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Abstract. In this paper, we obtain various inequalities which involve the Ricci and scalar curvatures of
horizontal and vertical distributions of Lagrangian Riemannian submersion defined from locally product
spaces onto a Riemannian manifold. Also, we obtain the Chen-Ricci inequality for the said Riemannian
submersion. In the end, we give a non-trivial example.

1. Introduction

Riemannian invariants are of primary importance in Riemmanian geometry. These invariants determine
the extrinsic and intrinsic properties of Riemannian manifolds which in turn affect the behaviour of the
manifold in general form. The relationship between intrinsic and extrinsic invariants was established by
Chen [10]. He established a link between main intrinsic invariants and main extrinsic invariants in the form
some inequalities. Chen [8] also established a relationship between the squared mean curvature and Ricci
curvature of a submanifold in the form of an inequality. In 2005, Chen [7] proved the generalized version
of this inequality, know as Chen-Ricci inequality, for arbitrary submanifolds in an arbitrary Riemannian
manifold. Later, this inequality was studied by many authors in different settings. On the other hand, the
theory of Riemannian submersions was initiated by Neill [24]. A Riemannian submersion gives rise to two
orthogonal complementary distibutions, horizontal and vertical, the vertical being always integrable. In
addition to being of fundamental importance in Riemannian geometry, Riemannian submersions are also
of great interest in many areas of theoretical physics like Yang-Mills theory [6, 38], Kaluza-Klein theory
[5, 16], supergravity and string theories [19]. To explore the theory further see [18, 20, 22, 23, 29, 33–35, 37].

Chen [9] connected the theory of Riemannian submersions and minimal immersions via a simple
optimal inequality. Later, Chen derived the case of equality of this inequality. Alegre et al. [2] established
relationship between Riemannian submersions with totally geodesic fibers and δ-invariants. The notion of
anti-invarinat Riemannian submersions from almost Hermitian manifolds was introduced by Sahin [27].
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A Lagrangian submersion is a special case of anti-invariant submersions [31]. Gunduzalp [14] studied
anti-invariant Riemannian submersions from almost product manifolds. Tastan et al. [32] studied anti-
invariant Riemannian submersions from locally product manifolds. Gubahar et al. [13] obtained sharp
inequalities which involve the Ricci curvature of Riemannian submersions. Aytimur et al. [3] investigated
the sharp inequalities of anti- invariant Riemannian submersions from Sasakian space forms. Gunduzalp
[15] investigated slant submersions from almost proct manifolds. We recently studied conformal bi-slant
Riemannian submersions from locally product manifolds. Our main goal is to study the optimal inequalities
which involve the scalar curvature and Ricci curvature of Lagrangian Riemannian submersion from Locally
product spaces and prove the Chen-Ricci inequality for the said submersion.

2. Preliminaries

In this section we mainly follow [3, 13, 25, 30].

2.1. Riemannian Submersions
Let ψ : M1 −→ M2 be a smooth map from a Riemannian manifold M1 of dimension m onto the

Riemannian manifold M2 of dimension n where m > n. Then ψ is said to be a Riemannian submersion [24]
if it satisfies the following conditions:

1. ψ is of maximal rank.
2. The differential map ψ∗ of ψ preserves the lengths of horizontal vectors.

By a horizontal vector field Y on M1 we mean a vector field which is orthogonal to the kernel of ψ∗ at each
point p of M1 and by a vertical vector field V on M1 we mean a vector field which is tangent to the kernel
of ψ∗ at each point p ∈M1. Denote by Hp= {set of all horizontal vectors at p} and by Vp= {set of all vertical
vectors at p}. Thus a Riemannian submersion defines two complementary ortogonal distributions H and
V , called horizontal and vertical distribution respectively, on M1. Further the vertical distribution V is
always integrable.

O’ Neill defined two fundamental tensors T and A of a Riemannian submersion. These are (1,2)-tensors
and are defined by the following formulae:

TEF =H ∇V EV F + V ∇V EH F, (1)

AEF = V ∇H EH F +H ∇H EV F, (2)

where ∇ denotes Riemannian connection on M1, E, F are arbitrary vector fields on M1 and V , H denote the
projection morphisms on the distributions kerψ∗ and (kerψ∗)⊥ respectively. These tensors are called O’Neils
integrability tensors. For any F ∈ Γ(TM1), TF and AF are skew-symmetric operators on

(
Γ(TM1), 1

)
and they

reverse the horizontal and vertical distributions. It can be easily verified that T is vertical i.e. TF = TV F and
A is horizontal i.e. AF = AH F.

