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Available at: http://www.pmf.ni.ac.rs/filomat

Matrix approach to Schrödinger-type equations initiated by
perturbational invariants
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Abstract. This research is motivated by results obtained by Vesić et al. about scalar perturbational invari-
ants caused by scalar perturbations of a gravitational field. Five linearly independent scalar perturbational
invariants are obtained there. After some algebraic computing, these five perturbational invariants are
transformed to new five linearly independent scalar perturbational invariants. From the set of last men-
tioned five perturbational invariants, two pairs of them are selected such that the second invariant in this
pair is equal to the partial derivative by conformal time of the first one. The pair invariant for the fifth one,
analogous to the second invariants in the two pairs, was not obtained. In this manuscript, these existing
results are expanded with respect to the basics of linear algebra and quantum mechanics. We obtained
the corresponding Hermitian time-dependent matrices which transform three of obtained scalar perturba-
tional invariants to their partial derivatives by conformal time in here. These matrices are the corresponding
Hamiltonians. Their eigenvalues (energy levels) and eigenstates (energy functions) are determined. After
that, the expectation values of Hamiltonians and their squares, together with the corresponding uncertain-
ties of these Hamiltonians in the states of scalar perturbational invariants are obtained.

1. Introduction

The cosmological perturbation theory is important in modeling the Universe [11].
J. Bardeen [3] obtained two scalar perturbational invariants known as Bardeen’s potentials. The third
scalar perturbational invariant is the Mukhanov-Sasaki variable [11]. It is confirmed that only three of five
scalar perturbational invariants obtained in [20] are functionally independent. Motivated with definitions
and results from the theory of quantum mechanics [1, 5, 15], we will express the obtained three functionally
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Nenad Vesić wishes to thank Serbian Ministry of Science for their support of this research through Mathematical Institute of

Serbian Academy of Sciences and Arts.
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independent scalar perturbational invariants as column matrices and obtain the corresponding transfor-
mation matrices to their partial derivatives by conformal time η. These transformation matrices will be the
most suitable for determining the eigenvalues and eigenvectors of them. With respect to these matrices, we
will obtain the corresponding expectations of Hamiltonians, the expectations of squares of Hamiltonians,
and the corresponding uncertainties.

1.1. Necessary details about cosmology and quantum mechanics
In this subsection, we will present the facts about cosmology and quantum mechanics necessary for our

research. Based on these facts, we will use the knowledge about vector spaces and isomorphisms between
them [19] to present some quantum mechanical properties of some of perturbational invariants obtained in
[20].

1.1.1. Perturbations in cosmology
The theory of cosmological perturbations has a deep impact in cosmological inflation. With respect to

the inflation, the Universe underwent a period of almost exponential expansion shortly after Big Bang, after
which it transits into two next eras (the radiation and matter dominated ones). These eras are described by
conventional Big Bang theory [16, 21].

Starting from spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = a2(η)
{
− dη2 + dx12

+ dx22
+ dx32}

(1)

for spatial coordinates x1, x2, x3, the conformal time η, dη = dt/a(t), where t is the physical time, and the
scale factor a(η). The perturbed metric is

ds2 = a2(η)
{
− (1 + 2A)dη2 + 2

(
∂iB

)
dxidη +

[(
1 − 2

(
D + 1

3

(
∂k∂kE

)))
δi j + 2

(
∂i∂ jE

)]
dxidx j

}
, (2)

for x0 = η, and scalar functions A, B, D, E, the partial derivation by xi denoted by ∂i, and the Einstein’s
summation convention applied to any repeated indices. In other words, the term

(
∂i∂iE

)
is the shortened

form of δi j
(
∂i∂ jE

)
, where the Einstein’s summation convention is repeated to the mute indices i and j which

take the values of {1, 2, 3}.
Expressed in different reference frames O′x′ and O′′x′′, the values of functions A, B, D, E, satisfy the

equalities
A′ = A′′ − ∂ξ0

∂η − ξ
0
H ,

B′ = B′′ −
(
∂−1

i
∂ξi

∂η

)
+ ξ0,

D′ = D′′ + 1
3

(
∂iξi

)
+ ξ0
H ,

E′ = E′′ −
(
∂−1

i ξ
i
)
,

(3)

where H = H(η) = a′(η)/a(η) is the Hubble scalar and ξ =
(
ξ0, ξ1, ξ2, ξ3

)
is the coordinate transformation

vector, ξ = x′ − x′′, x′ = (x′0, x′1, x′2, x′3), x′′ = (x′′0, x′′1, x′′2, x′′3). The mater with respect to FLRW metric
is determined by a scalar field φ̄ which describes the dominant cosmological fluid and its perturbation
δφ = φ − φ̄, where φ̄ is the unperturbed field. The perturbations δφ′ and δφ′′ of this field in different
coordinate systems satisfy the equality

δφ′ = δφ′′ − ξ0 dφ̄
dη
. (4)

Bardeen [3] pointed that only linear combinations of A, B, D, E, δφ which do not depend on ξ have
an inherent physical meaning. With respect to that, two Bardeen’s potentials and the Mukhanov-Sasaki
variable are obtained [3, 11]. They are expressed in the coordinate system Ox as

ΦB = A +H
(
B −

∂E
∂η

)
+
∂
∂η

(
B −

∂E
∂η

)
, (5)
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ΨB =
(
D +

1
3

(
∂i∂iE

))
−H

(
B −

∂E
∂η

)
, (6)

νMS = aH−1 dφ̄
dη

(
D +

1
3

(
∂i∂iE

))
+ aδφ. (7)

New point of view on perturbational invariants is expressed in [20]. In this research, it was obtained
how many linearly independent, and functionally independent as well, perturbational invariants may be
obtained from the transformation rules (3, 4) and their partial derivatives by η. It is proved that there
are three perturbational invariants which are generators for any of other perturbational invariant. In this
manuscript, we are interested what are quantum mechanical characteristics of these three perturbational
invariants.

