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Abstract. This research is motivated by results obtained by Vesic et al. about scalar perturbational invari-
ants caused by scalar perturbations of a gravitational field. Five linearly independent scalar perturbational
invariants are obtained there. After some algebraic computing, these five perturbational invariants are
transformed to new five linearly independent scalar perturbational invariants. From the set of last men-
tioned five perturbational invariants, two pairs of them are selected such that the second invariant in this
pair is equal to the partial derivative by conformal time of the first one. The pair invariant for the fifth one,
analogous to the second invariants in the two pairs, was not obtained. In this manuscript, these existing
results are expanded with respect to the basics of linear algebra and quantum mechanics. We obtained
the corresponding Hermitian time-dependent matrices which transform three of obtained scalar perturba-
tional invariants to their partial derivatives by conformal time in here. These matrices are the corresponding
Hamiltonians. Their eigenvalues (energy levels) and eigenstates (energy functions) are determined. After
that, the expectation values of Hamiltonians and their squares, together with the corresponding uncertain-
ties of these Hamiltonians in the states of scalar perturbational invariants are obtained.

1. Introduction

The cosmological perturbation theory is important in modeling the Universe [11].
J. Bardeen [3] obtained two scalar perturbational invariants known as Bardeen’s potentials. The third
scalar perturbational invariant is the Mukhanov-Sasaki variable [11]. It is confirmed that only three of five
scalar perturbational invariants obtained in [20] are functionally independent. Motivated with definitions
and results from the theory of quantum mechanics [1, 5, 15], we will express the obtained three functionally
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independent scalar perturbational invariants as column matrices and obtain the corresponding transfor-
mation matrices to their partial derivatives by conformal time 7. These transformation matrices will be the
most suitable for determining the eigenvalues and eigenvectors of them. With respect to these matrices, we
will obtain the corresponding expectations of Hamiltonians, the expectations of squares of Hamiltonians,
and the corresponding uncertainties.

1.1. Necessary details about cosmology and quantum mechanics

In this subsection, we will present the facts about cosmology and quantum mechanics necessary for our
research. Based on these facts, we will use the knowledge about vector spaces and isomorphisms between
them [19] to present some quantum mechanical properties of some of perturbational invariants obtained in
[20].

1.1.1. Perturbations in cosmology

The theory of cosmological perturbations has a deep impact in cosmological inflation. With respect to
the inflation, the Universe underwent a period of almost exponential expansion shortly after Big Bang, after
which it transits into two next eras (the radiation and matter dominated ones). These eras are described by
conventional Big Bang theory [16, 21].

Starting from spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds? = (] = dn? + dx'” + P + dx’’) 1)

for spatial coordinates x!, x2, 3, the conformal time 7, dn = dt/a(t), where t is the physical time, and the
scale factor a(n). The perturbed metric is

ds? = a>(n){ = (1 + 24)dif + 2(9;B)dx'dn + [(1 - 2(D + 1(9kdkE)))5sj + 2(:9;E ) |dxidari}, )

for x° = 1, and scalar functions A, B, D, E, the partial derivation by x' denoted by d;, and the Einstein’s
summation convention applied to any repeated indices. In other words, the term (&18,-1:") is the shortened
form of &'/ (818jE), where the Einstein’s summation convention is repeated to the mute indices i and j which
take the values of {1, 2, 3}.

Expressed in different reference frames O’x’ and O”x”, the values of functions A, B, D, E, satisfy the
equalities

A= A" - % - O,

B =B" - (%) +&,
D' =D" + }(9:&) + &H,
E'=E" - (9;1&),

)

where H = H(n) = a’(n)/a(n) is the Hubble scalar and & = (50, & &2, 53) is the coordinate transformation
vector, & = x' —x”, x’ = (x0,x'1,x2,x%), ¥ = (x",x"1,x”"?,x’"®). The mater with respect to FLRW metric
is determined by a scalar field ¢ which describes the dominant cosmological fluid and its perturbation
O0p = @ — @, where ¢ is the unperturbed field. The perturbations 6¢" and 6¢" of this field in different
coordinate systems satisfy the equality
o
r_ 7 0_. 4
o’ = 069" =& an (4)
Bardeen [3] pointed that only linear combinations of A, B, D, E, 6¢ which do not depend on & have
an inherent physical meaning. With respect to that, two Bardeen’s potentials and the Mukhanov-Sasaki
variable are obtained [3, 11]. They are expressed in the coordinate system Ox as
JE\ Jd JE
) ¥ 5 (B-5,)

CDB:A-FW(B—% +% —% (5)
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1 JE
Yp = (D + 5(8,(9,1‘:)) - 7‘{(B - a—n), (6)
Vs = aw—l’z_f(p + %(aia,.E)) +adg. )

New point of view on perturbational invariants is expressed in [20]. In this research, it was obtained
how many linearly independent, and functionally independent as well, perturbational invariants may be
obtained from the transformation rules (3, 4) and their partial derivatives by 7. It is proved that there
are three perturbational invariants which are generators for any of other perturbational invariant. In this
manuscript, we are interested what are quantum mechanical characteristics of these three perturbational
invariants.

