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Abstract. The object of the present paper is to study anti-invariant submanifolds of Lorentzian para-
Kenmotsu manifold (briefly, LP-Kenmotsu manifold) with respect to the Zamkovoy connection. We prove
that if an anti-invariant submanifold M of LP-Kenmotsu manifold contains a conformal Ricci soliton with
collinear Reeb vector field, then M is η-Einstein. We also study conformal η-Ricci soliton on this submanifold
with the Zamkovoy connection satisfying the curvature conditions: (ξ.)R∗ .S∗ = 0, (ξ.)S∗ .R∗ and (ξ.)S∗ .P∗ = 0.
To validate some of our results, we construct a non-trivial example of anti-invariant submanifold of 5-
dimensional LP-Kenmotsu manifolds admitting conformal η-Ricci soliton with respect to the Zamkovoy
connection.

1. Introduction

In 2018, the notion of LP-Kenmotsu manifold has been introduced by Haseeb and Prasad [18]. Later,
Shukla and Dixit [38] examined φ-recurrent LP-Kenmotsu manifolds and discover that such type of man-
ifolds are η-Einstein. Atceken [1] studied invariant submanifolds of LP-Kenmotsu manifolds in 2022 and
he investigated the necessary and sufficient condition for the LP-Kenmotsu manifold to be total geodesic.
Further, Chandra and Lal [11] also explored some special results on 3-dimensional LP-Kenmotsu manifolds.
This manifold was also studied by Sai Prasad et al. [33], and Haseeb et al. [19].

In 1977, anti-invariant submanifolds of Sasakian space forms were introduced by Yano and Kon [40].
Later in 1985, Pandey and Kumar investigated properties of anti-invariant submanifolds of almost para-
contact manifolds [30]. Recently, Karmakar and Bhattyacharyya [21] studied anti-invariant submanifolds
of some indefinite almost contact and para-contact manifolds. Most recently, Karmakar [20] studied
η-Ricci-Yamabe soliton on anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy
connection.

Let φ be a differential map from a manifold M into another manifold M̃ and let the dimensions of M,
M̃ be m, m̃ (m < m̃), respectively. If rankφ = m, then φ is called an immersion of M into M̃. If φ(p∗) , φ(q∗)
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for p∗ , q∗, then φ is called an imbedding of M into M̃. If the manifolds M and M̃ satisfy the following
two conditions, then M is called submanifold of M̃ - (i) M ⊂ M̃, (ii) the inclusion map from M into M̃ is an
imbedding of M into M̃.

A submanifold M is called anti-invariant ifω1 ∈ Tp∗ (M)⇒ φω1 ∈ T⊥p∗ (M), for all p∗ ∈M,where Tp∗ (M) and
T⊥p∗ (M) are, respectively, tangent space and normal space at p∗ ∈ M. Thus in an anti-invariant submanifold
M, we have for all ω1, ω2 ∈ Tp∗ (M)

δ(ω1, φω2) = 0.

In 2008, the notion of Zamkovoy canonical connection (briefly, Zamkovoy connection) was introduced by
Zamkovoy [43] for a para-contact manifold. And this connection was defined as a canonical para-contact
connection whose torsion is the obstruction of para-contact manifold to be a para-Sasakian manifold.
Later, Biswas and Baishya [5, 6] studied this connection on generalized pseudo Ricci symmetric Sasakian
manifolds and on almost pseudo symmetric Sasakian manifolds. This connection was further studied by
Blaga [7] on para-Kenmotsu manifolds. In 2020, Mandal and Das [13, 22–24] studied in detail on various
curvature tensors of Sasakian and LP-Sasakian manifolds admitting this connection. In 2021, they discussed
LP-Sasakian manifolds equipped with this connection and conharmonic curvature tensor [25]. Recently,
they introduced Zamkovoy connection on LP-Kenmotsu manifold [26] and study Ricci soliton on it with
respect to this connection. Zamkovoy connection for an n-dimensional almost contact metric manifold M∗

equipped with an almost contact metric structure (ϕ, ς, η, δ) consisting of a (1, 1) tensor field ϕ, a vector field
ς, a 1-form η and a Riemannian metric δ, is defined by

∇
∗

ω1
ω2 = ∇ω1ω2 +

(
∇ω1η

)
(ω2) ς − η (ω2)∇ω1ς + η (ω1)ϕω2, (1)

for all ω1, ω2 ∈ χ (M∗) ,where χ (M∗) is the set of all vector fields on M∗.
R. S. Hamilton was the first who introduced the concept of Ricci flow in differential geometry in 1982.

Hamilton [17] observed that the Ricci flow is an excellent tool for simplifying the structure of a manifold. It
is the process which deforms the metric of a Riemannian manifold by smoothing out the irregularities. The
Ricci flow equation is an evolution equation for metrices on a Riemannian manifold defined as follows:

∂δ
∂t
= −2S, δ(0) = δ0, (2)

where δ is a Riemannian metric, S is Ricci curvatre tensor and t is time. The solitons for the Ricci flow is
the solutions of the above equation, where the metrices at different times differ by a diffeomorphism of the
manifold. A Ricci soliton is represented by a triple (δ,V, λ), where V is a vector field and λ is a scalar, which
satisfies the equation

LVδ + 2S + 2λδ = 0, (3)

where S is Ricci curvature tensor and LVδ denotes the Lie derivative of δ along the vector field V. A Ricci
soliton is said to be shrinking, steady, expanding according as λ < 0, λ = 0, λ > 0, respectively. The vector
field V is called potential vector field and if it is a gradient of a smooth function, then the Ricci soliton (δ,V, λ)
is called a gradient Ricci soliton. Ricci soliton was further studied by many researchers. For instance, we
see [2, 3, 29, 32, 37, 39, 42] and their references.