The obtained perturbational invariants are

J
0 = A − c0

1δφ − c0
2
∂δφ

∂η
, (8)

J
2 =

(
B −

∂E
∂η

)
+ c0

2δφ, (9)

J
3 =

∂
∂η

(
B −

∂E
∂η

)
− c3

1δφ + c0
2
∂δφ

∂η
, (10)

J
4 =

(
D +

1
3

(
∂i∂iE

))
+ c0

2Hδφ, (11)

J
5 =

∂
∂η

(
D +

1
3

(
∂i∂iE

))
+ c5

1δφ + c0
2H

∂δφ

∂η
, (12)

where c0
2 =

( dφ̄
dη

)−1
, c0

1 = c0
2H −

d2φ̄
dη2 c0

2
2, c3

1 =
d2φ̄
dη2 c0

2
2, c5

1 =
dH
dη c0

2 −
d2φ̄
dη2 c0

2
2. It is proved [20] that the next equalities

hold

J
2k+1 =

∂J2k

∂η
, (13)

for k = 1, 2.
The Bardeen’s potentials ΦB andΨB, and the Mukhanov-Sasaki variable νMS are expressed as the linear

combinations of perturbational invariants J0, J2, J3, J4, J5 in [20]. For this reason, and because J0,
J

2, J4 are functionally independent scalar perturbational invariants, we will consider the perturbational
invariants

m0J
0, m2J

2, m4J
4, (14)

for the scalar and perturbational invariant scalar functions m0 = m0(η, x1, x2, x3),
m2 = m2(η, x1, x2, x3), m4 = m4(η, x1, x2, x3), where we will use m′2k =

∂m2k
∂η , k = 0, 1, 2. We will obtain the

aimed quantum mechanical characteristics of these three perturbational invariants in this research.

1.2. Matrix approach to quantum mechanics
Computations in quantum mechanics are based on physical time t. The purpose of this research is to

obtain energy levels and wave functions of perturbational invariants in cosmology, the analogues to the
corresponding ones which have been obtained in quantum mechanics. For this reason, we will review the
corresponding basic definitions from quantum mechanics with respect to the physical time, but the main
results of this research will be expressed in terms of conformal time.

By the first postulate of quantum mechanics [1, 5, 15], a wave functionΨ = Ψ(x, t) (for one dimensional
problems) may be approached to any quantum mechanical system. This function, defined on the interval

(−∞,+∞), is complex and integral of its squared module over the full space is
∫ +∞
−∞

∣∣∣Ψ(x, t)
∣∣∣2dx = 1.
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The time evolution of this system [1, 5, 15] is determined with the time dependent Schrödinger equation

iℏ
∂Ψ
∂t
= HΨ, (15)

for a Hermitian operator H = H(t) which is a function of physical time. The time independent Schrödinger
equation is

Hψ = Eψ, (16)

for a Hermitian operator H which is not a function of t, and the scalar E which is the energy. The energy E
is an eigenvalue of the operator H.

The time independent Schrödinger equation determined by the Hamiltonian H of the type n×n may be
solved as the eigenvalue problem. Namely, if E0, E1, . . . En−1 are n eigenvalues of the matrix H, and if ψ0,
ψ1, . . . , ψn−1 are the corresponding linearly independent eigenvectors of the matrix H, the general solution
of Schrödinger equation Hψ = Eψ is

Ψ(x, t) = c0ψ
0e−

i
ℏE0t + c1ψ

1e−
i
ℏE1t + . . . + cn−1ψ

n−1e−
i
ℏEn−1t, (17)

where c0, c1, . . . , cn−1 are scalars.
The time dependent Schrödinger equation mostly has been solved approximatively. The methodology

for solving time dependent Scrhödinger equations is presented in many articles and books [2, 4, 12, 13]. For
applying this method, known as the finite differences method, we determine points (x, tk). At these points,
the time-dependent Hamiltonian becomes constant and we solve the corresponding time-independent
Schrödinger equations. That means that if we are able to obtain time dependent eigenvalues and eigenvec-
tors of the time dependent Hamiltonian H = H(t) at any time, we directly obtain the corresponding solution
of the time dependent Schrödinger equation given by (15). In other words, the analytically expressed time
dependent eigenvalues and eigenvectors of the Hamiltonian H are enough for the analyzed time-dependent
Schrödinger equation (15) to be solved.

It also should be pointed that ifΨ(x, t) is a finite-dimensional vector, the Hamiltonian H is corresponded
to a non-symmetric matrix H. Because H is a Hermitian operator, the doubled symmetric part H + HT of
this matrix is real but the doubled anti-symmetric part H −HT of the matrix H is imaginary.

