frac{c_{1}-c_{2}}{4} \left[g(V,V)g(V_{i},V_{i}) \right] + \left[g(T_{V}V,T_{V_{i}}V_{i}) - g(T_{V_{i}}V,T_{V_{i}}V) \right]$$

From the above equation we get,

$$\hat{Ric}(V) = \frac{c_1 + c_2}{4} \left[g(V, V) \sum_{i=2}^n g(V_i, V_i) \right] + \sum_{i=2}^n \left[g(T_V V, T_{V_i} V_i) - g(T_{V_i} V, T_{V_i} V) \right],$$

where $\hat{Ric}(V) = \sum_{j=2}^{n} \hat{R}(V, V_i, V_i, V)$.

After simplifying we immediately get,

$$\hat{Ric}(V) = \frac{c_1 + c_2}{4}(n-1)g(V, V) - ng(T_V V, H) + \sum_{i=1}^n g(T_{V_i} V, T_{V_i} V)$$

Since $\sum_{i=1}^{n} g(T_{V_i}V, T_{V_i}V) \ge 0$, the inequality holds. Also, if all the fibers are totally geodesic i.e. T = 0, then the equality holds in the inequality. \square

The scalar curvature $\hat{\tau}$ of the vertical distribution is given by

$$\hat{\bar{\tau}} = \sum_{1 \le i < j \le n} \hat{\bar{R}}(V_i, V_j, V_j, V_i) \tag{12}$$

The next propostion gives the inequality satisfied by scalar curvature of the vertical distribution.

Proposition 3.2. For an Lagrangian Riemannian submersion $\psi: M(c_1, c_2) \longrightarrow N$,

$$2\hat{\tau} \geq \frac{c_1 + c_2}{4} n(n-1) - n^2 ||H||^2$$

The case of equality for the above inequality holds when each fiber of the Riemannian submersion is a totally geodesic.

Proof. Using (10) and the facts that ψ is anti-invariant, $\xi \in \mathcal{V}(M)$ and T is symmetric over vertical vector fields, we get

$$\hat{R}(V_i, V_j, V_i, V_i) = \frac{c_1 + c_2}{4} \left[g(V_i, V_i) g(V_j, V_j) \right] + \left[g(T_{V_i} V_i, T_{V_j} V_j) - g(T_{V_i} V_j, T_{V_i} V_j) \right]$$

Now using (12), we get

$$\hat{\bar{\tau}} = \frac{c_1 + c_2}{4} \sum_{1 \leq i < j \leq n} \left[g(V_i, V_i) g(V_j, V_j) \right] + \sum_{1 \leq i < j \leq n} \left[g(T_{V_i} V_i, T_{V_j} V_j) - g(T_{V_i} V_j, T_{V_i} V_j) \right].$$

After simplification, we immediately get

$$2\hat{\bar{\tau}} = \frac{c_1 + c_2}{4} n(n-1) - n^2 ||H||^2 + \sum_{i,j=1}^n g(T_{V_i} V_i, T_{V_j} V_j)$$

Since $\sum_{i,j=1}^{n} g(T_{V_i}V_i, T_{V_j}V_j) \ge 0$, it is clear that the inequality holds. Also, it is obvious that the equality case holds if and only if each fiber is totally geodesic. \Box

Now will give an inequality involving the scalar curvature of the horizontal distribution of the Lagrangian Riemannian submersion. The scalar curvature of the horizontal distribution is given by

$$\bar{\tau}^* = \sum_{1 \le i \le j \le m} \bar{R}^*(Y_i, Y_j, Y_j, Y_i) \tag{13}$$

Proposition 3.3. For a Lagrangian Riemannian submersion $\psi: M(c_1, c_2) \longrightarrow N$,

$$2\bar{\tau}^* \leq \frac{c_1+c_2}{4}m(m-1)$$

The equality holds in above inequality \Leftrightarrow the horizontal distribution is integrable.