In 2005, Fischer [15] introduced conformal Ricci flow which is a generalization of the Ricci flow equation
that modifies the unit volume constraint to a scalar curvature constraint. The conformal Ricci flow on a
manifold M is defined by the equation

∂δ
∂t
+ 2
(
S +
δ
n

)
= −νδ, (4)

r(δ) = −1, (5)

where M is considered as a smooth closed connected oriented n-manifold, r(1) is the scalar curvature of
the manifold and ν is a scalar non-dynamical field. Corresponding to the conformal Ricci flow equation,
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Basu and Bhatyacharyya [4] introduced the notion of conformal Ricci soliton equation as a generalization
of Ricci soliton given by

LVδ + 2S +
[
2λ −

(
p +

2
n

)]
δ = 0, (6)

where λ is a constant and p is a scalar non-dynamical field..
As a generalization of Ricci soliton, the η-Ricci soliton was introduced by Cho and Kimura [12]. This

notion was also studied by Cälin and Crasmarearu [10]. Later, remarkable studies on η-Ricci soliton was
made by Blaga [8], Prakasha [31] and Siddiqi [36]. Let M∗ be a Riemannian manifold with structure(
ϕ, ς, η, δ

)
. Consider the equation

LVδ + 2S + 2λδ + 2βη ⊗ η = 0, (7)

where S is Ricci curvature tensor, and λ, β are real constants. The data
(
δ,V, λ, β

)
which satisfies the equation

(7) is called an η-Ricci soliton on M∗. In particular, when β = 0, the notion of η-Ricci soliton simply reduces
to the notion of Ricci soliton. And when β , 0,

(
δ,V, λ, β

)
is called proper η-Ricci soliton on M∗.

In 2018, Siddiqi [35] introduced the notion of conformal η-Ricci soliton as

LVδ + 2S +
[
2λ −

(
p +

2
n

)]
δ + 2βη ⊗ η = 0, (8)

where LVδ denotes the Lie derivative of δ along the vector field V, λ and β are real constants and p is a scalar
non-dynamical field.

The notion of projective curvature tensor was first introduced by Yano and Bochner [41] in 1953. This
curvature tensor was further studied by De and Sengupta [14], Ghosh [16]. If there exists a one-one mapping
between each co-ordinate neighbourhood of a manifold M/ to a domain of Rn such that any geodesic of M/

corresponds to a straight line in Rn, then the manifold M/ is said to be locally projectively flat. Due to [14],
the projective curvature tensor P of rank three for an n-dimensional Riemannian manifold M/ is given by

P (ω1, ω2)ω3 = R (ω1, ω2)ω3

−
1

n − 1
[S (ω2, ω3)ω1 − S (ω1, ω3)ω2] , (9)

for all ω1, ω2 and ω3 ∈ χ(M/), where R is the Riemannianc curvature tensor and r is the scalar curvature.

Definition 1.1. [27] A Riemannian manifold M is called an η-Einstein manifold if its Ricci curvature tensor is of
the form

S (ω2, ω3) = k1δ (ω2, ω3) + k2η (ω2) η (ω3) ,

for all ω2, ω3 ∈ χ (M) , where k1, k2 are scalars.

This paper is structured as follows: First two sections of the paper have been kept for introduction
and preliminaries. In Section-3, we introduce Zamkovoy connection (∇∗) on anti-invariant submanifold of
LP-Kenmotsu manifold. Section-4 concerns with conformal Ricci soliton on anti-invariant submanifold of
LP-Kenmotsu manifold with respect to ∇∗. Section-5 deals with conformal η-Ricci soliton on anti-invariant
submanifold of LP-Kenmotsu manifold with respect to ∇∗. In Section-6, we discuss conformal Ricci soliton
on anti-invariant submanifold of LP-Kenmotsu manifold satisfying (ς.)R∗ .S∗ = 0. Section-7 concerns with
conformal η-Ricci soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying (ς.)S∗ .R∗ = 0.
Section-8 deals with conformal η-Ricci soliton on anti-anvariant submanifold of LP-Kenmotsu manifold
satisfying (ς.)S∗ .P∗ = 0. Finally, Section-9 refers to an example of an anti-invariant submanifold of LP-
Kenmotsu manifold admitting conformal η-Ricci soliton with respect to ∇∗.
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2. Preliminaries

Let M be an n-dimensional Lorentzian almost para-contact manifold with structure
(
ϕ, ς, η, δ

)
, where η

is a 1-form, ς is the structure vector field, ϕ is a (1, 1)-tensor field and δ is a Lorentzian metric satisfying

ϕ2 (ω1) = ω1 + η (ω1) ς, η(ς) = −1, (10)
δ (ω1, ς) = η (ω1) , (11)

δ
(
ϕω1, ϕω2

)
= δ (ω1, ω2) + η (ω1) η (ω2) , (12)

for all vector fields ω1, ω2 on M. A Lorentzian almost para-contact manifold is said to be Lorentzian
para-contact manifold if η becomes a contact form. In a Lorentzian para-contact manifold the following
relations also hold [28, 34]:

ϕ (ς) = 0, η ◦ ϕ = 0, (13)

δ
(
ω1, ϕω2

)
= δ

(
ϕω1, ω2

)
. (14)

The manifold M is called a Lorentzian para-Kenmotsu manifold if(
∇ω1φ

)
ω2 = −δ

(
ϕω1, ω2

)
ς − η (ω2)ϕω1, (15)

for all smooth vector fields ω1, ω2 on M. In a Lorentzian para-Kenmotsu manifold the following relations
also hold [18, 26]:

∇ω1ς = −ω1 − η (ω1) ς, (16)(
∇ω1η

)
ω2 = −δ (ω1, ω2) − η (ω1) η (ω2) , (17)

η (R (ω1, ω2)ω3) = δ (ω2, ω3) η (ω1) − δ(ω1, ω3)η (ω2) , (18)
R (ω1, ω2) ς = η (ω2)ω1 − η (ω1)ω2, (19)
R(ς, ω1)ω2 = δ(ω1, ω2)ς − η (ω2)ω1, (20)

R(ς, ω1)ς = ω1 + η (ω1) ς, (21)
S (ω1, ς) = (n − 1) η (ω1) (22)

S (ς, ς) = − (n − 1) , (23)
Qς = (n − 1) ς, (24)

S
(
ϕω1, ϕω2

)
= S (ω1, ω2) + (n − 1) η (ω1) η (ω2) , (25)

for all smooth vector fields ω1, ω2, ω3 on M.

