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Abstract. This paper aims to present novel fixed point results within the framework of interpolative
metric spaces, which extend the concept of standard metric spaces. By leveraging the interpolative metriz-
ability technique, which preserves completeness, we observe generalized contractions, including Banach
contraction, Kannan contraction, and Chatterjea contraction. Additionally, we provide two applications to
demonstrate the significance of our contributions to nonlinear analysis, particularly regarding solutions to
nonlinear integral and fractional differential equations.

1. Introduction

Nonlinear analysis is a crucial domain of mathematics that examines equations and phenomena where
linear approximations are inadequate to represent the inherent complexity. Nonlinear analysis techniques,
including fixed-point theorems, variational approaches, and stability analysis, empower mathematicians
and scientists to model, analyze, and forecast intricate dynamic systems. Its significance is seen in theoretical
progress and practical applications, encompassing fluid dynamics, population models, financial systems,
and neural networks. Nonlinear analysis connects abstract mathematical theory with practical problem-
solving, providing profound insights into systems marked by unpredictability and complexity.
More than a century ago, Banach [2] established and proved the first metric fixed point theorem, inspired by
Picard’s groundbreaking discoveries [18]. Picard’s innovative research resolved a particular starting value
problem via consecutive approximations. It is accurate to state that Banach’s fixed point theorem is primarily
based on Picard’s methodology. This outcome, first referred to in early literature as the Banach–Picard fixed
point theorem, was further developed through significant contributions by Caccioppoli [3], who played a
pivotal role in its transformation into what is currently acknowledged as Banach’s Contraction Mapping
Principle. In recognition of both mathematicians, specific literature refers to it as Banach–Caccioppoli’s
fixed point theorem.
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Picard’s initial article might be considered the inaugural recorded application of fixed point theory,
signifying the commencement of a discipline that has since proven essential in applied mathematics.
Fixed point theory has proven its applicability across the quantitative disciplines, highlighting its essential
significance in multiple study fields, see, for example [20],[1]. As a result, the topic has attracted considerable
interest from researchers.

Notably, contributions to the theoretical development of fixed point theory have been limited, especially
in recent decades. Specific endeavors to enhance the theory have redundantly coincided with existing
results, while others have restated already established conclusions. New results have occasionally emerged
as direct repercussions of prior studies [8] [10]. Nevertheless, considerable advancements in metric fixed
point theory have been made across several domains. The progression of the discipline has predominantly
adhered to two pathways.

Initially, by mitigating, generalizing, or refining the concept of contraction to produce novel results.
Secondly, by broadening the spectrum of abstract spaces where the existence of fixed points is established.
There are natural and exciting extensions of conventional metric spaces, including symmetric spaces,
quasi-metric spaces, b-metric spaces, ultra metric spaces, and interpolative metric spaces.

This study encompasses both techniques but in reverse order, which means primarily defining in-
terpolative metric space, which is one of the significant extensions of traditional metric spaces [12],[13].
Subsequently, a generalized contraction is defined utilizing the c-function, also called the comparison
function, resulting in novel effects.

The interpolative metric spaces are conceptually established by modifying the triangular inequality
condition of traditional metric spaces to include an interpolative inequality. Recently researchers worked
on the construction and generalization of fixed point theorems based on different types of interpolative
contractions. Karapinar reworked Kannan-type contractions by interpolation in [9], improving classical
contraction principles by giving them an interpolative structure. This method was extended in [7] by Kara-
pinar, Fulga and Roldan Lopez de Hierro to the (α, β, ψ, ϕ)-interpolative contractions, giving a common
framework to various known fixed point results. This concept was further developed in the work in [6],
which proposed Perov-interpolative contractions of Suzuki type mappings, which provided new existence
and uniqueness theorems of fixed points in metric spaces. The authors have investigated interpolative
ϕ,ψ-type z-contractions in [16] where the flexibility by the use of auxiliary control functions is added. In
[15], authors studied interpolative contractions of Rus-Reich-Cirica type through simulation functions, con-
necting classical contraction theories with modern functional techniques. Lastly, in [4] authors concentrated
on interpolative forms of Boyd-Wong contractions and Matkowski contractions and generalized fixed point
results to noncontinuous and generalized contractive settings. This modification facilitates more precise
calculations and improved estimations in fixed-point theory applications. For further synthesis, we refer
to [11]. The following sections will reevaluate the concept of interpolative metrics, positioning them as a
rational extension of traditional metric spaces and their completeness. Appropriate examples demonstrate
the generalized contraction as a generalization of the Banach, Kannan, and Chatterjea contractions within
the interpolative metric space.