1.3. Motivation
Different physical systems are described by corresponding Schrödinger equations [2, 12, 13, 17]. Their

solutions are mostly approximated ones. In cosmology and astronomy, Schrödinger equations have been
used as well. I. V. Formin, S. V. Chervon, and S. D. Maharaj [7] considered the new representation of
Schrödinger-like equation for scalar field Friedmann cosmology. In this model, the scalar field is the
argument, but the Hubble parameter is the analogue to the wave function. V. Husain and O. Singh [9]
studied the model of semiclassical cosmology. In that research, the semiclassical approximation with back
reaction for the coupled evolution of a classical FLRW cosmology and quantum scalar field with respect
to the corresponding equations presented in there is one of results. The other result are results of the
corresponding numerical computing. V. Husain and S. Singh [9] proposed and studied the cosmological
system in which the matter field evolution is determined by the corresponding Schrödinger equation. B.
Gumjudpai [8] studied the cosmological model correlated to the non-linear Schrödinger-type formulation.
In this case, the Schrödinger wave function is not normalizable. V. Husain and O. Winkler [10] presented
the model for semiclassical matter-geometry states for homogeneous and isotropic cosmological models.
C. J. Short and P. Coles [18] presented the method for studding large-scale structure formation. In this
research, the coupled Schrödinger and Poisson equations were used for studding the dynamics of scalar
fields which represent the corresponding self-gravitating cold dark matter. A. Feoli [6] analyzed the model
with assumption that Dark Matter is composed of a quantum particle of very low mass. The cosmological
Friedmann-Einstein dynamical system which corresponds to this case is reduced to a kind of Schrödinger
equation.
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The research presented in [14] is the closest to the focus of the research presented in this article. Namely,
J. Martin quantized the Mukhanov-Sasaki variable. As we may see in [20], this perturbational invariant is
one of three scalar perturbational invariants which generate the all other ones.

We will be focused on quantum mechanical aspects of three perturbational invariants obtained in cos-
mology [20]. The corresponding time dependent Schrödinger equations for some kinds of generalizations
of these invariants will be presented. For the solutions of these Schrödinger equations will be recommended
the method presented in [4].

1.4. Purposes
1. At the start of research, we need to express the perturbational invariants m2(k)J

2(k), k = 0, 1, 2, given
by (14), as elements of a finite-dimensional vector space. The brackets (k) note that the index k does
not obey Einstein’s summation convention.

2. After that, we will obtain the corresponding Hermitian transformation matrices of the vectors
m2(k)J

2(k), k = 0, 1, 2, to the partial derivatives of these vectors by conformal time. In this way,
the corresponding Schrödinger-type equations will be obtained and they will correspond to the cor-
responding theoretical particles which describe time, space-time, and space.

3. At the last part of research, we will obtain the corresponding energy levels, wave functions, expected
energies of the states m0J

0, m2J
2, m4J

4 and the corresponding uncertainties.

2. Review on scalar perturbational invariants

It is well known [19] that the space of n-dimensional vectors is isomorphic to the space of matrices of
the type n × 1. We are interested to express perturbational invariants obtained in [20] as finite dimensional
matrices.

In [20], the following scalar perturbational invariants J0, J2, J3, J4, J5, reviewed by the Equations
(8–12), are obtained. These five scalar perturbational invariants and the scalar perturbational invariant

J
1
≡
∂J0

∂η
=
∂A
∂η
−
∂c0

1

∂η
δφ −

(
c0

1 +
∂c0

2

∂η

)∂δφ
∂η
− c0

2
∂2δφ

∂η2 , (18)

are elements of the following family

J = αA · A + αA0 ·
∂A
∂η + αBE ·

(
B − ∂E

∂η

)
+ αBE0 ·

∂
∂η

(
B − ∂E

∂η

)
+αDE ·

(
D + 1

3

(
∂i∂iE

))
+ αDE0

∂
∂η

(
D + 1

3

(
∂i∂iE

))
+αφ · δφ + αφ0 ·

∂δφ
∂η + αφ00 ·

∂2δφ
∂η2 ,

(19)

for coefficients αA, αA0 , αBE, αBE0 , αDE, αDE0 , αφ, αφ0 , αφ00 .
This family may be transformed to the family of matrices

MJ =
[
µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

]T
, (20)

for µ1 = αA · A, µ2 = αA0 ·
∂A
∂η , µ3 = αBE ·

(
B − ∂E

∂η

)
, µ4 = αBE0 ·

∂
∂η

(
B − ∂E

∂η

)
, µ5 = αDE ·

(
D + 1

3

(
∂i∂iE

))
,

µ6 = αDE0
∂
∂η

(
D + 1

3

(
∂i∂iE

))
, µ7 = αφ · δφ, µ8 = αφ0 ·

∂δφ
∂η , µ9 = αφ00 ·

∂2δφ
∂η2 .

The transformation J →MJ is injective. IfMJ̄ =MJ are two equal matrix expressions, where is

MJ̄ =
[
µ̄1 µ̄2 µ̄3 µ̄4 µ̄5 µ̄6 µ̄7 µ̄8 µ̄9

]T
,

MJ =
[
µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

]T
,

than it holds µ̄1 = µ1, µ̄2 = µ2, µ̄3 = µ3, µ̄4 = µ4, µ̄5 = µ5, µ̄6 = µ6, µ̄7 = µ7, µ̄8 = µ8, µ̄9 = µ9. Because J̄ = µ̄1+

. . . µ̄9 andJ = µ1+. . .+µ9, we get J̄ = J . For any matrixMJ =
[
µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

]T
,
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and the row matrix 11×9 =
[

1 1 1 1 1 1 1 1 1
]
, the only element of the matrix 11×9 · MJ is the

original of this result under transformation, which completes the proof that the transformation J → MJ

is bijective. Moreover, if γ1 and γ2 are scalars, it evidently holds the equalityMγ1J̄+γ2J
= γ1MJ̄ + γ2MJ

which proves the linearity of the analyzed transformation. Hence the functionJ →MJ is an isomorphism.
In this way, the forthcoming theorem is proved.

Theorem 2.1. Six scalar perturbational invariantsJ0,J1,J2,J3,J4,J5, determine the nine-dimensional vector
space. Five scalar perturbational invariants J0, J2, J3, J4, J5 determine the seven-dimensional vector space.
These vector spaces are respectively isomorphic to the corresponding vector spaces of column-matrices of the types
9 × 1 and 7 × 1. The relations

J
2k+1 =

∂J2k

∂η
(21)

are satisfied for k = 0, 1, 2.
Three of scalar perturbational invariantsJ0, . . . ,J5 are functionally independent. These three independent scalar

perturbational invariants are J0, J2, J4, and all other scalar perturbational invariants are obtained as the linear
combinations of these three functionally independent scalar perturbational invariants and their partial derivatives by
conformal time η or space coordinates xi.