The obtained perturbational invariants are

T =A-Nop - cga;—:f, (8)
J*=(B- Z_E) +c35¢, )
J° = %(B - ‘;—i) - S3og + cga;—;o, (10)
J*=(D+ %(&@E)) + QHb, (11)

dop

= (12

d 1
g5 = %(D + 5(8,-8,-15)) + C?(S(p + cg'H
-1 2 - 2~ q ) . aqe
where ¢) = (d_) ) =cdH - Zchgz, 3= ’;—’fcgz, A= %cg - ’;—’(’zcgz. It is proved [20] that the next equalities
hold

a j2k
2k+1
== 13
J o (13)
fork=1,2.

The Bardeen’s potentials @ and W3, and the Mukhanov-Sasaki variable vys are expressed as the linear
combinations of perturbational invariants J°, 92, J°, 9%, J° in [20]. For this reason, and because J°,
J?, J* are functionally independent scalar perturbational invariants, we will consider the perturbational

invariants

meJ°, mJ?, muJ*, (14)
for the scalar and perturbational invariant scalar functions my = mo (7, xt, x2,x%),
my = my(n,x', %%, %), my = my(n,x', 2%, x%), where we will use m, = agiqz", k =0,1,2. We will obtain the

aimed quantum mechanical characteristics of these three perturbational invariants in this research.

1.2. Matrix approach to quantum mechanics

Computations in quantum mechanics are based on physical time ¢. The purpose of this research is to
obtain energy levels and wave functions of perturbational invariants in cosmology, the analogues to the
corresponding ones which have been obtained in quantum mechanics. For this reason, we will review the
corresponding basic definitions from quantum mechanics with respect to the physical time, but the main
results of this research will be expressed in terms of conformal time.

By the first postulate of quantum mechanics [1, 5, 15], a wave function ¥ = W(x, t) (for one dimensional
problems) may be approached to any quantum mechanical system. This function, defined on the interval

+00

(=00, +00), is complex and integral of its squared module over the full space is f_ . )‘I’(x, t)(zdx =1.



N. Vesié et al. / Filomat 39:28 (2025), 9793-9806 9796

The time evolution of this system [1, 5, 15] is determined with the time dependent Schrédinger equation

v
h—— = HY 1
ih—, , (15)
for a Hermitian operator H = H(t) which is a function of physical time. The time independent Schrodinger
equation is

Hy = Ey, (16)

for a Hermitian operator H which is not a function of ¢, and the scalar E which is the energy. The energy E
is an eigenvalue of the operator H.

The time independent Schrédinger equation determined by the Hamiltonian H of the type n X n may be
solved as the eigenvalue problem. Namely, if Ey, E, ... E,—1 are n eigenvalues of the matrix H, and if 1p°,
Y1, ..., Y"1 are the corresponding linearly independent eigenvectors of the matrix H, the general solution
of Schrodinger equation Hy = Ei is

W(x,t) = coule it 4+ cyypleiBrt 4+ cn_ll,lz”’le’%E"-lt, (17)

where ¢y, 1, . .., C,—1 are scalars.

The time dependent Schrodinger equation mostly has been solved approximatively. The methodology
for solving time dependent Scrhodinger equations is presented in many articles and books [2, 4, 12, 13]. For
applying this method, known as the finite differences method, we determine points (x, tk). At these points,
the time-dependent Hamiltonian becomes constant and we solve the corresponding time-independent
Schrodinger equations. That means that if we are able to obtain time dependent eigenvalues and eigenvec-
tors of the time dependent Hamiltonian H = H(t) at any time, we directly obtain the corresponding solution
of the time dependent Schrodinger equation given by (15). In other words, the analytically expressed time
dependent eigenvalues and eigenvectors of the Hamiltonian H are enough for the analyzed time-dependent
Schrodinger equation (15) to be solved.

It also should be pointed that if W(x, f) is a finite-dimensional vector, the Hamiltonian H is corresponded
to a non-symmetric matrix H. Because H is a Hermitian operator, the doubled symmetric part H + H of
this matrix is real but the doubled anti-symmetric part H — H of the matrix H is imaginary.