Lastly, we demonstrate the existence of solutions for a nonlinear integral equation and a nonlinear
fractional differential equation within the framework of a complete interpolative metric space based on
certain hypotheses, thereby underscoring the significance of the newly introduced generalized contraction.

Definition 1.1. [13] Let X be a non-empty set. We say that d : X × X→ [0,+∞) is (α, c)- interpolative metric if

(m1) d(x, y) = 0, if and only if , x = y for all x, y ∈ X;

(m2) d(x, y) = d(y, x), for all x, y ∈ X;

(m3) there exists an α ∈ (0, 1) and c ≥ 0 such that
d(x, y) ≤ d(x, z) + d(z, y) + c[(d(x, z))α (d(z, y))1−α)] for all x, y, z ∈ X

Then, we call (X, d) an (α, c)- interpolative metric space.
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Remark 1.2. It is straightforward to see that each metric space forms an (α, c)-Interpolative metric with c = 0.

Example 1.3. [13, 14] Let X be a nonempty set of real numbers and d : X × X→ [0,∞) as follows:

d(x, y) = |x − y|(|x − y| + e)

for all x, y ∈ X.Then (X, d) is an interpolative metric space.

Proof. Since |x − y| is itself a usual metric therefore m1 and m2 are obvious, we will prove (m3) and find out
the values of c and α.

d(x, y) = |x − y|(|x − y| + e)
≤ (|x − z| + |y − z|)(|x − z| + |y − z| + e)
≤ |x − z|(|x − z| + e) + 2|x − z||y − z| + |y − z|(|y − z| + e)

≤ d(x, z) + d(y, z) + 2|x − z|
1
2 |x − z|

1
2 |y − z|

1
2 |y − z|

1
2

≤ d(x, z) + d(y, z) + 2{|x − z|
1
2 (|x − z| + e)

1
2 }{|y − z|

1
2 (|y − z| + e)

1
2 }

≤ d(x, z) + d(y, z) + 2d(x, z)
1
2 d(y, z)

1
2 .

(1)

Hence (X, d) is a interpolative metric space for c = 2 and α = 1
2 .

Example 1.4. [5] Let X is a nonempty set of real numbers and define a function d : X × X→ [0,∞) as follows

d(x, y) = |x − y|p,

for all x, y ∈ X, where p > 1 is a positive integer.
The conditions (m1) and (m2) are trivially observed. Regarding the condition (m3), we have

d(x, y) = |x − y|p = |x − z + z − y|p

= |x − z|p + pC1|x − z|p−1
|z − y| + pC2|x − z|p−2

|z − y|2+
pC3|x − z|p−3

|z − y|3 + ....... + pCp|z − y|p.

(2)

Without the loss of generality, we assume that |x − z| > |y − z|

≤ d(x, z) + d(y, z) +
(

pC1 +
pC2 +

pC3 + · · · +
pCp−1

)
d(x, z)

p−1
p d(z, y)

1
p

≤ d(x, z) + d(y, z) +
{ p−1∑

r=1

pCr

}
d(x, z)1− 1

p d(z, y)
1
p

≤ d(x, z) + d(y, z) + c d(x, z)1−αd(z, y)α.

(3)

Here,

c =
p−1∑
r=1

pCr,

and α = 1
p . Obviously c > 0 and α ∈ (0, 1). Hence, (X, d) is an (α, c) -interpolative metric space.

Suppose that r > 0 and x ∈ X. Denote

β(x, r) = {y ∈ X : d(x, y) < r},

as an open ball in (α, c)- interpolative metric space (X, d).
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Definition 1.5. Let (X, d) be a (α, c)- interpolative metric space and let xn be a sequence in X.We say that xn converges
to x in X, if and only if, d(xn, x)→ 0, as n→∞.

Definition 1.6. Let (X, d) be a (α, c)- interpolative metric space and let xn be a sequence in X. We say that xn is a
Cauchy sequence in X, if and only if, limn→∞ sup{d(xn, xm) : m > n} = 0.

Definition 1.7. Let (X, d) be a (α, c)- interpolative metric space. We say that (X, d) is a complete (α, c)- interpolative
metric space if every Cauchy sequence converges in X.

Our paper’s fundamental concept is laid forth in the next section, which is based on generalized
contraction T and is defined within the context of interpolative metric spaces using comparison functions.
Within the context of a complete interpolative metric space, the unique fixed point of T is demonstrated
by Theorem 2.3. Suitable examples demonstrate that the generalized contraction T extends the Banach,
Kannan, and Chatterjea contractions in the interpolative metric spaces.