Proof. In view of (11) and using the facts that ψ is anti-invariant, ξ is horizontal and A is anti-symmetric over horizontal vectors, we have

$$\bar{R}^*(Y_i, Y_j, Y_j, Y_i) = \frac{c_1 + c_2}{4} \left[g(Y_i, Y_i) g(Y_j, Y_j) \right] - 3g(A_{Y_i} Y_j, A_{Y_i} Y_j).$$

Using (13), we get

$$\bar{\tau}^* = \frac{c_1 + c_2}{4} \sum_{1 \le i \le m} \left[g(Y_i, Y_i) g(Y_j, Y_j) \right] - 3 \sum_{1 \le i \le m} g(A_{Y_i} Y_j, A_{Y_i} Y_j)$$

After simplifying, we immediately get

$$2\bar{\tau}^* = \frac{c_1 + c_2}{4} m(m-1) - 3 \sum_{i,j=1}^m g(A_{Y_i} Y_j, A_{Y_i} Y_j)$$
 (14)

From the above equation, it is clear that the inequality holds. Also, if the horizontal distribution is integrable then A is identically zero. In this case the above inequality becomes equality. \Box

3.2. Chen-Ricci inequalities

Now, we will derive Chen-Ricci inequalities for the anti-invariant Riemannian submersion $\psi : M(\kappa) \longrightarrow N$. We will use the following notations:

$$T_{ij}^{\alpha} = g(T_{V_i}V_j, Y_{\alpha}); \quad 1 \le i, j \le n, 1 \le \alpha \le m$$

$$\tag{15}$$

$$A_{ij}^{s} = g(A_{Y_i}Y_j, V_s); \quad 1 \le i, j \le m, 1 \le s \le n$$
 (16)

$$\delta(N) = \sum_{i=1}^{m} \sum_{s=1}^{n} g\left((\nabla_{Y_i} T)_{V_s} V_s, Y_i\right)$$

$$\tag{17}$$

From [13], we have

$$\sum_{\alpha=1}^{m} \sum_{i,j=1}^{n} (T_{ij}^{\alpha})^{2} = \frac{1}{2} n^{2} ||H||^{2} + \frac{1}{2} \sum_{\alpha=1}^{m} \left[T_{11}^{\alpha} - T_{22}^{\alpha} - \dots - T_{nn}^{\alpha} \right] + 2 \sum_{\alpha=1}^{m} \sum_{j=2}^{n} (T_{1j}^{\alpha})^{2} - 2 \sum_{\alpha=1}^{m} \sum_{2 \le i < j \le n} \left[T_{ii}^{\alpha} T_{jj}^{\alpha} - (T_{ij}^{\alpha})^{2} \right].$$

$$(18)$$

Theorem 3.4. For a Lagrangian Riemannian submersion $\psi: M(c_1, c_2) \longrightarrow N$,

$$Ric(V) \ge \frac{c_1 + c_2}{4}(n-1) - \frac{1}{4}n^2||H||^2$$

The equality holds \Leftrightarrow

$$T_{11}^{\alpha} = T_{22}^{\alpha} + ... + T_{nn}^{\alpha}$$

 $T_{1j}^{\alpha} = 0, j = 2, ..., n.$

Proof. Using (15) in (13) we get,

$$2\hat{\bar{\tau}} = \frac{c_1 + c_2}{4} n(n-1) - n^2 ||H||^2 + \sum_{\alpha=1}^m \sum_{i=1}^n (T_{ij}^{\alpha})^2$$

Using (18) in the above equation, we get

$$2\hat{\bar{\tau}} = \frac{c_1 + c_2}{4}n(n-1) - \frac{1}{2}n^2||H||^2 + \frac{1}{2}\sum_{\alpha=1}^m \left[T_{11}^\alpha - T_{22}^\alpha - \dots - T_{mm}^\alpha\right] + 2\sum_{\alpha=1}^m \sum_{i=2}^n (T_{1j}^\alpha)^2 - 2\sum_{\alpha=1}^m \sum_{2 \le i \le n} \left[T_{ii}^\alpha T_{jj}^\alpha - (T_{ij}^\alpha)^2\right] \right\}$$