1.3. Motivation

Different physical systems are described by corresponding Schrédinger equations [2, 12, 13, 17]. Their
solutions are mostly approximated ones. In cosmology and astronomy, Schrédinger equations have been
used as well. I. V. Formin, S. V. Chervon, and S. D. Maharaj [7] considered the new representation of
Schrodinger-like equation for scalar field Friedmann cosmology. In this model, the scalar field is the
argument, but the Hubble parameter is the analogue to the wave function. V. Husain and O. Singh [9]
studied the model of semiclassical cosmology. In that research, the semiclassical approximation with back
reaction for the coupled evolution of a classical FLRW cosmology and quantum scalar field with respect
to the corresponding equations presented in there is one of results. The other result are results of the
corresponding numerical computing. V. Husain and S. Singh [9] proposed and studied the cosmological
system in which the matter field evolution is determined by the corresponding Schrodinger equation. B.
Gumjudpai [8] studied the cosmological model correlated to the non-linear Schrédinger-type formulation.
In this case, the Schrodinger wave function is not normalizable. V. Husain and O. Winkler [10] presented
the model for semiclassical matter-geometry states for homogeneous and isotropic cosmological models.
C. J. Short and P. Coles [18] presented the method for studding large-scale structure formation. In this
research, the coupled Schrodinger and Poisson equations were used for studding the dynamics of scalar
fields which represent the corresponding self-gravitating cold dark matter. A. Feoli [6] analyzed the model
with assumption that Dark Matter is composed of a quantum particle of very low mass. The cosmological
Friedmann-Einstein dynamical system which corresponds to this case is reduced to a kind of Schrodinger
equation.
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The research presented in [14] is the closest to the focus of the research presented in this article. Namely,
J. Martin quantized the Mukhanov-Sasaki variable. As we may see in [20], this perturbational invariant is
one of three scalar perturbational invariants which generate the all other ones.

We will be focused on quantum mechanical aspects of three perturbational invariants obtained in cos-
mology [20]. The corresponding time dependent Schrodinger equations for some kinds of generalizations
of these invariants will be presented. For the solutions of these Schrodinger equations will be recommended
the method presented in [4].

1.4. Purposes

1. At the start of research, we need to express the perturbational invariants mg S 20 k=0,1,2, given
by (14), as elements of a finite-dimensional vector space. The brackets (k) note that the index k does
not obey Einstein’s summation convention.

2. After that, we will obtain the corresponding Hermitian transformation matrices of the vectors
Mg T 20k = 0,1,2, to the partial derivatives of these vectors by conformal time. In this way,
the corresponding Schrodinger-type equations will be obtained and they will correspond to the cor-
responding theoretical particles which describe time, space-time, and space.

3. At the last part of research, we will obtain the corresponding energy levels, wave functions, expected
energies of the states mpJ°, myJ?, maJ* and the corresponding uncertainties.

2. Review on scalar perturbational invariants

It is well known [19] that the space of n-dimensional vectors is isomorphic to the space of matrices of
the type n X 1. We are interested to express perturbational invariants obtained in [20] as finite dimensional
matrices.

In [20], the following scalar perturbational invariants J°, J2, J°, J*%, J°, reviewed by the Equations
(8-12), are obtained. These five scalar perturbational invariants and the scalar perturbational invariant

9g° oA o Ic)\ddp 970
1 — 1 0
= — - =10 - —_— 1
T = = ™ (C1+9n)9n 629172’ (19
are elements of the following family
j ZOIA'A+61{A0"3—?+6¥BE (B—a—n)+0(BEO %(B ‘3’,5,)
+ape - (D + 3(9:0iE)) + apr, (D + 3(2idiE) (19)
96 192 p
+tp 0P + gy G+ Ay © T)ﬁ,
for coefficients aa, aa,, ABE, ABE), ADE, ADE,, A, Ay, Aoy -
This family may be transformed to the family of matrices
T
Mgz[m Ha Mz Ha Hs He Hy Hs Ho ], (20)

for i = an-A, to = an, - B, us = apr - (B= %), pa = apg, - 5:(B— %), us = aoc - (D + 3(99E)),
6 *5¢p
He = aDEOr?n(D+ (8&]:")) W7 = g 0@, lis = Ay * s o = Qg G

The transformation J — My is injective. If M5 = My are two equal matrix expressions, where is
T
Mz = [ 1 fl2 {3z [fla fis [e [y [s [o ] p
T
Mg = [ Wi M2 M3 Ha Hs Ue M7 Hg Ho ] ,

than itholds fiy = w1, fiz = o, fis = i3, fla = fha, fis = Us, fle = Mo, fiz = iz, fis = s, flo = Ho. Because J = i1 +
foand J = pi+.. 4, we getj J . For any matrix Mg = [ g1 M2 M3 Ha M5 He H7 Mg Mo ] ,
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and the row matrix 1ixg = [ 111111111 ], the only element of the matrix 11x9 - M is the

original of this result under transformation, which completes the proof that the transformation J — Mg

is bijective. Moreover, if y; and y; are scalars, it evidently holds the equality /\/[y1 Tepd = Mz +ya My

which proves the linearity of the analyzed transformation. Hence the function J — M is an isomorphism.
In this way, the forthcoming theorem is proved.