2. Main Results

We begin this section by defining the comparison function Ψ, which is the integral part of our main
definition.
LetΨ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

a) ψ is non decreasing;

b)
+∞∑
n=1

ψn(t) < ∞,

for all t > 0, where ψn is the nth iterate of ψ.

Lemma 2.1. If ψ : [0,∞)→ [0,∞) is a comparison function, then:

1 . Each iterate ψk ofΨ, k ≥ 1, is also a comparison function;

2 . ψ is continuous at 0;

3 . ψ(t) < t, for any t > 0.

In this section, first, we state the fixed point theorem in the setting of an (α, c)- interpolative metric space.

Definition 2.2. Let (X, d) be an (α, c)- interpolative metric space and let T : X → X be a mapping. Suppose that
there exists ψ ∈ Ψ such that

d(Tx,Ty) ≤ ψ(Md(x, y))), (4)

for all x, y ∈ X, in which,

Md(x, y) = max
{
α1d(x, y), α2{d(x,Tx) + d(y,Ty)}, α3{d(x,Ty) + d(y,Tx)}

}
(5)

where αi ≥ 0 for i = 1, 2, 3 and α1 + 2α2 + 2α3 < 1 and α3 < 1
2+c .

Then T is called a generalized contraction in (α, c)-interpolative metric space X.

Theorem 2.3. Let (X, d) be an (α, c)-interpolative metric space and T : X → X be a generalized contraction defined
in Definition 2.2, then T has a unique fixed point in X.
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Proof. First of all, it is straightforward to notice that the uniqueness of the fixed point is derived from
inequality (4) easily. Next, let us start the proof by constructing a sequence by taking an arbitrary point
x ∈ X. We assume it is as a first term of the desired sequence, that is, x0 = x. The rule of the constructed
sequence {xn} is defined as follows:

xn+1 = Txn for all n ∈ N0.

Before continuing with the proof, we examine and eliminate the trivial case:
If xn0 = xn0+1 for any n0 ∈ N0, then xn0 = xn0+1 = Txn0 .

In other words, xn0 forms the desired fixed point of the given mapping T, and we are done in this
case. Accordingly, throughout the proof, we shall suppose that xn , xn+1 for all n ∈ N0. In conclusion, we
observed that d(xn, xn+1) > 0 for all n ∈ N0.On account of inequality (4) and the fact that ψ(t) < t for all t > 0,
we have

d(xn, xn+1) ≤ ψ(Md(xn, xn−1))
= ψ(max{α1d(xn, xn−1), α2{d(xn,Txn) + d(xn−1,Txn−1)}, α3{d(xn,Txn−1) + d(xn−1,Txn)}})
= ψ(max{α1d(xn, xn−1), α2{d(xn, xn+1) + d(xn−1, xn)}, α3{d(xn, xn) + d(xn−1, xn+1)}})
= ψ(max{α1d(xn, xn−1), α2{d(xn, xn+1) + d(xn−1, xn)}, α3{d(xn−1, xn+1)}}).

(6)

Md(xn, xn−1) = max{α1d(xn, xn−1), α2{d(xn, xn+1) + d(xn−1, xn)}, α3{d(xn−1, xn+1)}}.

Md(xn, xn−1) = max{α1d(xn, xn−1), α2{d(xn, xn+1) + d(xn−1, xn)},

α3{d(xn−1, xn) + d(xn, xn+1) + c(d(xn−1, xn)αd(xn, xn+1)1−α)}}. (7)

Now, let us assume that d(xn, xn+1) > d(xn, xn−1), we infer

Md(xn, xn−1) < max{α1d(xn, xn+1), α2{d(xn, xn+1) + d(xn+1, xn)},

α3{d(xn+1, xn) + d(xn, xn+1) + c(d(xn+1, xn)αd(xn, xn+1)1−α)}}.

We conclude
Md(xn, xn−1) < max{α1d(xn, xn+1), 2α2d(xn, xn+1), α3(2 + c)d(xn, xn+1)}

Since α3 < 1
2+c , we obtain

Md(xn, xn−1) < max{α1d(xn, xn+1), 2α2d(xn, xn+1), d(xn, xn+1)}.

This amounts to saying that Md(xn, xn−1) < d(xn, xn+1).