The matrix expressions of functionally independent scalar perturbational invariants m0J
0, m2J

2, and
m4J

4 are

Mm0J
0 =

[
m0A 0 0 0 0 0 −m0c0

1δφ −m0c0
2
∂δφ
∂η 0

]T
, (22)

Mm2J
2 =

[
0 0 m2

(
B − ∂E

∂η

)
0 0 0 m2c0

2δφ 0 0
]T
, (23)

Mm4J
4 =

[
0 0 0 0 m4

(
D + 1

3

(
∂i∂iE

))
0 m4c0

2Hδφ 0 0
]T
, (24)

for the above defined coefficients c0
1 and c0

2.

3. Quantum mechanical characteristics of scalar perturbational invariants

In this section, we will present the main results of our research. Because the form of a time dependent
Schrödinger equation is given by (15), and because the perturbational invariants m0J

0, m2J
2, m4J

4, are
states expressed in the 9-dimensional vector space, we are initially interested to obtain Hermitian matrices
H(k) = H(k)(η), k = 0, 1, 2, of the type 9 × 9 such that

iℏ
∂Mm2(k)J

2(k)

∂η
= H(k)Mm2(k)J

2(k) , (25)

where brackets (k) about k mean that the index k does not obey Einstein’s summation convention.
By the equations (25), it was emphasized that the matrix expressionsMm2(k)J

2(k) of the analyzed pertur-
bational invariants are solutions of the Schrödinger-type equations

iℏ
∂MΨ

∂η
= H(k)MΨ, (26)

for the Hermitian matrices H(k), k = 0, 1, 2. The operators H(k) are hamiltonians of the corresponding systems.
The eigenvalues of the operators H(k) are the energy levels of the analyzed system. The eigenvectors of the
operators H(k) are the wave functions of the corresponding systems.

For a time interval (a, b) ⊂ R, and the known eigenvalues E0, . . . , E8 and the eigenvectors ψ0, . . . , ψ8 the
Schrödinger equations (25) may be solved in the following manner:
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(i) Divide the interval (a, b) into n subintervals (ap−1, ap), a0 = a < a1 < . . . , an = b, of equal with ∆η. It will
be satisfied the following equalities: a0 = a, ap = a + p∆η, p = 1, . . . ,n.

(ii) Select the concrete conformal times ηp
∈ (ap−1, ap), p = 1, . . . ,n.

(iii) Determine the Hermitian matrices H(k) such that

iℏ
∂Mm2(k)J

2(k)

∂η
= H(k)(η(k))Mm2(k)J

(2k) . (27)

Determine the eigenvalues and the eigenvectors of the matrices H(k).
(iv) The Schrödinger-type equation which corresponds to the transformation of scalar perturbational

invariant m2(k)J
2(k) to its partial derivative by conformal time η is iℏ ∂ψ∂η = H(k)ψ.

Remark 3.1. As we may see from the above presented way to solve the Scrhödinger-type equations, if eigenvalues
and eigenvectors of a hamiltonian H(k)(η) are expressed in the corresponding analytical forms, we may treat the
corresponding Scrhödinger equations as solved.

The components of matrices H(k) are
[
h(k).µν

]
≡

[
hµν

]
, for

hµν =


sµν, µ = ν,
sµν + inµν, µ < ν,
sµν − inµν, µ > ν,

(28)

for the real functions sµν = 1
2

(
hµν + hνµ

)
= sνµ and nµν = 1

2i

(
hµν − hνµ

)
= −nνµ.

In the case of k = 0, the equation (25) by H(k) is reduced to the equality iℏ
∂Mm0J

0

∂η = H0Mm0J
0 which is,

with respect to the matrix expression Mm0J
0 given by (22), equivalent to the following system of linear

equations

S0
1 :



−m0(As00 − c0
1δφs06 − c0

2
∂δφ
∂η s07) + i

(
m′0Aℏ + (c0

1δφn06 + c0
2
∂δφ
∂η n07)m0

)
= 0

−m0

(
As01 − c0

1δφs16 − c0
2
∂δφ
∂η s17

)
+ im0

(
∂A
∂η ℏ + An01 + c0

1δφn16 + c0
2
∂δφ
∂η n17

)
= 0

−m0

(
As02 − c0

1δφs26 − c0
2δφs27

)
+ im0

(
An02 + c0

1δφn26 + c0
2
∂δφ
∂η n27

)
= 0

−m0

(
As03 − c0

1δφs36 − c0
2δφs37

)
+ im0

(
An03 + c0

1δφn36 + c0
2
∂δφ
∂η n37

)
= 0

−m0

(
As04 − c0

1δφs46 − c0
2δφs47

)
+ im0(An04 + c0

1δφn46 + c0
2
∂δφ
∂η n47

)
= 0

−m0

(
As05 − c0

1δφs56 − c0
2δφs57

)
+ im0(An05 + c0

1δφn56 + c0
2
∂δφ
∂η n57

)
= 0

−m0

(
As06 − c0

1δφs66 − c0
2
∂δφ
∂η s67

)
+i

(
m0

(
An06 + c0

2
∂δφ
∂η n67 − δφ

∂c0
1

∂η ℏ
)
− c0

1m′0δφℏ
)
= 0

−m0

(
As07 − c0

1δφs67 − c0
2δφs77)

+i
(
m0

(
An07 −

(
c0

1 +
∂2c0

2
∂η2

)
∂δφ
∂η ℏ − c0

1δϖn67

)
− c0

2m′0
∂δφ
∂η ℏ

)
= 0

−m0

(
As08 − c0

1δφs68 − c0
2
∂δφ
∂η s78

)
+im0

(
An08 − c0

2
∂2δφ
∂η2 ℏ − c0

1δφn68 − c0
2
∂δφ
∂η n78

)
= 0.