Theorem 2.1. Six scalar perturbational invariants 7°, 4, J%, I°, T*, J°, determine the nine-dimensional vector
space. Five scalar perturbational invariants J°, 2, T2, J*, J° determine the seven-dimensional vector space.
These vector spaces are respectively isomorphic to the corresponding vector spaces of column-matrices of the types
9 x 1and 7 X 1. The relations

0 j2k

j2k+1 —
an

(1)
are satisfied for k = 0,1, 2.

Three of scalar perturbational invariants J°, . .., J° are functionally independent. These three independent scalar
perturbational invariants are J°, J2, J*, and all other scalar perturbational invariants are obtained as the linear
combinations of these three functionally independent scalar perturbational invariants and their partial derivatives by
conformal time 1 or space coordinates x'. [J

The matrix expressions of functionally independent scalar perturbational invariants myJ" 0 my g2, and
myJ* are

Mugo=[ meA 0 0 0 0 0 —mclop —mod22 0 |, (22)
My =[ 0 0 m(B=2%) 0 0 0 mcp 0 0], 23)
Myge=[0 0 0 0 m(D+1(90E) 0 mclHsp 0 0], (24)

for the above defined coefficients c? and cJ.

3. Quantum mechanical characteristics of scalar perturbational invariants

In this section, we will present the main results of our research. Because the form of a time dependent
Schrodinger equation is given by (15), and because the perturbational invariants mpJ 0 mp 2, maJ*, are
states expressed in the 9-dimensional vector space, we are initially interested to obtain Hermitian matrices
Hg = Hgp((1), k=0,1,2, of the type 9 X 9 such that

8 M o 20
U -

an = H(k)Mmz(k)J 20, (25)
where brackets (k) about k mean that the index k does not obey Einstein’s summation convention.

By the equations (25), it was emphasized that the matrix expressions M,,, 20 of the analyzed pertur-
bational invariants are solutions of the Schrédinger-type equations

ihagw—n\y = HpyMy, (26)
for the Hermitian matrices Hyy, k = 0,1, 2. The operators H ) are hamiltonians of the corresponding systems.
The eigenvalues of the operators H, are the energy levels of the analyzed system. The eigenvectors of the
operators H are the wave functions of the corresponding systems.

For a time interval (4, b) C R, and the known eigenvalues &, . . ., &g and the eigenvectors 1/10, .., 1/)8 the
Schrédinger equations (25) may be solved in the following manner:
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(i) Divide the interval (a, b) into n subintervals (a,-1,4,), 40 =a < a1 <...,a, = b, of equal with A7. Tt will
be satisfied the following equalities: ag = a,a, =a+pAn,p=1,...,n
(i1) Select the concrete conformal times n? € (a,-1,4,),p=1,...,1n
(iif) Determine the Hermitian matrices H such that

oM i T2
ihg—;;) = H(k)(n(k))Mmz(k)J(Zk)' (27)

Determine the eigenvalues and the eigenvectors of the matrices H.
(iv) The Schrodinger-type equation which corresponds to the transformation of scalar perturbational
invariant m, J Y to its partial derivative by conformal time 7 is ihg—ls = Hyyy.

Remark 3.1. As we may see from the above presented way to solve the Scrhodinger-type equations, if eigenvalues
and eigenvectors of a hamiltonian Hy(n) are expressed in the corresponding analytical forms, we may treat the
corresponding Scrhodinger equations as solved.

The components of matrices H) are [h(k)iw] = [hw], for

Suv, u=v,
by =% S+ i, p<v, (28)
Sy — My, 1>V,

for the real functions s, = 1 (huv + hw) = sy, and ny, = 1 (huv hvy) = —Myy.