Since we have ψ(t) < t, from equation (4), we have

d(xn, xn+1) ≤ ψ
(
Md(xn, xn−1)

)
< Md(xn, xn−1) < d(xn, xn+1),

for all n ∈ N0.
Which gives a contradiction. Therefore, our assumption is wrong and we must have

d(xn, xn+1) ≤ d(xn, xn−1),

for all n ∈ N0.
So the sequence {d(xn, xn+1)} is a non increasing sequence.
Further, we can easily show that

Md(xn, xn−1) < d(xn, xn−1).
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From equation (4) we have

d(xn, xn+1) ≤ ψ(Md(xn, xn−1)) < ψ(d(xn, xn−1)) < d(xn, xn−1).

By iteration we find that

0 < d(xn, xn+1) ≤ ψn
(
d(x0, x1)

)
, (8)

for all n ∈ N0.

Letting n→∞ both side of (8) yields that

lim
n→∞

d(xn, xn+1) = 0. (9)

Since the limit in (9) tends to zero, we deduce that

d(xn, xn+1) ≤ 1, (10)

for all n ≥ 1. For some large enough M ∈ N. In what follows, we shall prove that the constructed sequence
is Cauchy. For this purpose, we presume that m,n ∈ N and m > n > M. Before we show that the sequence
is Cauchy, we shall eliminate the simple case: xn = xm. If we have Tm(x0) = Tn(x0). By a simple elaboration,
we get Tm−n(Tn(x0))) = Tn(x0). As a result, we deduce that Tn(x0) is the fixed point of Tm−n. In addition, we
have

T(Tm−n(Tn(x0)))) = Tm−n(T(Tn(x0)))) = T(Tn(x0)).

In other words, T(Tn(x0)) forms the desired fixed point of Tm−n. In conclusion, T(Tn(x0)) = Tn(x0) and hence
Tn(x0) is the fixed point of T. Consequently, without loss of generality, we assume that xn , xm. In what
follows, we assert the constructed iterative sequence {xn} forms Cauchy. For this purpose, we claim that

lim
n→∞

d(xn, xn+r+1) = 0. (11)

We shall use elementary induction to demonstrate this. We start with the following limit:

d(xn, xn+2) ≤ d(xn, xn+1) + d(xn+1, xn+2) + c[d(xn, xn+1)α(d(xn+1, xn+2)1−α]. (12)

By taking limit as n→∞ in the above inequality and taking the inequality (8) into account, we conclude
that

lim
n→∞

d(xn, xn+2) = 0. (13)

In addition, we have

d(xn, xn+3) ≤ d(xn, xn+2) + d(xn+2, xn+3) + c[d(xn, xn+2)α(d(xn+1, xn+3)1−α]. (14)

Taking (8) and (14) into account together by taking n→∞ in the above inequality we find that

lim
n→∞

d(xn, xn+3) = 0. (15)

Now we suppose the general case of our assertion holds; that is, we have

lim
n→∞

d(xn, xn+r) = 0, (16)

for some r ∈ N. Therefore, by the hypothesis of the Theorem, we arrive at

d(xn, xn+r+1) ≤ d(xn, xn+r) + d(xn+r, xn+r+1) + c[d(xn, xn+r)α(d(xn+r, xn+r+1)1−α]. (17)
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On account of limits (8) and (16), by taking the limit of the above inequality as n→∞, we get that

lim
n→∞

d(xn, xn+r+1) = 0. (18)

Consequently, we deduce that the recursively constructed sequence {xn} is Cauchy.

Regarding that (X, d) is a complete (α, c)- interpolative metric space, the sequence {xn} converges to
x∗ ∈ X. We assert that x∗ is the fixed point of T. Suppose to the contrary, d(x∗,Tx∗) > 0. Note that

d(xn+1,Tx∗) = d(Txn,Tx∗)
≤ ψ[max{α1d(xn, x∗), α2{d(xn, xn+1) + d(x∗,Tx∗)}, α3{d(Tx∗, xn) + d(x∗,Txn)}]
≤ ψ[max{α1d(xn, x∗), α2{d(xn, xn+1) + d(x∗,Tx∗)},

α3{{d(Tx∗, x∗) + d(x∗, xn) + cd(Tx∗, x∗)αd(x∗, xn)1−α
}

+ d(x∗, xn) + d(xn,Txn) + cd(x∗, xn)αd(xn,Txn)1−α
}}].