For a nonconstant function m0, this system has infinitely many solutions if it is solvable. For this system
to be solvable, we need to take special values of values sµν and special values of some concrete nµν. The
system S0

1, to be solvable, it is necessary to the imaginary parts of equations in this system be vanished.
Because variables n06, n07, n67 are variables of the first, seventh, and eighth equation of this system, these
three imaginary parts should be vanished by solving this subsystem by n06, n07, n67.
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One of these infinite many solutions of the system (the most suitable one for this research) is

Sol01 :



sµν = 0, µ, ν ∈ {0, . . . , 8},

nµν =
ℏm′0
2m0

( c0
1δφ

A −
A2+c0

2
2
(
∂δφ
∂η

)2

Ac0
1δφ

)
+
ℏ

(
c0

1c0
1
′
δφ2
−(c0

1+c0
2
′)c0

2

(
∂δφ
∂η

)2)
2Ac0

1δφ
, µ = 0, ν = 6,

nµν=
ℏm′0
2m0

( c0
2
∂δφ
∂η

A −
m′0

(
A2+c0

1
2
δφ2

)
2Ac0

2
∂δφ
∂η

)
+
ℏ

(
−c0

1c0
1
′
δφ+(c0

1+c0
2
′)c0

2

(
∂δφ
∂η

)2)
2Ac0

2
∂δφ
∂η

, µ = 0, ν = 7,

nµν = −
ℏm′0
2m0

A2+c0
1

2
δφ2+c0

2
2
(
∂δφ
∂η

)2

2c0
1c0

2δφ
∂δφ
∂η

−

ℏ

(
c0

1c0
1
′
δφ2+(c0

1+c0
2
′)c0

2

(
∂δφ
∂η

)2)
2c0

1c0
2δφ

∂δφ
∂η

, µ = 6, ν = 7,

n01 = −ℏA−1 ∂A
∂η , n10 = ℏA−1 ∂A

∂η , n08 = c0
1A−1 ∂

2δφ
∂η2 , n80 = −c0

1A−1 ∂
2δφ
∂η2 ,

n60 = −n06, n70 = −n07, n76 = −n67,
nµν = 0, otherwise.

The eigenvalues of matrix H0 are

E
0
0 = E

0
1 = E

0
2 = E

0
3 = E

0
4 = 0,

E
0
5 =

√
N0

1 +

√
N0

1
2
−M0

1, E
0
6 =

√
N0

1 −

√
N0

1
2
−M0

1,

E
0
7 = −

√
N0

1 −

√
N0

1
2
−M0

1, E
0
8 = −

√
N0

1 +

√
N0

1
2
−M0

1,

(29)

where N0
1 =

1
2

(
(n01)2 + (n06)2 + (n07)2 + (n08)2 + (n67)2

)
and M0

1 =
(
(n01)2 + (n08)2

)
(n67)2.

The corresponding eigenvectors are

Evec0
1 :



V
0
0 =

(
0,− n08

n01
, 0, 0, 0, 0, 0, 0, 1

)
,

V
0
1 =

(
0, 0, 0, 0, 0, 1, 0, 0, 0

)
,

V
0
2 =

(
0, 0, 0, 0, 1, 0, 0, 0, 0

)
,

V
0
3 =

(
0, 0, 0, 1, 0, 0, 0, 0, 0

)
,

V
0
4 =

(
0, 0, 1, 0, 0, 0, 0, 0, 0

)
,

V
0
5 =

(
i
E

0
5

n08
, n01

n08
, 0, 0, 0, 0,

iE0
5

(
n06E

0
5+in07n67

)
n08

(
E

0
5

2
−(n67)2

) , i
E

0
5

(
n07E

0
5−n06n67

)
n08

(
E

0
5

2
−(n67)2

) , 1),
V

0
6 =

(
i
E

0
6

n08
, n01

n08
, 0, 0, 0, 0,

iE0
6

(
n06E

0
6+in07n67

)
n08

(
E

0
6

2
−(n67)2

) ,−i
E

0
6

(
n07E

0
6−n06n67

)
n08

(
E

0
6

2
−(n67)2

) , 1),
V

0
7 =

(
i
E

0
7

n08
, n01

n08
, 0, 0, 0, 0,

iE0
7

(
n06E

0
7+in07n67

)
n08

(
E

0
7

2
−(n67)2

) , i
E

0
7

(
n07E

0
7−n06n67

)
n08

(
E

0
7

2
−(n67)2

) , 1),
V

0
8 =

(
i
E

0
8

n08
, n01

n08
, 0, 0, 0, 0,

iE0
8

(
n06E

0
8+in07n67

)
n08

(
E

0
8

2
−(n67)2

) ,−i
E

0
8

(
n07E

0
8−n06n67

)
n08

(
E

0
8

2
−(n67)2

) , 1).
With respect to the matrix H0, we obtain that the expectation of hamiltonian H0 in the stateMm0J

0 is

⟨H0⟩ =M
T
m0J

0 H0Mm0J
0 = 0. (30)

Moreover, the next equality holds(
∆H0

)2
=

〈
H0

2
〉
− ⟨H0⟩

2 =
〈
H0

〉2
,
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i.e. the square of uncertainty of energy
(
∆H0

)2
is(

∆H0

)2
= (n01)2 + (n07)2 + (n08)2 +

(
c0

2
∂δφ
∂η

)2
(n07)2 + 2c0

2
∂δφ
∂η n06n67

+
(
n06 − c0

1δφn67

)2
+

(
c0

1δφn06 + c0
2
∂δφ
∂η n67

)2
.