In the case of k = 0, the equation (25) by Hy is reduced to the equality 1h ";;’ 7= = HoM,,,, 50 which is,

with respect to the matrix expression M, g0 given by (22), equivalent to the following system of linear
equations

2 . 2
—1mo(Aso — c20psos — ¢ (pS()7) + z(m'AF’z + (ogpnes + ¢ a:,P 1’107)171()) =0
—Mmy AS()1 - Coé(pSm - 62 an 517) + IMQ< LA+ Al’lm + coé(pn16 + C2 o 7117) 0

—mg| Asgp — 616(p526 - c26(p527) + 1m0(An02 +c é(pn% + c a n27) 0

0
0
0

(
(
mo(A 03 — C6¢s36 — cgé(p537) + 1m0(An03 + Dopnze + c2 Bn n37)
mo(A 04 — 6546 — cO(S(pS47) + imo(Angg + dpnge + 02 37 )
—mo(Aso5 — opsse — coé(p557) + imo(Angs + opnse + 02 e n57)
5(1) : —mo(As% -c 6(ps66 — 02%—1567)

+z(m0(An06 + Cy 98:/) Neg7y — 6(p 311 h) —C moégoh) =

—mo(Asoy — opser — YOPs77)

; P\ 9 0 0,,,7 99
+z(m0(An07 (c + o ) h—clécanm-)—czmo o h

—TH()(AS()g —C 6(pS6g - C2 o 578)

0969
+zm0(An08 c 3,](’)75 — opnes — IS e n78) 0.

For a nonconstant function my, this system has infinitely many solutions if it is solvable. For this system
to be solvable, we need to take special values of values s,, and special values of some concrete 7,,. The
system S, to be solvable, it is necessary to the imaginary parts of equations in this system be vanished.
Because variables g, 197, 1167 are variables of the first, seventh, and eighth equation of this system, these
three imaginary parts should be vanished by solving this subsystem by 1, 1197, #167.
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One of these infinite many solutions of the system (the most suitable one for this research) is

Sy = 0, u,ve {Or }
2
2( 209 / 2
g o(®) laraaa(s)) 0t
v = 2_mo(T Ac‘l]é(p ) 248050 o HEDVE0
2
T lz)a;r(,{) m! (A2+c°2¢5(p2) h(—c?c?’éq)+(c°+c°’)co(a§—:f) ) 3 B
Nyy = 2mg( A T T a0 )+ 2AL %0 , u=0v=7
Sol0 - €2 € ,
1- 2. BN 2 ’ ddq
_ A2+ 0% +c) (Tff _ 1| 9”52 +(c9+c5")cd a”’] P
My = 2mg ZCUCU&{)B;I/) ZCUCU(S(P%W ;7 H=06V=
n
194 -1 aA 0 41909 —0 132&{)
no = AT G, mig =A™ nog = AT 5, Mg = —CAT S,
Nngo = —No6, 7170 = —Np7, MNz6 = —Ne7,
Nyy = 0, otherwise.

The eigenvalues of matrix Hy are
&=8=8)=8)=¢) =

0,
2 2
&= \/N$+ YN MO, &)= \/NO— NNy (29)
& = -\/Ng N0 — M0 & = \/NO + (N2 - MO,

where N(f = %((”01)2 + (106)* + (no7)* + (10g)* + (7167)2) and M? = ((”01)2 + (7’108)2)(”67)2-

The corresponding eigenvectors are

V3 =(0,-22,0,0,0,0,0,0,1),

Y =(0,0,0,0,0,1,0,0,0),
V2 =(0,0,0,0,1,0,0,0,0),
(V§=E0,0,0,1,0,0,0,0,0),
V9 =(0,0,1,0,0,0,0,0,0),

0 (U 0 0
185(ﬂ0585+lﬂ07ﬂ67) . 85(710785—"06"67)

V0 = (i, m,0,0,0,0,

5 10’ 1os ’ 74
Evec(l) : ”08(522—(%7)2) nos(agz—<n67>2)
Ao = &y 10,0,0,0 152(”0652+iﬂ07n67) ‘82(1107827;406;467)
6 ( Vs s’ [ sl ’ )/

1og (822—(7167)2) 1108 (822—(7167)2)

(VO ( 89 nO] 0 0 0 0 189(710689+i71077167) ‘8(7)(1’1078(7)—1’106#167)
7 A

1o 7 1og

7 7 7
7108(592*(%7)2) 1108(532*(”67)2)
3 83 ot 18g<ﬂ068g+i71077167) .Sg(ﬂ0782—71067167)
:("_087108000'0’ 2 . 2 ')
”08(82 —(”67)2) '108(82 _("67)2)

8

With respect to the matrix Hy, we obtain that the expectation of hamiltonian Hy in the state M, 4o is

<H0> = M H()Mmojo =0. (30)

VA

Moreover, the next equality holds

(AH)" = (He?) ~ (HoY = (Ho)’,
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2
i.e. the square of uncertainty of energy (AHO) is