(19)

By taking lim sup of both sides of the inequality (19), we obtain

d(Tx∗, x∗) ≤ ψ(d(Tx∗, x∗)) < d(Tx∗, x∗). (20)

Since we assume d(x∗,Tx∗) > 0,
which is a contradiction. As a result Tx∗ = x∗ is the fixed point of T in X.
Now we shall prove that x∗ is unique. If possible suppose there exists one more fixed point of T say y∗

such that x∗ , y∗.

d(x∗, y∗) = d(Tx∗,Ty∗)
≤ ψ(Md(x∗, y∗))
≤ ψ(max{α1d(x∗, y∗), α3{d(x∗,Ty∗) + d(Tx∗, y∗)}, α2{d(x∗,Tx∗) + d(y∗,Ty∗)})
≤ ψ(max{α1d(x∗, y∗), 2α3d(x∗, y∗)}
< ψ(d(x∗, y∗))
< d(x∗, y∗),

which gives a contradiction. Hence, our assumption is wrong, and x∗ = y∗, authenticating that the fixed
point of T is unique.

Example 2.4. Let (X, d) be an interpolative metric space where X = [0, 1] and d is an ( 1
2 , 2)-interpolative metric

defined in 1.3.
i.e. d(x, y) = |x − y|(|x − y| + e), where e is the Euler number. Let T : X→ X be a function define by T(x) = x

2 .

d(Tx,Ty) =
∣∣∣∣∣x2 − y

2

∣∣∣∣∣(∣∣∣∣∣x2 − y
2

∣∣∣∣∣ + e
)

=
|x − y|

2

(
|x − y|

2
+ e
)

≤
1
2
{|x − y|(|x − y| + e)}

≤ q{|x − y|(|x − y| + e)},
1
2
< q < 1

≤ qd(x, y)
≤ ψ(d(x, y)), where ψ(t) = qt

≤ ψ
(

max
{
α1d(x, y), α2{d(Tx, x) + d(Ty, y)}, α3{d(Ty, x) + d(y,Tx)}

})
≤ ψ(Md(x, y)),

(21)
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where 1
2 < q < α1 < 1, α2 = 0, α3 = 0 < 1

2+c =
1
4 .

Here, T satisfies all the conditions of Theorem 2.3, and hence T has a unique fixed point in X = [0, 1] which is x = 0.
Here T is also an example of Banach contraction on the given interpolative metric space.

Remark 2.5. Let (X, d) where X = [0, 1] be an (α, c)- interpolative metric space where d is defined by Example (4)
i.e. d(x, y) = |x − y|p where p > 1 is an positive integer here α = 1

p and c =
∑p−1

r=1
pCr. Here, we note that the metric

defined above is also a b− metric for s = p.

Here, if we define T : X → X such that T(x) = 1−x
3 , then we claim that T is a Kannan contraction on given

interpolative metric space (X, d).

Proof.

d(Tx,Ty) =
∣∣∣∣∣ (1 − x)

3
−

(1 − y)
3

∣∣∣∣∣p = |x − y|p

3p

d(x,Tx) =
∣∣∣∣∣x − 1 − x

3

∣∣∣∣∣p = ∣∣∣∣∣4x − 1
3

∣∣∣∣∣p
d(y,Ty) =

∣∣∣∣∣y − 1 − y
3

∣∣∣∣∣p = ∣∣∣∣∣4y − 1
3

∣∣∣∣∣p
d(x,Tx) + d(y,Ty) =

∣∣∣∣∣4x − 1
3

∣∣∣∣∣p + ∣∣∣∣∣4y − 1
3

∣∣∣∣∣p .
(22)

Obviously,

d(Tx,Ty) ≤
|2x − 1|p + |2y − 1|p

3p ≤
d(x,Tx) + d(y,Ty)

2p ,

hence

d(Tx,Ty) ≤ q(d(x,Tx) + d(y,Ty)), (23)

where q = 1
2p < 1

2 for positive integer p > 1.
Hence T is a Kannan Contraction on (X, d). Equation (23) can also be written as

d(Tx,Ty) ≤ q{(d(x,Tx) + d(y,Ty))} ≤ ψ(Md(x, y)),

for ψ(t) = qt = t
2p and

Md(x, y) = max{α1d(x, y), α2{d(x,Tx) + d(y,Ty)}, α3{d(x,Ty) + d(y,Tx)},

where α1 = 0, 0 < q < α2 < 1
2 and α3 = 0 < 1

2+c .
Hereψ fulfills all the requirement of the c function. Hence, from Theorem 2.3, T has a unique fixed point

in X which is x = 1
4 .

Example 2.6. Let (X, d) be an interpolative metric space where X = [0, 1], and d is an ( 1
2 , 2)-interpolative metric

defined in Example 1.3.