From the above equation, we clearly have the following inequality

$$2\hat{\bar{\tau}} \geq \frac{c_1 + c_2}{4} n(n-1) - \frac{1}{2} n^2 ||H||^2 - 2 \sum_{\alpha=1}^m \sum_{2 < i < j < n} \left[T_{ii}^{\alpha} T_{jj}^{\alpha} - (T_{ij}^{\alpha})^2 \right]$$

Using (5) and (15), we have

$$2\sum_{2 \le i < j \le n} \bar{R}(V_i, V_j, V_j, V_i) = 2\sum_{2 \le i < j \le n} \hat{R}(V_i, V_j, V_j, V_i) + 2\sum_{\alpha=1}^m \sum_{2 \le i < j \le n} \left[T_{ii}^{\alpha} T_{jj}^{\alpha} - (T_{ij}^{\alpha})^2 \right]$$
(19)

In view of (19), the inequality (19) can be written as

$$2\hat{\bar{\tau}} \geq \frac{c_1 + c_2}{4} n(n-1) - \frac{1}{2} n^2 ||H||^2 + 2 \sum_{2 \leq i < j \leq n} \hat{\bar{R}}(V_i, V_j, V_j, V_i) - 2 \sum_{2 \leq i < j \leq n} \bar{\bar{R}}(V_i, V_j, V_j, V_i)$$

Using (13), we can write

$$2\hat{\tau} = 2\sum_{2 \le i < j \le n} \hat{R}(V_i, V_j, V_j, V_i) + 2\sum_{j=2}^n \hat{R}(V, V_j, V_j, V)$$

Using the above equation in (20), we get

$$2R\hat{i}c(U) \geq \frac{c_1+c_2}{4}n(n-1)-\frac{1}{2}n^2||H||^2-2\sum_{2\leq i< j\leq n}\bar{R}(V_i,V_j,V_j,V_i)$$

Now using (8), we get

$$Ric(U) \ge \frac{c_1 + c_2}{4}(n-1) - \frac{1}{4}n^2||H||^2$$

Theorem 3.5. For a Lagrangian Riemannian submersion $\psi: M(c_1, c_2) \longrightarrow N$,

$$Ric^*(X_1) \leq \frac{c_1+c_2}{4}m(m-1)$$

The case of equality hold in the above inequality if and only

$$A_{1j} = 0$$
, $j = 2, ..., m$.

Proof. Using (16) and the fact that *A* is anti-symmetric in (14), we get

$$2\bar{\tau}^* = \frac{c_1 + c_2}{4} m(m-1) - 6 \sum_{s=1}^n \sum_{j=2}^m (A_{1j}^s)^2 - 6 \sum_{s=1}^n \sum_{2 \le i < j \le m} (A_{ij}^s)^2$$

In view of (6) and (16), we have

$$2\sum_{2 \le i < j \le m} \bar{R}(Y_i, Y_j, Y_j, Y_i) = 2\sum_{2 \le i < j \le m} \bar{R}^*(Y_i, Y_j, Y_j, Y_i) + 6\sum_{s=1}^n \sum_{2 \le i < j \le m} (A_{ij}^s)^2.$$

Using the above expression in (20), we get

$$2\bar{\tau}^* = \frac{c_1 + c_2}{4}m(m-1) - 6\sum_{s=1}^n \sum_{j=2}^m (A_{1j}^s)^2 + 2\sum_{2 \le i < j \le m} \bar{R}^*(Y_i, Y_j, Y_j, Y_i) - 2\sum_{2 \le i < j \le m} \bar{R}(Y_i, Y_j, Y_j, Y_i)$$

Making use of (8) in (20), we get

$$Ric^*(X_1) = \frac{c_1 + c_2}{4}m(m-1) - 6\sum_{s=1}^n \sum_{i=2}^m (A_{1i}^s)^2$$

Since $\sum_{j=2}^{m} (A_{1j}^s)^2 \ge 0$, we clearly have the inequality. \square