2
(AHO) = (n1)* + (no7)? + (neg)* + ( o ) (no7)* + 2C2 9,, % no61167

+(n06 - c‘l)é(pn67)2 (c dpnge + ¢ agp n67)2. G
The next theorem holds.
Theorem 3.2. Let mgy = mo(1, x) be a scalar function. Five of the energy levels caused by moJ° are
&=81=8)=&)=8&) =0. (32)

The two positive of other four energy levels are

2
_ N NP ()
_ N N (4)

for the corresponding values M2 and N°. The last two energy levels, the negative ones, are &) = &2 and &) = -EJ.
These enezrgy levels satisfy the next inequalities 8 < &) < &) < &), where all the equalities hold if and only if
0 — NO
M] =N;j".
The corresponding wave functions are Vg, p=0,...,8, given in the list Evec(l).
The expectation of hamiltonian Hy in the state M,y 4o is equal 0. The uncertainty of hamiltonian Hy in the state
My, 0 is given by the Equation (31). O

In the case of k = 1, the Schrodinger-type equation (26) is satisfied for M, 72, which is expressed in the
form

IM,y, 2

ih P

= HiMy, g2, (35)

for the corresponding Hermitian matrix H; of the type 9 X 9. This relation is equivalent to the following
system of linear equations

_(B - ‘3—5)502 — mzcoé(ps(m - Z((B - a—h;)ﬂoz + maC 6(Pn06) 0

(B - —)312 — Mac)0ps16 — z((B - g—h;)ﬂu + mac 5@”16) 0

(5 b s (3 - £ o+ madigr) =0

(3= & - (8- Ep (8- 2) - mligre) =0

62| (5 2 s s (5 - % s+ o) =0

(3~ s s+ (3~ R + i) <

( %)526 — mMaC, (5(P566 + l((B - 3—5)7’126 + (mZ o + m/z g)hé(f))

( %)527 — maCy 6(p567 + z((B - §—E)n27 + mpc 5({77167 + myc haﬁf) =0
—(B 3_5)528 mZC25(PS46 — 1((B - 3—5)1’124 + mZCZ(S(Pn%) =0.

This system is solvable if and only if the imaginary parts of its equations may be vanished simultaneously.
This is possible if and only if

0 _(p _ 9E\_maht ( aE) o 09md)
macy0¢ # 0, n%—(B an)mﬂgw, B - o m Moy =5, 6(p
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Because ( - ‘3—5) and 6¢ are real valued functions, the imaginary parts of the third and seventh equation

. . . el .. . .
of system S3 are vanished if and only if mm}c) n;ffz < 0. This inequality leads to the relation between

(B - 3—5) and 6¢ which is

J 0
(B- (83_5 )’ = —mnacd( + Z—ia%) (36)

The most suitable solution of the system S3 for our research is

S =0, uvelo... 8},
2(B-2 )
My = ——7—5— u=2v=3,
)
an
_(p_ 9E\_Mh _ _
Solé : My = (B 3f1)chg(§(p’ p= 2v=6,
macYop eyl %’)
— 2 T, — —_
nyv—_ o Ne7 — )’ ['1_2/1/_71
(3_7,)) (3_7,7)
N3y = —Np3, MNe2 = —Nye, N72 = —Nyy,
nyy =0, otherwise.

The eigenvalues of the hamiltonian whose components are determined by the solution Solj are

§=8==8==0,

2 2
& = \/N§+ JNZ M2, &= \/Ng— N3 =M, (37)
6 =N~ TN, &= N2+ N aE

where N3 = %((”23)2 + (1126)* + (1127)* + (7167)2) and M3 = (1123)*(1167)*.

Based on the solutions Solg, we form the hamiltonian H; whose matrix is H; and which corresponds to
the analyzed transformation.

The eigenvectors of Hamiltonian H; are

(V§ =(0,0,0,0,0,0,0,0,1),
(Vi =(0,0,0,0,0,1,0,0,0),
(V% =(0,0,0,0,1,0,0,0,0),
V2=1(0,1,0,0,0,0,0,0,0),
V;=(1,0,0,0,0,0,0,0,0),
V2 = (0 0. — 8%2,(%7)2 _,8%(852_2(N§—(n67)2)) Hager +ingeE2 1 0)
Evecg : 5 — \YY nzene%inysgf (n23(n26n67,'n275§) A Vlzanerinyé}é’ ,0),
2 ) )
2 — _ &~ (ner)? G\ & 2N -(ner)) Noytgr+inyeEl
(V6 - (0/ 0/ n26n67—in276§ 4 ”23(71267167—inz782) Y, Y, n26n67—in278§ ’ 1, 0),
2 22 2 5
2 _ _ 8%2_(7’67)2 _ G\ & -2(N3—(ne7)) oy +insgE2
(V7 - (0/ 0, Noate7—ing &2 P e ———s 0,0, Pp——_l 1, 0),
a2 = (0 0. — 8§2_(n67)2 ,8§(8§2_2(N§_(n67)2)) No7ngr+inye &} 1 0)
g — \UY naster—inyy &2’ ny(asher—inz&3) 77 7 nager—ingy &’ )"
The next equalities also hold
(Hy) =0, -