(31)

The next theorem holds.

Theorem 3.2. Let m0 = m0(η, x) be a scalar function. Five of the energy levels caused by m0J
0 are

E
0
0 = E

0
1 = E

0
2 = E

0
3 = E

0
4 = 0. (32)

The two positive of other four energy levels are

E
0
5 =

√
N0

1 +

√
N0

1
2
−M0

1, (33)

E0
6 =

√
N0

1 −

√
N0

1
2
−M0

1, (34)

for the corresponding values M0
1 and N0

1 . The last two energy levels, the negative ones, are E0
7 = −E

0
6 and E0

8 = −E
0
5.

These energy levels satisfy the next inequalities E0
8 ≤ E

0
7 ≤ E

0
6 ≤ E

0
5, where all the equalities hold if and only if

M0
1 = N0

1
2.

The corresponding wave functions areV0
p, p = 0, . . . , 8, given in the list Evec0

1.
The expectation of hamiltonian H0 in the stateMm0J

0 is equal 0. The uncertainty of hamiltonian H0 in the state
Mm0J

0 is given by the Equation (31).

In the case of k = 1, the Schrödinger-type equation (26) is satisfied forMm2J
2 , which is expressed in the

form

iℏ
∂Mm2J

2

∂η
= H1Mm2J

2 , (35)

for the corresponding Hermitian matrix H1 of the type 9 × 9. This relation is equivalent to the following
system of linear equations

S2
3 :



−

(
B − ∂E

∂η

)
s02 −m2c0

2δφs06 − i
((

B − ∂E
∂η

)
n02 +m2c0

2δφn06

)
= 0

−

(
B − ∂E

∂η

)
s12 −m2c0

2δφs16 − i
((

B − ∂E
∂η

)
n12 +m2c0

2δφn16

)
= 0

−

(
B − ∂E

∂η

)
s22 −m2c0

2δφs26 + i
((

B − ∂E
∂η

)
m′2ℏ +m2c0

2δφn26

)
= 0

−

(
B − ∂E

∂η

)
s23 −m2c0

2δφs36 − i
((

B − ∂E
∂η

)
n23 +

∂
∂η

(
B − ∂E

∂η

)
−m2c0

2δφn36

)
= 0

−

(
B − ∂E

∂η

)
s24 −m2c0

2δφs46 + i
((

B − ∂E
∂η

)
n24 +m2c0

2δφn46

)
= 0

−

(
B − ∂E

∂η

)
s25 −m2c0

2δφs56 + i
((

B − ∂E
∂η

)
n25 +m2c0

2δφn56

)
= 0

−

(
B − ∂E

∂η

)
s26 −m2c0

2δφs66 + i
((

B − ∂E
∂η

)
n26 +

(
m2

∂c0
2

∂η +m′2c0
2

)
ℏδφ

)
= 0

−

(
B − ∂E

∂η

)
s27 −m2c0

2δφs67 + i
((

B − ∂E
∂η

)
n27 +m2c0

2δφn67 +m2c0
2ℏ

∂δφ
∂η

)
= 0

−

(
B − ∂E

∂η

)
s28 −m2c0

2δφs46 − i
((

B − ∂E
∂η

)
n24 +m2c0

2δφn46

)
= 0.

This system is solvable if and only if the imaginary parts of its equations may be vanished simultaneously.
This is possible if and only if

m2c0
2δφ , 0, n26 =

(
B − ∂E

∂η

) m′2ℏ
m2c0

2δφ
,

(
B − ∂E

∂η

)2
m′2 = −m2c0

2
∂m2c0

2
∂η δφ2.
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Because
(
B− ∂E

∂η

)
and δφ are real valued functions, the imaginary parts of the third and seventh equation

of system S2
3 are vanished if and only if m2m′2c0

2
∂m2c0

2
∂η < 0. This inequality leads to the relation between(

B − ∂E
∂η

)
and δφ which is

(
B −

∂E
∂η

)2
= −m2c0

2

(
c0

2 +
m2

m′2

∂c0
2

∂η

)
. (36)

The most suitable solution of the system S2
3 for our research is

Sol23 :



sµν = 0, µ, ν ∈ {0, . . . , 8},

nµν = −
∂
∂η

(
B− ∂E

∂η

)
m2ℏ(

B− ∂E
∂η

) , µ = 2, ν = 3,

nµν =
(
B − ∂E

∂η

) m′2ℏ
m2c0

2δφ
, µ = 2, ν = 6,

nµν = −
m2c0

2δφ(
B− ∂E

∂η

)n67 −
m2c0

2ℏ
∂δφ
∂η(

B− ∂E
∂η

) , µ = 2, ν = 7,

n32 = −n23, n62 = −n26, n72 = −n27,
nµν = 0, otherwise.