3. Zamkovoy connection on anti-invariant submanifold of LP-Kenmotsu manifold

Expression of Zamkovoy connection on an n-dimensional LP-Kenmotsu manifold M [26] is

∇
∗

ω1
ω2 = ∇ω1ω2 − δ(ω1, ω2)ς + η (ω2)ω1 + η (ω1)ϕω2. (26)

Setting ω2 = ς in (26) we obtain

∇
∗

ω1
ς = −2

[
ω1 + η (ω1) ς

]
. (27)

The Riemannian curvature tensor R∗ with respect to Zamkovoy connection [26] on M is given by

R∗ (ω1, ω2)ω3 = R (ω1, ω2)ω3 + 3δ (ω2, ω3)ω1 − 3δ (ω1, ω3)ω2

+2δ (ω2, ω3) η (ω1) ς − 2δ (ω1, ω3) η (ω2) ς

+2δ(ω2, ϕω3)η (ω1) ς − 2δ
(
ω1, ϕω3

)
η (ω2) ς

+2η (ω2) η (ω3)ω1 − 2η (ω1) η (ω3)ω2

−2η (ω2) η (ω3)ϕω1 + 2η (ω1) η (ω3)ϕω2. (28)



A. Mandal, M. Yildirim / Filomat 39:28 (2025), 10099–10113 10103

For an anti-invariant submanifold M of M the Riemannian curvature tensor is given by

R∗ (ω1, ω2)ω3 = R (ω1, ω2)ω3 + 3δ (ω2, ω3)ω1 − 3δ (ω1, ω3)ω2

+2δ (ω2, ω3) η (ω1) ς − 2δ (ω1, ω3) η (ω2) ς
+2η (ω2) η (ω3)ω1 − 2η (ω1) η (ω3)ω2

−2η (ω2) η (ω3)ϕω1 + 2η (ω1) η (ω3)ϕω2. (29)

Writing the equation (29) by the cyclic permutations of ω1, ω2 and ω3 and using the fact that R (ω1, ω2)ω3 +
R (ω2, ω3)ω1 + R (ω3, ω1)ω2 = 0, we have

R∗ (ω1, ω2)ω3 + R∗ (ω2, ω3)ω1 + R∗ (ω3, ω1)ω2 = 0. (30)

Therefore, the Riemannian curvature tensor with respect to Zamkovoy connection on M satisfies the 1st
Bianchi identity. Taking inner product of (29) with a vector field ω0,we get

R∗ (ω1, ω2, ω3, ω0) = R (ω1, ω2, ω3, ω0) + 3δ (ω2, ω3) δ (ω1, ω0)
−3δ (ω1, ω3) δ (ω2, ω0) + 2δ (ω2, ω3) η (ω1) η (ω0)
−2δ (ω1, ω3) η (ω2) η (ω0) + 2δ (ω1, ω0) η (ω2) η (ω3)
−2η (ω1) η (ω3) δ (ω2, ω0) , (31)

where R∗ (ω1, ω2, ω3, ω0) = δ(R∗ (ω1, ω2)ω3, ω0) and ω1, ω2, ω3, ω0 ∈ χ (M) . Contracting (31) over ω1 and ω0,
we get

S∗(ω2, ω3) = S(ω2, ω3) + (3n − 5)δ(ω2, ω3) + 2(n − 2)η (ω2) η (ω3) , (32)

where S∗ is the Ricci curvature tensor with respect to Zamkovoy connection.

Proposition 3.1. The Riemannian curvature tensor with respect to Zamkovoy connection on an anti-invariant
submanifold of LP-Kenmotsu manifold satisfies the 1st Bianchi identity.

Proposition 3.2. Ricci curvature tensor with respect to Zamkovoy connection of an anti-invariant submanifold of
LP-Kenmotsu manifold is symmetric and it is given by (32).

Lemma 3.3. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting Zamkovoy
connetion, then

R∗ (ω1, ω2) ς = 2
[
η (ω2)ω1 − η (ω1)ω2 + η (ω2)ϕω1 − η (ω1)ϕω2

]
, (33)

R∗ (ς, ω2)ω3 = 2
[
δ (ω2, ω3) ς − η (ω3)ω2 − η (ω3)ϕω2

]
, (34)

R∗ (ς, ω2) ς = 2
[
η (ω2) ς + ω2 + ϕω2

]
, (35)

S∗(ς, ω3) = S∗(ω3, ς) = 2 (n − 1) η (ω3) , (36)
Q∗ω2 = Qω2 + (3n − 5)ω2 + 2(n − 2)η (ω2) ς, (37)

Q∗ς = 2 (n − 1) ς, (38)
r∗ = r + (n − 1)(3n − 4), (39)

for all ω1, ω2, ω3 ∈ χ (M) , where R∗, Q∗ and r∗ denote Riemannian curvature tensor, Ricci operator and scalar
curvature of M with respect to ∇∗, respectively.

Theorem 3.4. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu manifold is Ricci flat with
respect to Zamkovoy connection, then M is η-Einstein manifold.