(AHL)" = (ms)? + (14 (€200 ) (26 + (127 — Qo6pmer)?. (39)
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Theorem 3.3. Let my = my(1, x) be a scalar function. Five of the energy levels caused by myJ* are
E=8=8=&=8&=0. (40)

The two positive of other four energy levels are

2

= \/N§+ JNZZ - M2, (41)
2

= \/N?,— N; =M, (42)

for the corresponding values M3 and N3. The last two energy levels, the negative ones, are &2 = —E% and E% = -E2.
These energy levels satisfy the next inequalities & < & < & < &, where all the equalities hold if and only if
M2 =NZ.
The corresponding wave functions are (Vf,, p=0,...,8, given in the list Evec3.
The expectation of hamiltonian Hy in the state M,,,, o= is equal 0. The uncertainty of hamiltonian Hy in the state
M, 2 is given by the Equation (39). O

In the case of k = 2, the Schrodinger-type equation (26) is satisfied for msJ*, which is expressed as

IMugs _

ihi P

Ho My, g+ (43)

This equality is equivalent to the following system of linear equations

—( ((9 8~E))so4 — M4C0PSps — ((D + ((9 0 E))n04 + Mmyc (5(pn06> 0
( 3((9 0 E))S14 — M4CY0Ps16 — z((D + (8 i0; E))n14 + m4c (S(pn16> 0
—(D + %(8 i0; E))Sz4 — myc 6(p526 - 1((D + (& 0 E))n24 + myc 6(pn26> 0
—(D + %(8 i0; E))534 — myc 6(p536 z((D + (& 0 E))n34 + myc; 95¢nzs ) 0
—(D + %(8 0; E))s44 — M4CY0PSa6 — z(m SH P46 — (D + (8 0;E)m h) 0
Ss: —(D + %(8 0; E))s45 — mM4c)5QSse
+z((D + (& i0; E))n45 + 2 ( —(&-Q-E))mm - m4c07-(6<pn56) =
(D + %(8 0; E))S46 — m4CY6¢Ses + z((D + (8 0 E))n46 4 Img 7{hé(p) 0
—(D + %(8 0; E))S47 — Mmyc 6(ps67
+i((D + (8 i0; E))n47 + myc ?{(6(pn67 + o0 h)) 0
—(D + %(8 0 E))S48 — m4CY0QSes + z((D + (8 0:E )) a8+ m4cg7-(6(pn68) =0.

The variable n4¢ is a component of the imaginary parts in the fifth and seventh equations of the preceding
system. These two imaginary parts may be simultaneously vanished if and only if

man 0, ngs = (D + 4(A0E)) (mg(aia,f))z:_mj;%“ 9<m;j737’>6¢z.

In this case, the system S3 has infinitely many solutions. The most suitable of these solutions for our research
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is
S =0, u,velo,... 8},
r?(m4rg’H)
My = — an on u=4,v=>5
(D+%(9i8,E))
3(7!14COH)
4. Ny =—7——"—<h, u=4v==6
5015 : ( ( 9.0; E))
dop
b(pn67+ h
Ny = u=4v=7
i)
N5y = —MNs4, MNes = —Mas, MNys = —Ng7, MNe7,M76 = —Ne7 € R[1, x]
1y =0, otherwise.

The eigenvalues of matrix H; are

Ei=gl=8i=81=8=0

- 2 4 _ 2
= \/Ng+ INE oM, gt \/Ng- JNE - M,
-\/Ng- INE-ME gt -\/Ng+ INE M,

where N = 1((n45)? + (1116)? + (n47)* + (n67)?) and M2 = (n45)*(ne7)*.
The eigenvectors of Hamiltonian H, are

=(0,0,0,0,0,0,0,0,1),
=(0,0,0,0,0,1,0,0,0),
Wﬁ (0,0,0,0,1,0,0,0,0),
Wﬁ (0,1,0,0,0,0,0,0,0),
=(1,0,0,0,0,0,0,0,0),