The eigenvalues of the hamiltonian whose components are determined by the solution Sol23 are

E
2
0 = E

2
1 = E

2
2 = E

2
3 = E

2
4 = 0,

E
2
5 =

√
N2

3 +

√
N2

3
2
−M2

3, E
2
6 =

√
N2

3 −

√
N2

3
2
−M2

3,

E
2
7 = −

√
N2

3 −

√
N2

3
2
−M2

3, E
2
8 = −

√
N2

3 +

√
N2

3
2
−M2

3,

(37)

where N2
3 =

1
2

(
(n23)2 + (n26)2 + (n27)2 + (n67)2

)
and M2

3 = (n23)2(n67)2.
Based on the solutions Sol23, we form the hamiltonian H1 whose matrix is H1 and which corresponds to

the analyzed transformation.
The eigenvectors of Hamiltonian H1 are

Evec2
3 :



V
2
0 = (0, 0, 0, 0, 0, 0, 0, 0, 1),
V

2
1 = (0, 0, 0, 0, 0, 1, 0, 0, 0),
V

2
2 = (0, 0, 0, 0, 1, 0, 0, 0, 0),
V

2
3 = (0, 1, 0, 0, 0, 0, 0, 0, 0),
V

2
4 = (1, 0, 0, 0, 0, 0, 0, 0, 0),

V
2
5 =

(
0, 0,−

E
2
5

2
−(n67)2

n26n67−in27E
2
5
,−i

E
2
5

(
E

2
5

2
−2(N2

3−(n67)2)
)

n23(n26n67−in27E
2
5) , 0, 0,

n27n67+in26E
2
5

n26n67−in27E
2
5
, 1, 0

)
,

V
2
6 =

(
0, 0,−

E
2
6

2
−(n67)2

n26n67−in27E
2
6
, i
E

2
6

(
E

2
6

2
−2(N2

3−(n67)2)
)

n23(n26n67−in27E
2
6) , 0, 0,

n27n67+in26E
2
6

n26n67−in27E
2
6
, 1, 0

)
,

V
2
7 =

(
0, 0,−

E
2
7

2
−(n67)2

n26n67−in27E
2
7
,−i

E
2
7

(
E

2
7

2
−2(N2

3−(n67)2)
)

n23(n26n67−in27E
2
7) , 0, 0,

n27n67+in26E
2
7

n26n67−in27E
2
7
, 1, 0

)
,

V
2
8 =

(
0, 0,−

E
2
8

2
−(n67)2

n26n67−in27E
2
8
, i
E

2
8

(
E

2
8

2
−2(N2

3−(n67)2)
)

n23(n26n67−in27E
2
8) , 0, 0,

n27n67+in26E
2
8

n26n67−in27E
2
8
, 1, 0

)
.

The next equalities also hold

⟨H1⟩ = 0, (38)(
∆H1

)2
= (n23)2 +

(
1 + (c0

2)2δφ2
)
(n26)2 + (n27 − c0

2δφn67)2. (39)
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Theorem 3.3. Let m2 = m2(η, x) be a scalar function. Five of the energy levels caused by m2J
2 are

E
2
0 = E

2
1 = E

2
2 = E

2
3 = E

2
4 = 0. (40)

The two positive of other four energy levels are

E
2
5 =

√
N2

3 +

√
N2

3
2
−M2

3, (41)

E2
6 =

√
N2

3 −

√
N2

3
2
−M2

3, (42)

for the corresponding values M2
3 and N2

3 . The last two energy levels, the negative ones, are E2
7 = −E

2
6 and E2

8 = −E
2
5.

These energy levels satisfy the next inequalities E2
8 ≤ E

2
7 ≤ E

2
6 ≤ E

2
5, where all the equalities hold if and only if

M2
3 = N2

3
2.

The corresponding wave functions areV2
p, p = 0, . . . , 8, given in the list Evec2

3.
The expectation of hamiltonian H1 in the stateMm2J

2 is equal 0. The uncertainty of hamiltonian H1 in the state
Mm2J

2 is given by the Equation (39).

In the case of k = 2, the Schrödinger-type equation (26) is satisfied for m4J
4, which is expressed as

iℏ
∂Mm4J

4

∂η
= H2Mm4J

4 . (43)

This equality is equivalent to the following system of linear equations

S4
5 :



−

(
D + 1

3

(
∂i∂iE

))
s04 −m4c0

2δφs06 − i
((

D +
(
∂i∂iE

))
n04 +m4c0

2δφn06

)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s14 −m4c0

2δφs16 − i
((

D +
(
∂i∂iE

))
n14 +m4c0

2δφn16

)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s24 −m4c0

2δφs26 − i
((

D +
(
∂i∂iE

))
n24 +m4c0

2δφn26

)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s34 −m4c0

2δφs36 − i
((

D +
(
∂i∂iE

))
n34 +m4c0

2δφn36

)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s44 −m4c0

2δφs46 − i
(
m4c0

2Hδφn46 −
(
D + 1

3

(
∂i∂iE

)
m′4ℏ

)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s45 −m4c0

2δφs56

+i
((

D +
(
∂i∂iE

))
n45 +

∂
∂η

(
D + 1

3

(
∂i∂iE

))
m4ℏ −m4c0

2Hδφn56

)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s46 −m4c0

2δφs66 + i
((

D +
(
∂i∂iE

))
n46 +

∂m4c0
2H

∂η ℏδφ
)
= 0

−

(
D + 1

3

(
∂i∂iE

))
s47 −m4c0

2δφs67

+i
((

D +
(
∂i∂iE

))
n47 +m4c0

2H
(
δφn67 +

∂δφ
∂η ℏ

))
= 0

−

(
D + 1

3

(
∂i∂iE

))
s48 −m4c0

2δφs68 + i
((

D +
(
∂i∂iE

))
n48 +m4c0

2Hδφn68

)
= 0.

The variable n46 is a component of the imaginary parts in the fifth and seventh equations of the preceding
system. These two imaginary parts may be simultaneously vanished if and only if

m4m′4c0
2 , 0, n46 =

(
D + 1

3

(
∂i∂iE

)) m′4ℏ
m4c0

2Hδφ
,

(
D +

1
3

(
∂i∂iE

))2
= −

m4c0
2H

m′4

∂(m4c0
2H)

∂η
δφ2.