The tensor field T and A also satisfy:

TVU = TUV, ∀ U,V ∈ Γ(kerψ∗), (3)

AXY = −AYX =
1
2
V [X,Y], ∀ X,Y ∈ (kerψ∗)⊥. (4)

The above equations imply that T restricted over vertical distribution V is a symmetric operator and A
restricted over horizontal distribution H is skew-symmetric operator. Also, operator A measures the
obstruction of the horizontal distribution from being integrable.

On fibers, T acts as second fundamental form of submersion and upon restriction to vertical vectors the
condition T = 0 translates to the condition that the fibers are totally geodesic. If T is identically equal to zero
then we say that the Riemannian submersion has totally geodesic fibers. Let V1,V2, ...,Vn be an orthonormal
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frame of (kerψ∗). Then H = 1
n
∑n

j=1 TV j V j, a horizontal vector field, is called the mean curvature vector field of
the fibre. The Riemmanian submersion is called a minimal submersion if H= 0 . A Riemannian submersion
is said to have totally umbilical fibers if

TUV = 11(U,V)H.

Let R, R∗ and R̂ denote the Riemannian curvature tensors of M1, M2 and any fiber of ψ respectively. The
version of Gauss-Codazzi equations for a Riemannian submersion is given by

R(V1,V2,V3,V4) = R̂(V1,V2,V3,V4) + 1(TV1 V4,TV2 V3) − 1(TV1 V3,TV2 V4) (5)

R(Y1,Y2,Y3,Y4) = R∗(Y1,Y2,Y3,Y4) − 21(AY1 Y2,AY3 Y4) + 1(AY2 Y3,AY1 Y4) − 1(AY1 Y3,AY2 Y4) (6)

R(Y1,V1,Y2,V2) = 1
(
(∇Y1 T)(V1,V2),Y2

)
+ 1
(
(∇V1 A)(Y1,Y2),V2

)
−1(TV1 Y1,TV2 Y2) + 1(AY1 V1,AY2 V2) (7)

where V1,V2,V3,V4 ∈ V (M1) and Y1,Y2,Y3,Y4 ∈H .

2.2. Locally Product Manifold
Let M be an m-dimensional manifold with a tensor F of type (1, 1) such that

F2 = I, (F , I).

Then, we say that M is an almost product manifold with almost product structure F. We put

P =
1
2

(I + F),Q =
1
2

(I − F).

Then we get

P +Q = I,P2 = P,Q2 = Q,PQ = QP = 0,F = P −Q.

Thus P and Q define two complementary distributions P and Q. We easily see that the eigenvalues of F are
+1 or -1.
If an almost product manifold M admits a Riemannian metric 1 such that

1(FX,FY) = 1(X,Y)

for any vector fields X and Y on M, then M is called an almost product Riemannian manifold, denoted by
(M, 1,F). Denote the Levi-Civita connection on M with respect to 1 by ∇. Then, M is called a locally product
Riemannian manifold if F is parallel with respect to ∇, i.e.

∇XF = 0,X ∈ Γ(TM).

Let M1(c1) and M2(c2) be real space forms with constant sectional curvature c1 and c2 respectively. Then the
Riemannian curvature tensor R̄ of locally product Riemannian manifold M=M1(c1) ×M2(c2) has the form

R̄(X1,X2,X3,X4) =
c1 + c2

4

[
1(X1,X4)1(X2,X3) − 1(X1,X3)1(X2,X4)

+1(FX1,X4)1(FX2,X3) − 1(FX1,X3)1(FX2,X4)
]

+
c1 − c2

4

[
1(X1,X4)1(FX2,X3) − 1(FX1,X3)1(X2,X4)

+1(FX1,X4)1(X2,X3) − 1(X1,X3)1(FX2,X4)
]

(8)

where X1,X2,X3,X4 ∈ Γ(TM).
In case of c1 = c2 = c, the Riemannian curvature tensor R̄ of locally product Riemanian manifold M(c) =
M1(c) ×M2(c) becomes

R̄(X1,X2,X3,X4) =
c
2

[
1(X1,X4)1(X2,X3) − 1(X1,X3)1(X2,X4)

+1(FX1,X4)1(FX2,X3) − 1(FX1,X3)1(FX2,X4)
]

(9)
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3. Main Results

3.1. Some Inequalities involing Ricci and Scalar Curvature
In this section, we will derive some inequalities which involve Ricci and Scalar curvature of horizon-

tal and vertical distributions of the Lagrangian Riemannian submersion. The cases of equality of these
inequalities will also be discussed.