Proof. Let M be an n-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold, which is Ricci
flat with respect to Zamkovoy connection i.e., S∗(ω2, ω3) = 0, for all ω2, ω3 ∈ χ (M) . Then from (32), we have

S(ω2, ω3) = −(3n − 5)δ(ω2, ω3) − 2(n − 2)η (ω2) η (ω3) ,

which implies that M is an η-Einstein manifold.



A. Mandal, M. Yildirim / Filomat 39:28 (2025), 10099–10113 10104

Projective curvature tensor of M with respect to Zamkovoy connection is given by

P∗ (ω1, ω2)ω3 = R∗ (ω1, ω2)ω3

−
1

n − 1
[S∗ (ω2, ω3)ω1 − S∗ (ω1, ω3)ω2] , (40)

for all ω1, ω2, ω3 ∈ χ (M), where R∗ and P∗ are Riemannian curvature tensor, projective curvature tensor of
M with respect to ∇∗, respectively.

Lemma 3.5. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting Zamkovoy
connection, then

η (P∗ (ω1, ω2)ω3) = −
1

n − 1
[
S∗ (ω2, ω3) η (ω1) − S∗ (ω1, ω3) η (ω2)

]
, (41)

η (P∗ (ω1, ω2) ς) = 0, η (P∗ (ω1, ς) ς) = 0, η (P∗ (ς, ω2) ς) = 0, (42)

for all ω1, ω2, ω3 ∈ χ (M) .

4. Conformal Ricci soliton on anti-invariant submanifold of LP-Kenmotsu manifold with respect to ∇∗

Theorem 4.1. A conformal Ricci soliton (δ,V, λ) on an anti-invariant submanifold of LP-Kenmotsu manifold is
invariant under Zamkovoy connection if and only if relation holds

0 = 2δ(ω1, ω2)η (V) − δ(ω1,V)η (ω2) − δ(ω2,V)η (ω1)
+2(3n − 5)δ(ω1, ω2) + 4(n − 2)η (ω1) η (ω2) . (43)

for arbitrary vector fields ω1, ω2 and V.

Proof. The equation (6) with respect to Zamkovoy connection on an anti-invariant submanifold M of LP-
Kenmotsu manifold may be written as

(L∗
V
δ)(ω1, ω2) + 2S∗(ω1, ω2) +

[
2λ −

(
p +

2
n

)]
δ(ω1, ω2) = 0, (44)

where L∗
V
δ denote Lie derivative of δwith respect to ∇∗ along the vector field V and S∗ is the Ricci curvature

tensor of M with respect to ∇∗. After expanding (44) and using (26), we have

(L∗
V
δ)(ω1, ω2) + 2S∗(ω1, ω2) +

[
2λ −

(
p +

2
n

)]
δ(ω1, ω2)

= δ(∇∗ω1
V, ω2) + δ(ω1,∇

∗

ω2
V) + 2S∗(ω1, ω2)

+
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2)

= (LVδ)(ω1, ω2) + 2S(ω1, ω2) +
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2)

+2δ(ω1, ω2)η (V) − δ(ω1,V)η (ω2) − δ(ω2,V)η (ω1)
+2(3n − 5)δ(ω1, ω2) + 4(n − 2)η (ω1) η (ω2) ,

which shows that the conformal Ricci soliton is invariant on M under Zamkovoy connection, if (43)
holds.

Theorem 4.2. Let an anti-invariant submanifold M
(
ϕ, ς, η, δ

)
of LP-Kenmotsu manifold admit a conformal Ricci

soliton (δ,V, λ). If the potential vector field V be collinear with ς, then M is an η-Einstein manifold.
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Proof. Setting V = ς in (44), we get

0 = (L∗
ς
δ)(ω1, ω2) + 2S∗(ω1, ω2) +

[
2λ −

(
p +

2
n

)]
δ(ω1, ω2)

= δ(∇∗ω1
ς, ω2) + δ(ω1,∇

∗

ω2
ς) + 2S∗(ω1, ω2)

+
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2). (45)

Using (27) in (45), we obtain

S∗(ω1, ω2) =
[(p

2
+

1
n

)
− λ + 2

]
δ(ω1, ω2) + 2η (ω1) η (ω2) . (46)

Using (32) in (46), we have

S(ω1, ω2) =
[(p

2
+

1
n

)
− 3n + 7 − λ

]
δ(ω1, ω2)

−2(n − 3)η (ω1) η (ω2) . (47)

Therefore, M is an η-Einstein manifold.

Corollary 4.3. If an anti-invariant submanifold M
(
ϕ, ς, η, δ

)
of LP-Kenmotsu manifold admits conformal Ricci

soliton (δ,V, λ) with respect to ∇∗ and the potential vector field V be collinear with ς, then λ = p
2 +

1
n − 2(n − 1).

Moreover, the soliton is steady if p = 4(n − 1) − 2
n , shrinking if p < 4(n − 1) − 2

n , and expanding if p > 4(n − 1) − 2
n .

Proof. Setting ω1 = ς in (47), we get

λ =
p
2
+

1
n
− 2(n − 1).

Corollary 4.4. Let an anti-invariant submanifold M
(
ϕ, ς, η, δ

)
of LP-Kenmotsu manifold admit a conformal Ricci

soliton (δ, ς, λ) with respect to ∇∗. If M be Ricci flat, then λ = p
2 +

1
n − (n − 1). Moreover, the soliton is steady if

p = 2(n − 1) − 2
n , shrinking if p < 2(n − 1) − 2

n , and expanding if p > 2(n − 1) − 2
n .