Denote (see [13])

$$||T^{\mathscr{V}}||^2 = \sum_{k=1}^m \sum_{i=1}^n \bar{g}(T_{V_i} Y_k, T_{V_i} Y_k), \tag{20}$$

$$||A^{\mathscr{H}}||^2 = \sum_{k=1}^m \sum_{i=1}^n \bar{g}(A_{Y_k} V_i, A_{Y_k} V_i). \tag{21}$$

Theorem 3.6. For a Lagrangian Riemannian submersion $\psi: M(c_1, c_2) \longrightarrow N$,

$$\begin{split} &\frac{c_1+c_2}{4}(nm+m+n-2)+\frac{c_1-c_2}{4}\left[3n-4-m-(n-2)\right]\\ &\leq R\hat{i}c(U_1)+R\hat{i}c^*(X_1)+\frac{1}{4}n^2\|H\|^2+3\sum_{s=1}^n\sum_{\alpha=2}^m(A_{1s}^\alpha)^2-\delta(N)+\|T^{\mathscr{V}}\|^2-\|A^{\mathscr{H}}\|^2 \Big] \end{split}$$

The case of equality holds if and only if

$$T_{11}^{\alpha} = T_{22}^{\alpha} + ... + T_{nn}^{\alpha}$$

 $T_{1j} = 0, j = 2, ..., n.$

Proof. By the definition of scalar curvature of $M(\kappa)$, we have

$$2\bar{\tau} = 2\sum_{1 \le i \le n} \bar{R}(V_i, V_j, V_i, V_i) + 2\sum_{1 \le k < r \le m} \bar{R}(Y_k, Y_r, Y_r, Y_k) + 2\sum_{i=1}^n \sum_{k=1}^m \bar{R}(Y_k, V_i, V_i, Y_k)$$
(22)

Using (8) in (22), we get

$$2\bar{\tau} = 2\sum_{1 \le i < j \le n} \bar{R}(V_i, V_j, V_i, V_i) + 2\sum_{1 \le k < r \le m} \bar{R}(Y_k, Y_r, Y_r, Y_k) + \frac{c_1 + c_2}{4} [nm - n] - \frac{c_1 - c_2}{2} n \tag{23}$$

Using (5), (6) and (7) in (22), we get

$$\begin{aligned} 2\bar{\tau} &= 2\sum_{1 \leq i < j \leq n} \hat{R}(V_i, V_j, V_i) + 2\sum_{1 \leq k < r \leq m} \bar{R}^*(Y_k, Y_r, Y_r, Y_k) + n^2 ||H||^2 \\ &+ \sum_{i,j=1}^n \bar{g}(T_{V_i}V_j, T_{V_i}V_j) + 3\sum_{k,r=1}^m \bar{g}(A_{Y_k}Y_r, A_{Y_k}Y_r) - 2\sum_{k=1}^m \sum_{i=1}^n \bar{g}\Big((\nabla_{Y_k}T)_{V_i}V_i, Y_k\Big) \\ &+ 2\sum_{k=1}^m \sum_{i=1}^n \Big[\bar{g}(T_{V_i}Y_k, T_{V_i}Y_k) - \bar{g}(A_{Y_k}V_i, A_{Y_k}V_i)\Big]. \end{aligned}$$

Making use of (3), (4)(15), (16), (17) 18, (20) and (21) in the above equation, we get

$$2\bar{\tau} = 2\sum_{1 \leq i < j \leq n} \hat{R}(V_{i}, V_{j}, V_{j}, V_{i}) + 2\sum_{1 \leq k < r \leq m} \bar{R}^{*}(Y_{k}, Y_{r}, Y_{r}, Y_{k}) + \frac{1}{2}n^{2} ||H||^{2} - \frac{1}{2}\sum_{\alpha=1}^{m} \left[T_{11}^{\alpha} - T_{22}^{\alpha} - \dots - T_{nn}^{\alpha}\right]^{2}$$

$$-2\sum_{\alpha=1}^{m} \sum_{j=2}^{n} (T_{1j}^{\alpha})^{2} + 2\sum_{\alpha=1}^{m} \sum_{2 \leq i < j \leq n} \left[T_{ii}^{\alpha} T_{jj}^{\alpha} - (T_{ij}^{\alpha})^{2}\right] + 6\sum_{s=1}^{n} \sum_{r=2}^{m} (A_{1r}^{s})^{2}$$

$$+6\sum_{s=1}^{n} \sum_{2 \leq k < r \leq m} (A_{kr}^{s})^{2} - 2\delta(N) + 2\left[||T^{\mathscr{V}}||^{2} - ||A^{\mathscr{H}}||^{2}\right]. \tag{24}$$