Let M(c1, c2) be a locally product space form and (N, 1′) be a Riemannian manifold. Letψ : M(c1, c2) −→ N
be an Lagrangian Riemannian submersion from M(c1, c2) onto N. For any p ∈M(c1, c2), we assume that
{V1,V2, ...,Vn,Y1,Y2, ...,Ym} is an orthonormal basis of TpM(c1, c2) such that Vp is spanned by {V1,V2, ...,Vn}

and Hp is spanned by
{Y1,Y2, ...,Ym}.

Using (5) and (8), the curvature tensor of the vertical distribution is given by

ˆ̄R(W1,W2,W3,W4) =
c1 + c2

4

[
1(W1,W4)1(W2,W3) − 1(W1,W3)1(W2,W4)

]
+1(TW1 W4,TW2 W3) − 1(TW2 W4,TW1 W3) (10)

for any W1,W2,W3,W4 ∈ V
(
M(c1, c2)

)
.

Using (6) and (8), we get the curvature tensor of the horizontal distribution as follows:

R̄∗(Z1,Z2,Z3,Z4) =
c1 + c2

4

[
1(Z1,Z4)1(Z2,Z3) − 1(Z1,Z3)1(Z2,Z4)

]
+21(AZ1 Z2,AZ3 Z4) − 1(AZ2 Z3,AZ1 Z4) + 1(AZ1 Z3,AZ2 Z4), (11)

for any Z1,Z2,Z3,Z4 ∈H .

Proposition 3.1. For an Lagrangian Riemannian submersion ψ : M(c1, c2) −→ N,

ˆ̄Ric(V) ≥
c1 + c2

4
(n − 1)1(V,V) − n1(TVV,H)

The equality holds if and only each fiber is a totally geodesic.

Proof. Since ψ is anti-invariant, ξ is vertical and T is symmetric over vertical vector fields, for V = V1, using
(10) we get

ˆ̄R(V,Vi,Vi,V) =
c1 − c2

4

[
1(V,V)1(Vi,Vi)

]
+
[
1(TVV,TVi Vi) − 1(TVi V,TVi V)

]}
From the above equation we get,

ˆ̄Ric(V) =
c1 + c2

4

[
1(V,V)

n∑
i=2

1(Vi,Vi)
]
+

n∑
i=2

[
1(TVV,TVi Vi) − 1(TVi V,TVi V)

]
,

where ˆ̄Ric(V) =
∑n

j=2
ˆ̄R(V,Vi,Vi,V).

After simplifying we immediately get,

ˆ̄Ric(V) =
c1 + c2

4
(n − 1)1(V,V) − n1(TVV,H) +

n∑
i=1

1(TVi V,TVi V)

Since
∑n

i=1 1(TVi V,TVi V) ≥ 0, the inequality holds. Also, if all the fibers are totally geodesic i.e. T = 0, then
the equality holds in the inequality.

The scalar curvature ˆ̄τ of the vertical distribution is given by

ˆ̄τ =
∑

1≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) (12)

The next propostion gives the inequality satisfied by scalar curvature of the vertical distribution.
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Proposition 3.2. For an Lagrangian Riemannian submersion ψ : M(c1, c2) −→ N,

2ˆ̄τ ≥
c1 + c2

4
n(n − 1) − n2

∥H∥2

The case of equality for the above inequality holds when each fiber of the Riemannian submersion is a totally geodesic.

Proof. Using (10) and the facts that ψ is anti-invariant, ξ ∈ V (M) and T is symmetric over vertical vector
fields, we get

ˆ̄R(Vi,V j,V j,Vi) =
c1 + c2

4

[
1(Vi,Vi)1(V j,V j)

]
+
[
1(TVi Vi,TV j V j) − 1(TVi V j,TVi V j)

]
Now using (12), we get

ˆ̄τ =
c1 + c2

4

∑
1≤i< j≤n

[
1(Vi,Vi)1(V j,V j)

]
+
∑

1≤i< j≤n

[
1(TVi Vi,TV j V j) − 1(TVi V j,TVi V j)

]
.