Proof. Setting S(ω1, ω2) = 0 in (47), we have[(p
2
+

1
n

)
− 3n + 7 − λ

]
δ(ω1, ω2) = 2(n − 3)η (ω1) η (ω2) . (48)

Putting ω2 = ς in (48), we obtain

λ =
p
2
+

1
n
− (n − 1).

5. Conformal η-Ricci soliton on anti-invariant submanifold of LP-Kenmotsu manifold with respect to
∇∗

Theorem 5.1. If an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admits a conformal η-Ricci
soliton

(
δ, ς, λ, β

)
with respect to ∇∗, then the soliton scalars are related by the following equation

β = λ −
p
2
−

1
n
+ 2(n − 1).
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Proof. Writing the equation (8) with respect to ∇∗, we have

0 = (L∗
V
δ)(ω1, ω2) + 2S∗(ω1, ω2)

+
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2) + 2βη (ω1) η (ω2) . (49)

Applying V = ς in (49), we get

0 =
(
L∗ςδ
)

(ω1, ω2) + 2S∗(ω1, ω2)

+
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2) + 2βη (ω1) η (ω2) ,

= δ(∇∗ω1
ς, ω2) + δ(ω1,∇

∗

ω2
ς) + 2S∗(ω1, ω2)

+
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2) + 2βη (ω1) η (ω2) . (50)

Using (27) in (50), we get

S∗(ω1, ω2) =
[(p

2
+

1
n

)
− (λ − 2)

]
δ(ω1, ω2) − (β − 2)η (ω1) η (ω2) . (51)

Setting ω2 = ς in (51), we get

β = λ −
p
2
−

1
n
+ 2(n − 1). (52)

Corollary 5.2. If an anti-invariant submanifold M
(
ϕ, ς, η, δ

)
of LP-Kenmotsu manifold admits a conformal η-Ricci

soliton
(
δ, ς, λ, β

)
with respect to ∇∗, then M is η-Einstein.

Proof. In view of (32) and (51), we have

S(ω1, ω2) =
[(p

2
+

1
n

)
− λ − 3n + 7

]
δ(ω1, ω2)

−(β + 2n − 6)η (ω1) η (ω2) ,

which shows that M is M is η-Einstein.

Corollary 5.3. If an anti-invariant submanifold M
(
ϕ, ς, η, δ

)
of LP-Kenmotsu manifold admits a conformal η-Ricci

soliton
(
δ, ς, λ, β

)
with respect to ∇∗, then the scalar curvature of M is given by

r =
np
2
− nλ + β − 3n2 + 9n − 5. (53)

Proof. Contracting equation (51) and using (39) we get the result.

Corollary 5.4. If an anti-invariant submanifold M
(
ϕ, ς, η, δ

)
of LP-Kenmotsu manifold admits a conformal η-Ricci

soliton
(
δ, ς, λ, β

)
with respect to ∇∗ and the structure vector field ς be parallel with respect to ∇∗ i.e., ∇∗ω1

ς = 0, for
all ω1 ∈ χ (M), then M is η-Einstein.

Proof. Setting ∇∗ω1
ς = ∇∗ω2

ς = 0 in (50) and using (32), we get

S(ω1, ω2) =
[(p

2
+

1
n

)
− λ − 3n + 5

]
δ(ω1, ω2)

−(β + 2n − 6)η (ω1) η (ω2) ,

which shows that M is η-Einstein.
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Theorem 5.5. If M
(
ϕ, ς, η, δ

)
be an anti-invariant submanifold of LP-Kenmotsu manifold admitting a conformal

η-Ricci soliton with
(
δ, ς, λ, β

)
respect to ∇∗ such that V ∈ D = ker η, then the relation between soliton constants is

given by

2(n − 1) + λ = β −
(p

2
+

1
n

)
.

Proof. Consider the distribution D on M
(
ϕ, ς, η, δ

)
as D = ker η. If V ∈ D, then

η (V) = 0.

Taking covariant derivative with respect to ς and using
(
∇ςη
)

V = 0, we get

η
(
∇ςV
)
= 0. (54)

In view of (26) and (54) it follows that

η
(
∇
∗

ςV
)
= 0. (55)

Equation (49) gives

0 = δ(∇∗ω1
V, ω2) + δ(ω1,∇

∗

ω2
V) + 2S∗(ω1, ω2)

+
[
2λ −

(
p +

2
n

)]
δ(ω1, ω2) + 2βη (ω1) η (ω2) . (56)

Setting ω1 = ω2 = ς in (56), we obtain

0 = 2η
(
∇ςV
)
− 4(n − 1) −

[
2λ −

(
p +

2
n

)]
+ 2β,

= (2n − 2 + λ − β) +
(p

2
+

1
n

)
,

which gives the theorem.

6. Conformalη-Ricci soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying
(
ς.
)

R∗ .S
∗ =

0

Theorem 6.1. Let M
(
ϕ, ς, η, δ

)
be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting

conformal η-Ricci soliton
(
δ, ς, λ, β

)
with respect to ∇∗. If M satisfies (ς.)R∗ .S∗ = 0, then

λ =
p
2
+

2n2
− 1

n
, β = 2.

Proof. The condition that must be satisfied by S∗ is

S∗(R∗(ς, ω1)ω2, ω3) + S∗(ω2,R∗(ς, ω1)ω3) = 0, (57)

for all ω1, ω2, ω3 ∈ χ (M) . Using (34) and replacing the expression of S∗ from (51) in (57), we get

(β − 2)
[
δ(ω1, ω2)η (ω3) − δ(ω1, ω3)η (ω2)

]
= 0, (58)

For ω3 = ς, equation (58) becomes

(β − 2)δ(ϕω1, ϕω2) = 0,

for all ω1, ω2 ∈ χ (M) ,which gives

β = 2. (59)

In view of (52) and (59), we have

λ =
p
2
+

2n2
− 1

n
.