In view of (22) and (24), we get

$$2 \sum_{1 \le i < j \le n} \bar{R}(V_i, V_j, V_i) + 2 \sum_{1 \le k < r \le m} \bar{R}(Y_k, Y_r, Y_r, Y_k) + \frac{c_1 + c_2}{4} [nm - n] - \frac{c_1 - c_2}{2} n$$

$$= 2 \sum_{1 \le i < j \le n} \hat{R}(V_i, V_j, V_j, V_i) + 2 \sum_{1 \le k < r \le m} \bar{R}^*(Y_k, Y_r, Y_r, Y_k) + \frac{1}{2} n^2 ||H||^2$$

$$- \frac{1}{2} \sum_{\alpha=1}^{m} \left[T_{11}^{\alpha} - T_{22}^{\alpha} - \dots - T_{nn}^{\alpha} \right]^2 - 2 \sum_{\alpha=1}^{m} \sum_{j=2}^{n} (T_{1j}^{\alpha})^2 + 2 \sum_{\alpha=1}^{m} \sum_{2 \le i \le j \le n} \left[T_{ii}^{\alpha} T_{jj}^{\alpha} - (T_{ij}^{\alpha})^2 \right]$$

$$+6\sum_{s=1}^{n}\sum_{r=2}^{m}(A_{1r}^{s})^{2}+6\sum_{s=1}^{n}\sum_{2\leq k < r \leq m}(A_{kr}^{s})^{2}-2\delta(N)+2\left[\|T^{\mathscr{V}}\|^{2}-\|A^{\mathscr{H}}\|^{2}\right]$$
(25)

Using (5) and (6), we have the following equations.

$$\sum_{2 \le i < j \le n} \bar{R}(V_i, V_j, V_j, V_i) = \sum_{2 \le i < j \le n} \hat{R}(V_i, V_j, V_j, V_i) + 2 \sum_{\alpha = 1}^m \sum_{2 \le i < j \le n} \left[T_{ii}^{\alpha} T_{jj}^{\alpha} - (T_{ij}^{\alpha})^2 \right]$$
(26)

$$\sum_{2 \le k < r \le m} \bar{R}(Y_k, Y_r, Y_r, Y_k) = \sum_{2 \le k < r \le m} \bar{R}^*(Y_k, Y_r, Y_r, Y_k) + 6 \sum_{s=1}^n \sum_{2 \le k < r \le m} (A_{kr}^s)^2$$
(27)

Now, using (26) and (27) in (25), we get

$$\frac{c_1+c_2}{4}[nm-n]-\frac{c_1-c_2}{2}n+2\sum_{j=2}^n\bar{R}(V_1,V_j,V_j,V_1)+2\sum_{j=2}^n\bar{R}(Y_1,Y_r,Y_r,Y_1)=$$

$$2R\hat{i}c(V_1) + 2R\hat{i}c^*(Y_1) + \frac{1}{2}n^2||H||^2 - \frac{1}{2}\sum_{\alpha=1}^m \left[T_{11}^{\alpha} - T_{22}^{\alpha} - \dots - T_{mm}^{\alpha}\right]^2$$

$$-2\sum_{\alpha=1}^{m}\sum_{i=2}^{n}(T_{1j}^{\alpha})^{2} + +6\sum_{s=1}^{n}\sum_{r=2}^{m}(A_{1r}^{s})^{2} - 2\delta(N) + 2\left[\|T^{\mathscr{V}}\|^{2} - \|A^{\mathscr{H}}\|^{2}\right]$$
(28)