After simplification, we immediately get

2 ˆ̄τ =
c1 + c2

4
n(n − 1) − n2

∥H∥2 +
n∑

i, j=1

1(TVi Vi,TV j V j)

Since
∑n

i, j=1 1(TVi Vi,TV j V j) ≥ 0, it is clear that the inequality holds. Also, it is obvious that the equality case
holds if and only if each fiber is totally geodesic.

Now will give an inequality involving the scalar curvature of the horizontal distribution of the Lagrangian
Riemannian submersion. The scalar curvature of the horizontal distribution is given by

τ̄∗ =
∑

1≤i< j≤m

R̄∗(Yi,Y j,Y j,Yi) (13)

Proposition 3.3. For a Lagrangian Riemannian submersion ψ : M(c1, c2) −→ N,

2τ̄∗ ≤
c1 + c2

4
m(m − 1)

The equality holds in above ineqaulity⇔ the horizontal distribution is integrable.

Proof. In view of (11) and using the facts that ψ is anti-invariant, ξ is horizontal and A is anti-symmetric
over horizontal vectors, we have

R̄∗(Yi,Y j,Y j,Yi) =
c1 + c2

4

[
1(Yi,Yi)1(Y j,Y j)

]
− 31(AYi Y j,AYi Y j).

Using (13), we get

τ̄∗ =
c1 + c2

4

∑
1≤i< j≤m

[
1(Yi,Yi)1(Y j,Y j)

]
− 3

∑
1≤i< j≤m

1(AYi Y j,AYi Y j)
}

After simplifying, we immediately get

2τ̄∗ =
c1 + c2

4
m(m − 1) − 3

m∑
i, j=1

1(AYi Y j,AYi Y j) (14)

From the above equation, it is clear that the inequality holds. Also, if the horizontal distribution is integrable
then A is identically zero. In this case the above inequality becomes equality.
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3.2. Chen-Ricci inequalities
Now, we will derive Chen-Ricci inequalities for the anti-invariant Riemannian submersion ψ : M(κ) −→

N. We will use the following notations:

Tαi j = 1(TVi V j,Yα); 1 ≤ i, j ≤ n, 1 ≤ α ≤ m (15)

As
i j = 1(AYi Y j,Vs); 1 ≤ i, j ≤ m, 1 ≤ s ≤ n (16)

δ(N) =
m∑

i=1

n∑
s=1

1
(
(∇Yi T)Vs Vs,Yi

)
(17)

From [13], we have

m∑
α=1

n∑
i, j=1

(Tαi j)
2 =

1
2

n2
∥H∥2 +

1
2

m∑
α=1

[
Tα11 − Tα22 − ... − Tαnn

]
+2

m∑
α=1

n∑
j=2

(Tα1 j)
2
− 2

m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]
. (18)

Theorem 3.4. For a Lagrangian Riemannian submersion ψ : M(c1, c2) −→ N,

ˆ̄Ric(V) ≥
c1 + c2

4
(n − 1) −

1
4

n2
∥H∥2

The equality holds⇔

Tα11 = Tα22 + ... + Tαnn

Tα1 j = 0, j = 2, ...,n.

Proof. Using (15) in (13) we get,

2 ˆ̄τ =
c1 + c2

4
n(n − 1) − n2

∥H∥2 +
m∑
α=1

n∑
i, j=1

(Tαi j)
2

Using (18) in the above equation, we get

2ˆ̄τ =
c1 + c2

4
n(n − 1) −

1
2

n2
∥H∥2 +

1
2

m∑
α=1

[
Tα11 − Tα22 − ... − Tαmm

]
+ 2

m∑
α=1

n∑
j=2

(Tα1 j)
2
− 2

m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]}

From the above equation, we clearly have the following inequality

2ˆ̄τ ≥
c1 + c2

4
n(n − 1) −

1
2

n2
∥H∥2 − 2

m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]

Using (5) and (15), we have

2
∑

2≤i< j≤n

R̄(Vi,V j,V j,Vi) = 2
∑

2≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) + 2
m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]

(19)

In view of (19), the inequality (19) can be written as

2ˆ̄τ ≥
c1 + c2

4
n(n − 1) −

1
2

n2
∥H∥2 + 2

∑
2≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) − 2
∑

2≤i< j≤n

R̄(Vi,V j,V j,Vi)
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Using (13), we can write