Let T : X→ X be a function define by

T(x) =
x
3
.
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d(Tx,Ty) =
∣∣∣∣∣x3 − y

3

∣∣∣∣∣(∣∣∣∣∣x3 − y
3

∣∣∣∣∣ + e
)

=
|x − y|

3

(
|x − y|

3
+ e
)

≤
1
3
{|x − y|(|x − y| + e)}

(24)

Again from definition of d(x, y), we have

d(x,Ty) =
∣∣∣∣∣x − y

3

∣∣∣∣∣(∣∣∣∣∣x − y
3

∣∣∣∣∣ + e
)
. (25)

Now, since y ∈ [0, 1], we can write

y
3
≤ y

−
y
3
≥ −y

x −
y
3
≥ x − y

1
3

(x −
y
3

) ≥
1
3

(x − y)

1
3

(x −
y
3

) ≥
1
3

(x − y)

1
3

(
x −

y
3

){
(x −

y
3

) + e
}
≥

1
3

(
x − y

){1
3

(x − y) + e
}

1
3

d(x,Ty) ≥ d(Tx,Ty), x , y

(26)

on similar lines, we can prove that
1
3

d(y,Tx) ≥ d(Tx,Ty),

for all values of x and y in [0, 1], where x , y.
From (26) and (2.6) we have

1
3
{d(x,Ty) + d(y,Tx)} ≥ 2d(Tx,Ty),

d(Tx,Ty) ≤
1
6
{{d(x,Ty) + d(y,Tx)},

d(Tx,Ty) ≤ q{{d(x,Ty) + d(y,Tx)},

where q = 1
6 <

1
2 . Thus T is a Chatterjea Contraction on the ( 1

2 , 2)interpolative metric space X.
Moreover,

d(Tx,Ty) ≤ q{{d(y,Tx) + d(y,Tx)} ≤ ψ(Md(x, y)), (27)

where
Md(x, y) = max{α1d(x, y), α2{d(x,Tx) + d(y,Ty)}, α3{d(x,Ty) + d(y,Tx)},

for α1 = 0, α2 = 0 and 1
6 < α3 < 1

4 .

Here, ψ fulfills all the requirement of the c function. Hence, from Theorem 2.3, T there is a unique fixed point in
X which is x = 0.

Next section, demonstrates the existence of solutions for a nonlinear integral equation and a nonlinear
fractional differential equation within the framework of a complete interpolative metric space based on
certain hypotheses, thereby underscoring the significance of the newly introduced generalized contraction.
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3. Some Applications

3.1. An application to non-linear integral equations

Let M = C[α, γ] be the set of all continuous real valued functions defined on [α, γ] where 0 ≤ α < γ. Let
d : M ×M→ R+ be defined by

d(x, y) = sup
α≤t≤γ

|x(t) − y(t)|p,

for all x, y ∈ M and the positive integer p > 1. Clearly, (M, d) is a complete (α, c)- interpolative metric space
where α = 1

p and c =
∑p−1

r=1
pCr.

Our aim is to find a function x(t) ∈ M, t ∈ [α, γ] such that for f : [α, γ] → R, 1 : [α, γ] × [α, γ] → R and
A : [α, γ] × [α, γ] × R→ R it satisfies the non linear Integral equation

x(t) = f (t) +
∫ γ

α
1(t, τ)A(t, τ, x(τ))dτ. (28)

Theorem 3.1. The non linear integral equation (28) has a unique solution in M provided that the following hypothe-
ses hold.

(i) The functions f : [α, γ] → R, 1 : [α, γ] × [α, γ] → R, and A : [α, γ] × [α, γ] × R → R are continuous on
[α, γ], [α, γ]2, and [α, γ]2

×R, respectively.

(ii) For all t, τ ∈ [α, γ] and for all x, y ∈M, there exists σ > 2 such that

|A(t, τ, x(τ)) − A(t, τ, y(τ))| ≤ e−
p
σ Q(x, y),

where

Q(x, y) = max
{
|x − y|, |x − Tx|, |y − Ty|, |x − Ty|, |y − Tx|

}
.

(iii) For all t, z ∈ [α, γ],

sup
α≤t≤γ

∫ γ

α
|1(t, z)|pdz ≤

1
2p−1(γ − α)

.