Using (8) in (28), we immediately get

$$\frac{c_1 + c_2}{4}(nm + n + m - 2) + \frac{c_1 - c_2}{4}(3n - 4 - m - (n - 2)) \le \frac{c_1 + c_2}{4}(nm + n + m - 2) + \frac{c_1 - c_2}{4}(nm + n + m - 2) \le \frac{n - m}{4}$$

$$\hat{Ric}(V_1) + \hat{Ric}^*(Y_1) + \frac{1}{4}n^2||H||^2 + 3\sum_{s=1}^n \sum_{r=2}^m (A_{1r}^s)^2 - \delta(N) + ||T^{\mathscr{V}}||^2 - ||A^{\mathscr{H}}||^2.$$

4. Example

In this section, we give a non-trivial example of Lagrangian Riemannian submersion from a locally product manifold.

Example 4.1. Consider an 4-dimensional Euclidean space \mathbb{R}^4 with Euclidean metric g. We define a product structure F on \mathbb{R}^4 by

$$P(y_1, y_2, y_3, y_4) = (y_1, -y_2, y_3, -y_4)$$

Then (\mathbb{R}^4, g, F) forms a locally product manifold.

Now, define a map $\pi : \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ *by*

$$\pi(y_1, y_2, y_3, y_4) = (\frac{y_1 + y_4}{\sqrt{2}}, \frac{y_2 + y_3}{\sqrt{2}})$$

By direct calculations,

$$\ker \pi_* = \operatorname{span} \{ V_1 = \partial y_1 - \partial y_4, V_2 = \partial y_2 - \partial x_3 \}$$

$$(\ker \pi_*)^{\perp} = \operatorname{span}\{X_1 = \partial y_1 + \partial y_4, X_2 = \partial y_2 + \partial x_3\}$$

Then it is easy to see that π is a Riemannian submersion. Moreover, $FV_1 = X_2$ and $FV_2 = X_1$ implies that $F(\ker \pi_*) = (\ker \pi_*)^{\perp}$. As a result π is a Lagrangian submersion.