2ˆ̄τ = 2
∑

2≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) + 2
n∑

j=2

ˆ̄R(V,V j,V j,V)

Using the above equation in (20), we get

2 ˆ̄Ric(U) ≥
c1 + c2

4
n(n − 1) −

1
2

n2
∥H∥2 − 2

∑
2≤i< j≤n

R̄(Vi,V j,V j,Vi)

Now using (8), we get

ˆ̄Ric(U) ≥
c1 + c2

4
(n − 1) −

1
4

n2
∥H∥2

Theorem 3.5. For a Lagrangian Riemannian submersion ψ : M(c1, c2) −→ N,

R̄ic∗(X1) ≤
c1 + c2

4
m(m − 1)

The case of equality hold in the above ineqaulity if and only

A1 j = 0, j = 2, ...,m.

Proof. Using (16) and the fact that A is anti-symmetric in (14), we get

2τ̄∗ =
c1 + c2

4
m(m − 1) − 6

n∑
s=1

m∑
j=2

(As
1 j)

2
− 6

n∑
s=1

∑
2≤i< j≤m

(As
i j)

2

In view of (6) and (16), we have

2
∑

2≤i< j≤m

R̄(Yi,Y j,Y j,Yi) = 2
∑

2≤i< j≤m

R̄∗(Yi,Y j,Y j,Yi) + 6
n∑

s=1

∑
2≤i< j≤m

(As
i j)

2.

Using the above expression in (20), we get

2τ̄∗ =
c1 + c2

4
m(m − 1) − 6

n∑
s=1

m∑
j=2

(As
1 j)

2 + 2
∑

2≤i< j≤m

R̄∗(Yi,Y j,Y j,Yi) − 2
∑

2≤i< j≤m

R̄(Yi,Y j,Y j,Yi)

Making use of (8) in (20), we get

R̄ic∗(X1) =
c1 + c2

4
m(m − 1) − 6

n∑
s=1

m∑
j=2

(As
1 j)

2

Since
∑m

j=2(As
1 j)

2
≥ 0, we clearly have the inequality.

Denote (see [13])

∥TV
∥

2 =

m∑
k=1

n∑
i=1

1̄(TVi Yk,TVi Yk), (20)

∥AH
∥

2 =

m∑
k=1

n∑
i=1

1̄(AYk Vi,AYk Vi). (21)
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Theorem 3.6. For a Lagrangian Riemannian submersion ψ : M(c1, c2) −→ N,

c1 + c2

4
(nm +m + n − 2) +

c1 − c2

4

[
3n − 4 −m − (n − 2)

]
≤ ˆ̄Ric(U1) + R̄ic∗(X1) +

1
4

n2
∥H∥2 + 3

n∑
s=1

m∑
α=2

(Aα
1s)

2
− δ(N) + ∥TV

∥
2
− ∥AH

∥
2
]

The case of equality holds if and only if

Tα11 = Tα22 + ... + Tαnn

T1 j = 0, j = 2, ...,n.

Proof. By the definition of scalar curvature of M(κ), we have

2τ̄ = 2
∑

1≤i< j≤n

R̄(Vi,V j,V j,Vi) + 2
∑

1≤k<r≤m

R̄(Yk,Yr,Yr,Yk) + 2
n∑

i=1

m∑
k=1

R̄(Yk,Vi,Vi,Yk) (22)

Using (8) in (22), we get

2τ̄ = 2
∑

1≤i< j≤n

R̄(Vi,V j,V j,Vi) + 2
∑

1≤k<r≤m

R̄(Yk,Yr,Yr,Yk) +
c1 + c2

4
[nm − n] −

c1 − c2

2
n (23)

Using (5), (6) and (7) in (22), we get

2τ̄ = 2
∑

1≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) + 2
∑

1≤k<r≤m

R̄∗(Yk,Yr,Yr,Yk) + n2
∥H∥2

+

n∑
i, j=1

1̄(TVi V j,TVi V j) + 3
m∑

k,r=1

1̄(AYk Yr,AYk Yr) − 2
m∑

k=1

n∑
i=1

1̄
(
(∇Yk T)Vi Vi,Yk

)
+2

m∑
k=1

n∑
i=1

[
1̄(TVi Yk,TVi Yk) − 1̄(AYk Vi,AYk Vi)

]
.