Proof. Let T : (C[α, γ],R)→ C([α, γ],R) be defined by

T(x(t)) = f (t) +
∫ γ

α
1(t, τ)A(t, τ, x(τ)) dτ. (29)

It is easy to see that the existence of a unique solution of the nonlinear integral equation (28) is equivalent
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to the existence of a fixed point of T in (29). Now we will prove that T is a generalized contraction.

|Tx(t) − Ty(t)|p =
∣∣∣∣∣ f (t) +

∫ γ

α
1(t, τ)A(t, τ, x(τ))dτ − f (t) −

∫ γ

α
1(t, τ)A(t, τ, y(τ))dτ

∣∣∣∣∣p
=

∣∣∣∣∣ ∫ γ

α
1(t, τ)A(t, τ, x(τ))dτ −

∫ γ

α
1(t, τ)A(t, τ, y(τ))dτ

∣∣∣∣∣p
=

∣∣∣∣∣ ∫ γ

α
1(t, τ)(A(t, τ, x(τ) − A(t, τ, y(τ))dτ

∣∣∣∣∣p
≤

∫ γ

α
|1(t, γ)|pdτ

∫ γ

α
|(A(t, τ, x(τ) − A(t, τ, y(τ))|pdτ

≤

∫ γ

α
|1(t, γ)|pdτ

∫ γ

α
|e
−σ
p Q(x(τ), y(τ))|pdτ

≤

∫ γ

α
|1(t, γ)|pdτ

∫ γ

α
e−σmax

{
|x(τ) − y(τ)|p, |x(τ) − Tx(τ)|p,

|y(τ) − Ty(τ)|p, |Tx(τ) − y(τ)|p, |x(τ) − Ty(τ)|p
}
dτ.

On account of above inequality and taking supt∈[α,γ] on both sides, we infer

sup
t∈[α,γ]

|Tx(t) − Ty(t)|p ≤
1

2p−1(γ − α)

∫ γ

α
e−σ max

{
sup

t∈[α,γ]
|x(τ) − y(τ)|p, sup

t∈[α,γ]
|x(τ) − Tx(τ)|p,

sup
t∈[α,γ]

|y(τ) − Ty(τ)|p, sup
t∈[α,γ]

|y(τ) − Tx(τ)|p, sup
t∈[α,γ]

|x(τ) − Ty(τ)|p
}
dτ

≤
1

2p−1(γ − α)

∫ γ

α
max

{
e−σ sup

t∈[α,γ]
|x(τ) − y(τ)|p,

e−σ
(

sup
t∈[α,γ]

|x(τ) − Tx(τ)|p + sup
t∈[α,γ]

|y(τ) − Ty(τ)|p
)
,

e−σ
(

sup
t∈[α,γ]

|y(τ) − Tx(τ)|p + sup
t∈[α,γ]

|x(τ) − Ty(τ)|p
)}

dτ

≤

max
{
e−σd(x, y), e−σ

(
d(x,Tx) + d(y,Ty)

)
, e−σ
(
d(y,Tx) + d(x,Ty)

)}
2p−1(γ − α)

∫ γ

α
dτ

≤
1

2p−1 Md(x, y).

where Md(x, y) = max
{
α1d(x, y), α2(d(x,Tx) + d(y,Ty)), α3(d(y,Tx) + d(x,Ty))

}
.

It may be noted α1 = α2 = α3 = e−σ and α1 + 2α2 + 2α3 = 5e−σ and 5e−σ < 1 i.e. eσ > 5 because σ is a real
number which is greater than 2.
Also for any value of p > 1, α3 < 1

2+
∑p−1

n=1
pCn
, we must have

d(T(x),T(y)) = ||Tx(t) − Ty(t)||∞,p = sup
t∈[α,γ]

|Tx(t) − Ty(t)|p ≤
1

2p−1 Md(x, y),

d(T(x),T(y)) ≤ ψ(Md(x, y))

where ψ(t) = t
2p−1 is obviously a c function.
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Hence, from Theorem 4, the operator T is a contraction on interpolative metric space and has a unique
fixed point in X = C[α, γ] which will be the solution of the integral equation (28).

3.2. An Application to Fractional Differential Equations

Let (C[0, 1]) be the set of all continuous functions on [0, 1] and σ : C[0, 1]×C[0, 1]→ R be the ( 1
2 , 2) metric

define by (.u, v) = ||u − v||2∞ = maxt∈[0,1]|u(t) − v(t)|2.
Now, we recall some notation of and [19] and [17]. The Caputo derivative of fractional order β for a
continuous function h : [0,+∞)→ R is define as

cDβ(h(t)) =
1

Γ(m − β)

∫ 1

0
(t − s)m−β−11(m)(s)ds, (m − 1 < β < n,m = [β] + 1). (30)

Where Γ the gamma function and [β] denotes the integer part of a real numbers.
In this work, we present the existence of the solution of nonlinear fractional differential equation.

cDβ(u(t)) + f (t,u(t)) = 0, (0 ≤ t ≤ 1, β < 1) (31)

with u(0) = u(1) = 0 and f : [0, 1] × R → R being a continuous function, and Green’s function associated
with Problem (31) is given by

G(t, s) =

(t(1 − s))α−1
− (t − s)α−1 i f 0 ≤ t ≤ s ≤ 1,

(t(1−s))α−1

Γ(a) i f 0 ≤ s ≤ t ≤ 1.
(32)

Assume that the following conditions hold :
1. | f (t,u) − f (t, v)| ≤ e−τW(u, v) where τ is a real number such that τ > 2 each t ∈ [0, 1] and a, b ∈ R, where

W(u, v) = max{|u − v|, |u − Tu|, |v − Tv|, |u − Tv|, |v − Tu|}.