This gives the theorem.
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7. Conformalη-Ricci soliton on anti-anvariant submanifold of LP-Kenmotsu manifold satisfying
(
ς.
)

S∗ .R
∗ =

0

Theorem 7.1. Let M
(
ϕ, ς, η, δ

)
be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting

conformal η-Ricci soliton
(
δ, ς, λ, β

)
with respect to ∇∗. If M satisfies (ς.)S∗ .R∗ = 0, then

λ =
p
2
+

1
n
+ 2, β = 2n.

Proof. From (28), (33) and (35), we have

η (R∗ (ω1, ω2)ω3) = η (R∗ (ω1, ω2) ς) = η (R∗ (ς, ω2) ς) = 0. (60)

The condition that must be satisfied by S∗ is

0 = S∗(ω1,R∗(ω2, ω3)ω4)ς − S∗(ς,R∗(ω2, ω3)ω4)ω1

+S∗(ω1, ω2)R∗(ς, ω3)ω4 − S∗(ς, ω2)R∗(ω1, ω3)ω4

+S∗(ω1, ω3)R∗(ω2, ς)ω4 − S∗(ς, ω3)R∗(ω2, ω1)ω4

+S∗(ω1, ω4)R∗(ω2, ω3)ς − S∗(ς, ω4)R∗(ω2, ω3)ω1, (61)

for all ω1, ω2, ω3 and ω4 ∈ χ (M) . Taking inner product with ς the above equation becomes

0 = −S∗(ω1,R∗(ω2, ω3)ω4) − S∗(ς,R∗(ω2, ω3)ω4)η(ω1)
+S∗(ω1, ω2)η(R∗(ς, ω3)ω4) − S∗(ς, ω2)η(R∗(ω1, ω3)ω4)
+S∗(ω1, ω3)η(R∗(ω2, ς)ω4) − S∗(ς, ω3)η(R∗(ω2, ω1)ω4)
+S∗(ω1, ω4)η(R∗(ω2, ω3)ς) − S∗(ς, ω4)η(R∗(ω2, ω3)ω1). (62)

Setting ω4 = ς in (62), we get

0 = −S∗(ω1,R∗(ω2, ω3)ς) − S∗(ς,R∗(ω2, ω3)ς)η(ω1)
+S∗(ω1, ω2)η(R∗(ς, ω3)ς) − S∗(ς, ω2)η(R∗(ω1, ω3)ς)
+S∗(ω1, ω3)η(R∗(ω2, ς)ς) − S∗(ς, ω3)η(R∗(ω2, ω1)ς)
+S∗(ω1, ς)η(R∗(ω2, ω3)ς) − S∗(ς, ς)η(R∗(ω2, ω3)ω1). (63)

Replacing S∗ from (51) in (63) and putting ω3 = ς, we get[(p
2
+

1
n

)
− (λ − 2)

] [
δ(ω1, ω2)η (ω3) − δ(ω1, ω3)η (ω2)

]
= 0.

Putting ω3 = ς and using (12) in (64), we obtain[(p
2
+

1
n

)
− (λ − 2)

]
δ(ϕω1, ϕω2) = 0, (64)

which gives

λ =
p
2
+

1
n
+ 2. (65)

From (52) and (65) it follows that

β = 2n. (66)

This implies the theorem.
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Corollary 7.2. Let M
(
ϕ, ς, η, δ

)
be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admit-

ting conformal η-Ricci soliton
(
δ, ς, λ, β

)
with respect to ∇∗. If M satisfies (ς.)S∗ .P∗ = 0, then the scalar curvature of

M is

r = −3(n − 1)(n − 2).

Proof. By the help of (53), (65) and (66) we get the required result.

8. Conformalη-Ricci soliton on anti-anvariant submanifold of LP-Kenmotsu manifold satisfying
(
ς.
)

S∗ .P
∗ =

0

Theorem 8.1. Let M
(
ϕ, ς, η, δ

)
be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting

conformal η-Ricci soliton
(
δ, ς, λ, β

)
with respect to ∇∗. If M satisfies (ς.)S∗ .P∗ = 0, then

λ =
p
2
+

1
n
+ 2, β = 2n, or, λ =

p
2
+

1
n
− 2(2n − 3), β = −2(n − 2).

Proof. The condition that must be satisfied by S∗ is

0 = S∗(ω1,P∗(ω2, ω3)ω4)ς − S∗(ς,P∗(ω2, ω3)ω4)ω1

+S∗(ω1, ω2)P∗(ς, ω3)ω4 − S∗(ς, ω2)P∗(ω1, ω3)ω4

+S∗(ω1, ω3)P∗(ω2, ς)ω4 − S∗(ς, ω3)P∗(ω2, ω1)ω4

+S∗(ω1, ω4)P∗(ω2, ω3)ς − S∗(ς, ω4)P∗(ω2, ω3)ω1, (67)

for all ω1, ω2, ω3 and ω4 ∈ χ (M) . Taking inner product with ς the above equation becomes

0 = −S∗(ω1,P∗(ω2, ω3)ω4) − S∗(ς,P∗(ω2, ω3)ω4)η(ω1)
+S∗(ω1, ω2)η(P∗(ς, ω3)ω4) − S∗(ς, ω2)η(P∗(ω1, ω3)ω4)
+S∗(ω1, ω3)η(P∗(ω2, ς)ω4) − S∗(ς, ω3)η(P∗(ω2, ω1)ω4)
+S∗(ω1, ω4)η(P∗(ω2, ω3)ς) − S∗(ς, ω4)η(P∗(ω2, ω3)ω1). (68)

Replacing ω4 by ς and using (41), (42) in (68), we get

0 = S∗(ω1,P∗(ω2, ω3)ς) + S∗(ς, ς)η(P∗(ω2, ω3)ω1). (69)

Replacing S∗ from (51) in (69) and putting ω3 = ς, we get[p
2
+

1
n
− λ + 2

] [
2(n − 1) + β − 2

]
δ(ϕω1, ϕω2) = 0,

which gives

λ =
p
2
+

1
n
+ 2 or, β = −2(n − 2). (70)

From (52) and (70) it follows that

λ =
p
2
+

1
n
+ 2, β = 2n

or,

λ =
p
2
+

1
n
− 2(2n − 3), β = −2(n − 2).