Making use of (3), (4)(15), (16), (17) 18, (20) and (21) in the above equation, we get

2τ̄ = 2
∑

1≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) + 2
∑

1≤k<r≤m

R̄∗(Yk,Yr,Yr,Yk) +
1
2

n2
∥H∥2 −

1
2

m∑
α=1

[
Tα11 − Tα22 − ... − Tαnn

]2
−2

m∑
α=1

n∑
j=2

(Tα1 j)
2 + 2

m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]
+ 6

n∑
s=1

m∑
r=2

(As
1r)

2

+6
n∑

s=1

∑
2≤k<r≤m

(As
kr)

2
− 2δ(N) + 2

[
∥TV
∥

2
− ∥AH

∥
2
]
. (24)

In view of (22) and (24), we get

2
∑

1≤i< j≤n

R̄(Vi,V j,V j,Vi) + 2
∑

1≤k<r≤m

R̄(Yk,Yr,Yr,Yk) +
c1 + c2

4
[nm − n] −

c1 − c2

2
n

= 2
∑

1≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) + 2
∑

1≤k<r≤m

R̄∗(Yk,Yr,Yr,Yk) +
1
2

n2
∥H∥2

−
1
2

m∑
α=1

[
Tα11 − Tα22 − ... − Tαnn

]2
− 2

m∑
α=1

n∑
j=2

(Tα1 j)
2 + 2

m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]
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+6
n∑

s=1

m∑
r=2

(As
1r)

2 + 6
n∑

s=1

∑
2≤k<r≤m

(As
kr)

2
− 2δ(N) + 2

[
∥TV
∥

2
− ∥AH

∥
2
]

(25)

Using (5) and (6), we have the following equations.∑
2≤i< j≤n

R̄(Vi,V j,V j,Vi) =
∑

2≤i< j≤n

ˆ̄R(Vi,V j,V j,Vi) + 2
m∑
α=1

∑
2≤i< j≤n

[
TαiiT

α
j j − (Tαi j)

2
]

(26)

∑
2≤k<r≤m

R̄(Yk,Yr,Yr,Yk) =
∑

2≤k<r≤m

R̄∗(Yk,Yr,Yr,Yk) + 6
n∑

s=1

∑
2≤k<r≤m

(As
kr)

2 (27)

Now, using (26) and (27) in (25), we get

c1 + c2

4
[nm − n] −

c1 − c2

2
n + 2

n∑
j=2

R̄(V1,V j,V j,V1) + 2
n∑

j=2

R̄(Y1,Yr,Yr,Y1) =

2 ˆ̄Ric(V1) + 2R̄ic∗(Y1) +
1
2

n2
∥H∥2 −

1
2

m∑
α=1

[
Tα11 − Tα22 − ... − Tαmm

]2
−2

m∑
α=1

n∑
j=2

(Tα1 j)
2 + +6

n∑
s=1

m∑
r=2

(As
1r)

2
− 2δ(N) + 2

[
∥TV
∥

2
− ∥AH

∥
2
]

(28)

Using (8) in (28), we immediately get
c1 + c2

4
(nm + n +m − 2) +

c1 − c2

4

(
3n − 4 −m − (n − 2)

)
≤

ˆ̄Ric(V1) + R̄ic∗(Y1) +
1
4

n2
∥H∥2 + 3

n∑
s=1

m∑
r=2

(As
1r)

2
− δ(N) + ∥TV

∥
2
− ∥AH

∥
2.

4. Example

In this section, we give a non-trivial example of Lagrangian Riemannian submersion from a locally
product manifold.

Example 4.1. Consider an 4-dimensional Euclidean spaceR4 with Euclidean metric 1. We define a product structure
F on R4 by

P(y1, y2, y3, y4) = (y1,−y2, y3,−y4)

Then (R4, 1,F) forms a locally product manifold.
Now, define a map π : R4

−→ R2 by

π(y1, y2, y3, y4) = (
y1 + y4
√

2
,

y2 + y3
√

2
)

By direct calculations,

kerπ∗ = span
{
V1 = ∂y1 − ∂y4,V2 = ∂y2 − ∂x3

}
(kerπ∗)⊥ = span

{
X1 = ∂y1 + ∂y4,X2 = ∂y2 + ∂x3

}
Then it is easy to see that π is a Riemannian submersion. Moreover, FV1 = X2 and FV2 = X1 implies that
F(kerπ∗)=(kerπ∗)⊥. As a result π is a Lagrangian submersion.
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