4 042 4 2
sgz—(n67)2 .35(55 —2(N5—2(n45) )) Hagngr—ingeE

EZ)ECA; : (Vé - (0' 0,0,0, nyener—ing EL’ n45(nasher+ing E) 7 "46"67+m4754 1, )
(V4=(0 0.0.0 EX—(ngr)? _82(82272(N§*2(n45)2)) p—— 0)
6 PN nengr—ing &7 nas(asher+ing &) 7 71457167+m4754 TRy
= (0 0.0 E¥—(ngr)? .8§(S§2—2<N§—2(n45)2)) Nty —inggES 0)
7 P e —ing &2’ U mus(asher+ing &) 7 agher+ing &L )
1/4:(0 0.0 agz_%)z ‘83(832—2(Ngi2(n45>2)) narngr—ingsEl )
8 ’ 7 nyener—ing &g’ nys(ngener+ing EL) 7 ”46"67+m4784 1,

The next equalities hold

(H2) =0

(AHZ)Z = (ngs)* + (1 + Hzcgzéqoz)(n%)2 + (47 + HYop)?.
In this way, we proved the next theorem.

Theorem 3.4. Let my = ma(1, x) be a scalar function. Five of the energy levels caused by maJ* are
E=E=6=E=8=

The two positive of other four energy levels are

& = \/Ng + N - M2,

9804

(44)

(45)

(46)

(47)

(48)
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El= \/Ng — N - M, (49)

for the corresponding values M3 and Nj. The last two energy levels, the negative ones, are &, = &} and E; = —E4.
These enezrgy levels satisfy the next inequalities 85 < &} < & < &}, where all the equalities hold if and only if
4 _ g4
M: =N;".
The corresponding wave functions are (Vf,, p=0,...,8, given in the list Evecg.
The expectation of hamiltonian H, in the state M,,, 4+ is equal 0. The uncertainty of hamiltonian H, in the state
M, g+ 1s given by the Equation (46). O

Thus, for any of the three cases analyzed above, we obtained five eigenvalues equal to 0, two positive
eigenvalues, and two negative eigenvalues whose absolute values are equal to those of the corresponding
positive ones. For a clearer illustration, the obtained results are presented in Figure 1. The vertical axis
represents the energy axis. The black spheres correspond to the five eigenvalues of the Hamiltonian equal
to 0. The blue and red spheres above them correspond to the positive eigenvalues, while the spheres below
them correspond to the negative eigenvalues.

Figure 1: Graphical presentation of energies in studied model: black pentagon is analogy to the Brillouin zone, four cones correspond
to the rank four of the hamiltonians, black lines over the pentagon are LUMO and LUMO- energies, but the black lines under the
pentagon are HOMO and HOMO+ energies.

4. Discussion and conclusion

In Section 2, we reviewed scalar perturbational invariants obtained in [20]. Following the well-known
knowledge from linear algebra, and taken from [19], we expressed these perturbational invariants as
matrices. In this section, we proved the Theorem 2.1 which says that three scalar perturbational invariants
and their conformal time derivatives are elements of a nine-dimensional vector space. Because in [20] two
scalar perturbational invariants are obtained together with their conformal time derivatives but the fifth
perturbational invariant is obtained without its conformal time derivative, we proved (Theorem 2.1) that
these perturbational invariants form a vector space of dimension seven.

In the Section 3, we multiplied scalar perturbational invariants by scalar functions 11, 15, m4. For analyz-
ing of these three scalar perturbational invariants quantum-mechanically, the Schrédinger-type equations
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given by the Equation (26) were necessary. With respect to these equations, we obtained the quantum
mechanical characteristics (energy levels and wave functions) of scalar perturbational invariants myJ 0
ma g2, maJ*.

In the future research, we will try to obtain common hamiltonian for two different scalar perturbational
invariants. The second question which is opened does exist a hamiltonian which correspond to three scalar
perturbational invariants analyzed here as states.

5. Conclusion

We reviewed three functionally independent scalar perturbational invariants under scalar perturbations
in cosmology. These invariants are completed with their partial derivatives by conformal time. It is proved
that all of these six scalar perturbational invariants are elements of the nine-dimensional vector space of
column matrices. The three functionally independent scalar perturbations multiplied by scalar functions
are presented as matrices which was given in the Equations (22, 23, 24).

The three functionally independent scalar perturbational invariants expressed as the column matrices
are correlated with their partial derivatives by conformal time 1 by hermitian matrices of the type 9 x 9.

The eigenvectors and eigenvalues of the last transformation matrices are obtained. With that knowledge
about them, we are able to solve the corresponding Schrédinger equations. For any of scalar perturbational
invariants my.J°, my g2, msJ* as quantum mechanical states, we obtained the corresponding expectations
and uncertainties.
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