References

- [1] P. Alegre, A. Carriazo, Y. H. Kim, D. W. Yoon, B.Y. Chen's inequality for submanifolds of generalized space forms, Indian J. Pure Appl. Math., 38(3) (2007), 185-201.
- [2] P. Alegre, B. -Y. Chen, M. I. Munteanu, *Riemannian submersions*,δ-invariants, and optimal inequality, Ann. Glob. Anal. Geom., 42(3) (2012), 317-331.
- [3] H. Aytimur, C. Ozgur, Sharp inequalities for anti-invariant Riemannian submersions from Sasakian space forms, J. Geom. Phys., 166 (2021), 104251.
- [4] P. Baird, and J.C. Wood, Harmonic Morphisms between Riemannian Manifolds, Clarendon Press, Oxford (2003).
- [5] J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163.
- [6] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-mills fields, Commun. Math. Phys., 79(1981), 189-230.
- [7] B. -Y. Chen, A General optimal inequality for arbitrary Riemannian submanifolds, J. Inequal. Pure Appl. Math, 6(3) (2005).
- [8] B. -Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J., 41 (1) (1999)-33-41.
- [9] B. -Y. Chen, Riemannian submersions, minimal immersions and cohomology class, Proc. Jpn. Acad. Ser. A. Math. Sci., 81(10) (2005), 162-167.
- [10] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (6) (1993), 568-578.
- [11] K. Erken, C. Murathan, Anti-invariant Riemannian submersions from Sasakian manifolds, arXiv: 1302.4906, 2013.
- [12] I. K. Erken, C. Murathan, Slant Riemannian submersions from Sasakian manifolds, Arab. J. Math. Sci. 22 (2016), 250-264.
- [13] M. Gulbahar, S. Eken Meric, E. Kilic, Sharp inequalities involving the Ricci curvature for Riemannian submersions, Kragujev. J. Math., 41(2) (2017), 279-293.
- [14] Y. Gunduzalp, Anti-invariant Riemannian submersions from almost product Riemannian manifolds,, Math. Sci. Appl. E Notes. 1, 58-66 (2013).
- [15] Gunduzalp, Slant submersions from almost product Riemannian manifolds, Turk. J. Math., 37(5) (2013), 863-873.
- [16] S. Ianus, M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity 4, (1987), 1317-1325.
- [17] S. Ianus, S. Marchiafava and G. E. Vilcu, Paraquaternionic CR-submanifolds of paraquaternionic Kaehler manifolds and semi-Riemannian submersions, Cent. Eur. J. Math. 8(4) (2010), 35-753.
- [18] S. Ianus, R. Mazzocco and G. E. Vilcu, Riemannian Submersions from Quaternionic Manifolds, Acta Appl. Math 104(2008):83-89.
- [19] S. Ianus, M. Visinescu, *Space-time compaction and Riemannian submersions*, Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, (1991), 358-371, World Scientific, River Edge.
- [20] S. Ianus, A. Ionescu, R. Mocanu, G. E. Vilcu, *Riemannian submersions from almost contact metric manifolds*, Abh. Math. Semin. Univ. Hambg., 81(2011):101-114.
- [21] S. Kobayashi, Submersions of CR submanifolds, The Tohoku Mathematical Journal, vol. 39, no. 1, pp. 95-100, 1987.
- [22] M. A. Lone, T. A. Wani, On slant Riemannian submersions from conformal Sasakian manifolds, Quaest. Math., https://doi.org/10.2989/16073606.2023.2260104.
- [23] K. Meena, B. Şahin, and H. M. Shah, Riemannian Warped Product Maps, Results Math, 79(2) (2024), 56.
- [24] B. O. Neill, The Fundamental Equations of a Submersion, The Michigan Mathematical Journal, vol. 13, pp. 459–469, 1966.
- [25] K. S. Park, H-slant submersions,, Bull. Korean Math. Soc. 49 No. 2, (2012), 329-338.
- [26] H. Pedersen, Y. S. Poon and A. Swann, The Einstein-Weyl Equations in Complex and Quaternionic Geometry,, Diff. Geo. and Its Appl., (1993), 309-322.
- [27] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8(3)2010: 437-447.
- [28] B. Sahin, Horizontally conformal submersions of CR-submanifolds, Kodai Math. J., 31(2008):46-53.
- [29] B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Academic Press, 2017.
- [30] B. Sahin, Slant submersions from almost Hermitian manifolds,, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) No. 1, (2011), 93-105
- [31] H. M. Tastan, On Lagrangian submersions, Hacet. J. Math. Stat. 43(6) (2014), 993-1000
- [32] H. M. Tastan, F. Ozdemir and C. Sayar On anti-invariant Riemannian submersions whose total manifolds are locally product Riemannian, J. Geom., 108(2017), 411-422
- [33] G. E. Vilcu, Canonical foliations on paraquaternionic Cauchy-Riemann submanifolds, J. Math Anal. Appl., 399(2013): 551-558.
- [34] G. E. Vilcu, Riemannian foliations on quaternion CR-submanifolds of an almost quaternion Kaehler product manifold, Proc. Indian Acad. Sci. (Math. Sci.) 119(5)(2009): 611-618.
- [35] A. Vilcu, G. E. Vilcu, Statistical Manifolds with almost Quaternionic Structures and Quaternionic Kahler-like Statistical Submersions, Entropy 17(2015): 6213-6228.
- [36] K. Yano and M. Kon, Structures on Manifolds, Ser.Pure Math.World Scientific, (1984).
- [37] T. A. Wani, M. A. Lone, Horizontally Conformal Submersions from CR-Submanifolds of Locally Conformal Quaternionic Kaehler Manifolds, Mediterr. J. Math, 19(3) (2022), 1-12.
- [38] B. Watson, *G*, *G'-Riemannian submersions and nonlinear gauge field equations of general relativity*, Rassias, T. (ed.) Global Analysis Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math., 57, (1983), 324-349, Teubner, Leipzig.