Theorem 3.2. Under the the assumption of condition 1, (31) has a solution.

Proof. It is well known that u is a solution of (31) if and only if u ∈ X is a solution of the integral equation:

u(t) =
∫ 1

0
G(t, s) f (s,u(s)) ds, for all t ∈ [0, 1]. (33)
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Now consider:

|Tu(x) − Tv(x)|2 =
∣∣∣∣∣ ∫ 1

0
G(x, s) f (s,u(s)) ds −

∫ 1

0
G(x, s) f (s, v(s)) ds

∣∣∣∣∣2
≤

∫ 1

0

∣∣∣G(x, s)
(

f (s,u(s)) − f (s, v(s))
)∣∣∣2 ds

≤

( ∫ 1

0
|G(x, s)| | f (s,u(s)) − f (s, v(s))| ds

)2
≤

( ∫ 1

0
|G(x, s)| e−τW(u, v) ds

)2
≤ e−2τW(u, v)2

( ∫ 1

0
|G(x, s)| ds

)2
≤ e−2τ max{|u − v|, |u − Tu|, |v − Tv|, |u − Tv|, |v − Tu|}2

( ∫ 1

0
|G(x, s)| ds

)2
≤ e−2τ max{|u − v|2, |u − Tu|2, |v − Tv|2, |u − Tv|2, |v − Tu|2}

( ∫ 1

0
|G(x, s)| ds

)2
≤ e−2τ max{|u − v|2, |u − Tu|2 + |v − Tv|2, |u − Tv|2 + |v − Tu|2}

( ∫ 1

0
|G(x, s)| ds

)2
≤ e−τ max{e−τ|u − v|2, e−τ(|u − Tu|2 + |v − Tv|2), e−τ(|u − Tv|2 + |v − Tu|2)}

·

(
sup

x∈[0,1]

∫ 1

0
|G(x, s)| ds

)2
.

(34)

Since supx∈[0,1]

∫ 1

0 |G(x, s)| ds ≤ 1, we have:

max
x∈[0,1]

|Tu(x) − Tv(x)|2 ≤ e−τ max{e−τ|u − v|2, e−τ(|u − Tu|2 + |v − Tv|2),

e−τ(|u − Tv|2 + |v − Tu|2)}

≤ e−τ max{α1|u − v|2, α2(|u − Tu|2 + |v − Tv|2),

α3(|u − Tv|2 + |v − Tu|2)}.

(35)

Here, α1 + 2α2 + 2α3 = 5e−τ < 1, since τ > 2 is a real number.
Thus:

max
x∈[0,1]

|Tu(x) − Tv(x)|2 ≤ e−τMd(x, y),

and

d(Tx,Ty) ≤ ψ(Md(x, y)),

where

Md(x, y) = max{α1|u − v|2, α2(|u − Tu|2 + |v − Tv|2), α3(|u − Tv|2 + |v − Tu|2)},

and ψ(t) = e−τt, for t ∈ [0,∞). Clearly, T is a contraction.
We conclude that the operator T satisfies all the conditions of Theorem 2.3. Hence, T has a unique fixed
point in the given ( 1

2 , 2) interpolative metric space, which will be the solution of (31).

Remark 3.3. :- Theorem 3.2 also holds for b− metric spaces with s = 2.
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Conclusion

This study examines fixed point theory in interpolative metric spaces, extending the classical theory
related to standard metric spaces. We illustrated the applicability of generalized contractions, such as
Banach, Kannan, and Chatterjea contractions, in interpolative metric spaces, emphasizing their ability to
resolve intricate nonlinear systems. The completeness of interpolative metric spaces and the flexibility
offered by the interpolative inequality establishes a strong basis for the progression of fixed-point the-
ory. Our findings resulted in an application that illustrates solutions to non-linear integral and fractional
differential equations, confirming the practical significance and adaptability of the suggested framework.
These findings connect theoretical progress with practical applications, enhancing the broader domain of
nonlinear analysis.
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