This implies the theorem.
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9. Example of anti-invariant submanifold of 5-dimensional LP-Kenmotsu manifold admitting confor-
mal η-Ricci soliton with respect to ∇∗

We consider a 5-dimensional manifold

M5 =
{(

x, y, z,u, v
)
∈ R5
}
,

where
(
x, y, z,u, v

)
are the standard coordinates in R5.We choose the linearly independent vector fields

I1 = z
∂
∂x
, I2 = z

∂
∂y
, I3 = z

∂
∂z
, I4 = z

∂
∂u
, I5 = z

∂
∂v
.

Let 1 be the Riemannian metric defined by

1
(
Ii, I j

)
= 0, i f i , j,

for i, j = 1, 2, 3, 4, 5, and

1 (I1, I1) = 1, 1 (I2, I2) = 1,
1 (I3, I3) = −1, 1 (I4, I4) = 1, 1 (I5, I5) = 1.

Let η be the 1-form defined by η (X) = 1 (X, I3), for any X ∈ χ
(
M5
)
. Let ϕ be the (1, 1) tensor field defined by

ϕI1 = −I2, ϕI2 = −I1, ϕI3 = 0, ϕI4 = −I5, ϕI5 = −I4. (71)

Let X, Y, Z ∈ χ
(
M5
)

be given by

X = x1I1 + x2I2 + x3I3 + x4I4 + x5I5,

Y = y1I1 + y2I2 + y3I3 + y4I4 + y5I5,

Z = z1I1 + z2I2 + z3I3 + z4I4 + z5I5.

Then, we have

1 (X,Y) = x1y1 + x2y2 + x3y3 + x4y4 + x5y5,

η (X) = −x3,

1
(
ϕX, ϕY

)
= x2y2 + x3y3 + x4y4 + x5y5.

Using the linearity of 1 and ϕ, η (I3) = −1, ϕ2X = X + η (X) I3, and 1
(
ϕX, ϕY

)
= 1 (X,Y) + η (X) η (Y) , for all

X, Y ∈ χ (M). We have

[I3, I2] = I2, [I3, I1] = I1, [I3, I4] = I4, [I3, I5] = I5,

[I2, I3] = −I2, [I1, I3] = −I1, [I4, I3] = −I4, [I5, I3] = −I5,[
Ii, I j

]
= 0 for all others i and j.

Let the Levi-Civita connection with respect to 1 be ∇, then using Koszul formula we get the following:

∇I1
I3 = −I1, ∇I1

I2 = 0 ,∇I1
I1 = −I3 ,∇I1

I4 = 0 ,∇I1
I5 = 0,

∇I2
I3 = −I2,∇I2

I2 = −I3,∇I2
I1 = 0, ∇I2

I4 = 0,∇I2
I5 = 0,

∇I3
I3 = 0,∇I3

I2 = 0,∇I3
I1 = 0,∇I3

I4 = 0,∇I3
I5 = 0,

∇I4
I3 = −I4,∇I4

I2 = 0,∇I4
I1 = 0,∇I4

I4 = −I3,∇I4
I5 = 0,

∇I5
I3 = −I5,∇I5

I2 = 0,∇I5
I1 = 0,∇I5

I4 = 0, ∇I5
I5 = −I3.
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From the above results we see that the structure
(
ϕ, ξ, η, 1

)
satisfies

(∇Xϕ)Y = −1(ϕX,Y)ξ − η(Y)ϕX,

for all X,Y ∈ χ
(
M5
)
, where η (ξ) = η (I1) = −1. Hence M5

(
ϕ, ξ, η, 1

)
is a LP-Kenmotsu manifold. Let

M∗5
(
ϕ, ξ, η, 1

)
be an anti-invariant submanifold of M5

(
ϕ, ξ, η, 1

)
. Then the non-zero components of Rie-

mannian curvature of M∗5 with respect to Levi-Civita connection ∇ are given by

R (I3, I2) I3 = I2,R (I3, I2) I2 = −I3,R (I3, I1) I3 = I1,

R (I3, I1) I1 = −I3,R (I3, I4) I3 = I4,R (I3, I4) I4 = −I3,

R (I3, I5) I3 = I5,R (I3, I5) I5 = −I3,R (I2, I3) I2 = I3,

R (I2, I3) I3 = −I2,R (I2, I1) I2 = I1,R (I2, I1) I1 = −I2,

R (I2, I4) I2 = I4,R (I2, I4) I4 = −I2,R (I2, I5) I2 = I5,

R (I2, I5) I5 = −I2,R (I1, I3) I1 = I3,R (I1, I3) I3 = −I1,

R (I1, I2) I1 = I2,R (I1, I2) I2 = −I1,R (I1, I4) I1 = I4,

R (I1, I4) I4 = −I1,R (I1, I5) I1 = I5,R (I1, I5) I5 = −I1,

R (I4, I3) I4 = I3,R (I4, I3) I3 = −I4,R (I4, I2) I4 = I2,

R (I4, I2) I2 = −I4,R (I4, I1) I4 = I1,R (I4, I1) I1 = −I4,

R (I4, I5) I4 = I5,R (I4, I5) I5 = −I4,R (I5, I3) I5 = I3,

R (I5, I3) I3 = −I5,R (I5, I2) I5 = I2,R (I5, I2) I2 = −I5,

R (I5, I1) I5 = I1,R (I5, I1) I1 = −I5,R (I5, I4) I5 = I4.

By the help of (26) we obtain

∇
∗

I1
I3 = −2I1,∇

∗

I1
I2 = 0,∇∗

I1
I1 = −2I3,∇

∗

I1
I4 = 0,∇∗

I1
I5 = 0,

∇
∗

I2
I3 = −2I2,∇

∗

I2
I2 = −2I3,∇

∗

I2
I1 = 0, ∇∗

I2
I4 = 0,∇∗

I2
I5 = 0,

∇
∗

I3
I3 = 0, ∇∗

I3
I2 = I1,∇

∗

I3
I1 = I2,∇

∗

I3
I4 = I5,∇

∗

I3
I5 = I4,

∇
∗

I4
I3 = −2I4, ∇

∗

I4
I2 = 0,∇∗

I4
I1 = 0,∇∗

I4
I4 = −2I3,∇

∗

I4
I5 = 0,

∇
∗

I5
I3 = −2I5,∇

∗

I5
I2 = 0,∇∗

I5
I1 = 0,∇∗

I5
I4 = 0, ∇∗

I5
I5 = −2I3.

Some of the non-zero components of Riemannian curvature tensor of M∗5 with respect to Zamkovoy
connection are given by

R∗ (I3, I1) I3 = 2 (I2 − I1) ,R∗ (I2, I1) I2 = −4I1,

R∗ (I4, I1) I4 = −4I1,R∗ (I5, I1) I5 = −4I1,

R∗ (I1, I3) I3 = 2 (I2 − I1) ,R∗ (I1, I2) I2 = 4I1,

R∗ (I1, I4) I4 = 4I1,R∗ (I1, I5) I5 = 4I4.

Using the above curvature tensors the Ricci curvature tensors of M∗5 with respect to ∇ and ∇∗ are:

S (I3, I3) = −4,S (I2, I2) = S (I1, I1) = −2,
S (I4, I4) = S (I5, I5) = −2,

S∗ (I3, I3) = −8,S∗ (I2, I2) = S∗ (I4, I4) = 10,
S∗ (I5, I5) = S∗ (I1, I1) = 10.
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Therefore, the scalar curvature tensor of M∗5 with respect to Levi-Civita connection is r = −12, and scalar
curvature tensor with respect to Zamkovoy connection is r∗ = 32. Setting V = X = Y = I3 in (43), we have

0 =
(
L∗

I3
1
)

(I3, I3) + 2S∗ (I3, I3) +
[
2λ −

(
p +

2
n

)]
1 (I3, I3) + 2βη (I3) η (I3)

= 1
(
∇
∗

I3
I3, I3

)
+ 1
(
I3,∇

∗

I3
I3

)
+2S∗ (I3, I3) +

[
2λ −

(
p +

2
n

)]
1 (I3, I3) + 2βη (I3) η (I3)

= 0 + 0 + 2(−8) +
[
2λ −

(
p +

2
5

)]
(−1) + 2β

= β − λ +
p
2
−

39
5
,

which gives

β = λ −
p
2
+

39
5

= λ −
p
2
−

1
5
+ 2(5 − 1)

= λ −
p
2
−

1
n
+ 2(n − 1),

which shows that λ and β satisfies relation (52).

10. Conlusions

In this article, we have investigated the effects of conformal Ricci soliton and conformal η-Ricci soliton
on the anti-invariant submanifold of LP-Kenmotsu manifold endowed with the Zamkovoy connection.
More precisely, we have characterized anti-invariant submanifold of LP-Kenmotsu manifold with respect
to the Zamkovoy connection, which admits conformal Ricci soliton and conformal η-Ricci soliton in terms
of Einstein and η-Einstein manifolds. We know that Einstein manifolds, Kenmotsu manifolds are very
important classes of manifolds having extensive use in mathematical physics and general relativity. Also,
we studied conformal η-Ricci soliton on this manifold satisfying the certain curvature conditions and
obtained important results. There are many studies in the literature the study of solitons on manifolds with
different connections, but since the Zamkovoy connection was introduced recently, the effect of solitons on
manifolds equipped with this connection is a very current study. Furthermore, it is interesting to investigate
conformal η-Ricci solitons on other contact metric manifolds and there is further scope of research in this
direction within the framework of various contact manifolds.

Acknowledgment

The authors would like to thank the reviewers and editor for their constructive comments and valuable
suggestions that can improve improve the quality of the paper.

References

[1] M. Atceken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math. 30(1) (2022), 175-185.
[2] G. Ayar, M. Yıldırım, η-Ricci solitons on nearly Kenmotsu manifolds, Asian-Eur. J. Math. 12(06) (2019), 2040002.
[3] G. Ayar, M. Yıldırım, Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis, Series: Mathematics

and Informatics. (2019), 503-510.
[4] N. Basu and A. Bhatyacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global J. Adv. Research on Classical and Modern

Geom. 4(1), (2015), 15-21.
[5] A. Biswas, and K. K. Baishya, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin

of the Transilvania University of Brasov 12(2) (2019), 233-246.



A. Mandal, M. Yildirim / Filomat 39:28 (2025), 10099–10113 10113

[6] A. Biswas, and K. K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds,
Scientific Studies and Research Series Mathematics and Informatics 29(1) (2019), 59-72.

[7] A. M. Blaga, Canonical connections on para-Kenmotsu manifolds, Novi Sad J. Math. 45(2) (2015), 131-142.
[8] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications 20(1) (2015), 1-13.
[9] A. M. Blaga, On Gradient η-Einstein solitons, Kragujev. J. Math. 42(2) (2018), 229-237.
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