In this case, the system S4
5 has infinitely many solutions. The most suitable of these solutions for our research
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is

Sol45 :



sµν = 0, µ, ν ∈ {0, . . . , 8},

nµν = −
∂(m4c0

2H)

∂η(
D+ 1

3

(
∂i∂iE

))m4ℏ, µ = 4, ν = 5

nµν = −
∂(m4c0

2H)

∂η(
D+ 1

3

(
∂i∂iE

))ℏ, µ = 4, ν = 6

nµν = −
δφn67+

∂δφ
∂η ℏ(

D+ 1
3

(
∂i∂iE

))ℏ, µ = 4, ν = 7

n54 = −n54, n64 = −n46, n74 = −n47, n67,n76 = −n67 ∈ R[η, x]
nµν = 0, otherwise.

The eigenvalues of matrix H2 are

E
4
0 = E

4
1 = E

4
2 = E

4
3 = E

4
4 = 0,

E
4
5 =

√
N4

5 +

√
N4

5
2
−M4

5, E
4
6 =

√
N4

5 −

√
N4

5
2
−M4

5,

E
4
7 = −

√
N4

5 −

√
N4

5
2
−M4

5, E
4
8 = −

√
N4

5 +

√
N4

5
2
−M4

5,

(44)

where N5
4 =

1
2

(
(n45)2 + (n46)2 + (n47)2 + (n67)2

)
and M4

5 = (n45)2(n67)2.
The eigenvectors of Hamiltonian H2 are

Evec4
5 :



V
4
0 = (0, 0, 0, 0, 0, 0, 0, 0, 1),
V

4
1 = (0, 0, 0, 0, 0, 1, 0, 0, 0),
V

4
2 = (0, 0, 0, 0, 1, 0, 0, 0, 0),
V

4
3 = (0, 1, 0, 0, 0, 0, 0, 0, 0),
V

4
4 = (1, 0, 0, 0, 0, 0, 0, 0, 0),

V
4
5=

(
0, 0, 0, 0,

E
4
5

2
−(n67)2

n46n67−in47E
4
5
, i
E

4
5

(
E

4
5

2
−2

(
N4

5−2(n45)2
))

n45(n46n67+in27E
4
5) ,−

n47n67−in46E
4
5

n46n67+in47E
4
5
, 1, 0

)
,

V
4
6=

(
0, 0, 0, 0,

E
4
6

2
−(n67)2

n46n67−in47E
4
6
, i
E

4
6

(
E

4
6

2
−2

(
N4

5−2(n45)2
))

n45(n46n67+in27E
4
6) ,−

n47n67−in46E
4
6

n46n67+in47E
4
6
, 1, 0

)
,

V
4
7=

(
0, 0, 0, 0,

E
4
7

2
−(n67)2

n46n67−in47E
4
7
, i
E

4
7

(
E

4
7

2
−2

(
N4

5−2(n45)2
))

n45(n46n67+in27E
4
7) ,−

n47n67−in46E
4
7

n46n67+in47E
4
7
, 1, 0

)
,

V
4
8=

(
0, 0, 0, 0,

E
4
8

2
−(n67)2

n46n67−in47E
4
8
, i
E

4
8

(
E

4
8

2
−2

(
N4

5−2(n45)2
))

n45(n46n67+in27E
4
8) ,−

n47n67−in46E
4
8

n46n67+in47E
4
8
, 1, 0

)
.

The next equalities hold

⟨H2⟩ = 0, (45)(
△H2

)2
= (n45)2 + (1 +H2c0

2
2
δφ2)(n46)2 + (n47 +Hc0

2δφ)2. (46)

In this way, we proved the next theorem.

Theorem 3.4. Let m4 = m4(η, x) be a scalar function. Five of the energy levels caused by m4J
4 are

E
4
0 = E

4
1 = E

4
2 = E

4
3 = E

4
4 = 0. (47)

The two positive of other four energy levels are

E
4
5 =

√
N4

5 +

√
N4

5
2
−M4

5, (48)
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E4
6 =

√
N4

5 −

√
N4

5
2
−M4

5, (49)

for the corresponding values M4
5 and N4

5 . The last two energy levels, the negative ones, are E4
7 = −E

4
6 and E4

8 = −E
4
5.

These energy levels satisfy the next inequalities E4
8 ≤ E

4
7 ≤ E

4
6 ≤ E

4
5, where all the equalities hold if and only if

M4
5 = N4

5
2.

The corresponding wave functions areV4
p, p = 0, . . . , 8, given in the list Evec4

5.
The expectation of hamiltonian H2 in the stateMm4J

4 is equal 0. The uncertainty of hamiltonian H2 in the state
Mm4J

4 is given by the Equation (46).

Thus, for any of the three cases analyzed above, we obtained five eigenvalues equal to 0, two positive
eigenvalues, and two negative eigenvalues whose absolute values are equal to those of the corresponding
positive ones. For a clearer illustration, the obtained results are presented in Figure 1. The vertical axis
represents the energy axis. The black spheres correspond to the five eigenvalues of the Hamiltonian equal
to 0. The blue and red spheres above them correspond to the positive eigenvalues, while the spheres below
them correspond to the negative eigenvalues.

Figure 1: Graphical presentation of energies in studied model: black pentagon is analogy to the Brillouin zone, four cones correspond
to the rank four of the hamiltonians, black lines over the pentagon are LUMO and LUMO- energies, but the black lines under the
pentagon are HOMO and HOMO+ energies.

4. Discussion and conclusion

In Section 2, we reviewed scalar perturbational invariants obtained in [20]. Following the well-known
knowledge from linear algebra, and taken from [19], we expressed these perturbational invariants as
matrices. In this section, we proved the Theorem 2.1 which says that three scalar perturbational invariants
and their conformal time derivatives are elements of a nine-dimensional vector space. Because in [20] two
scalar perturbational invariants are obtained together with their conformal time derivatives but the fifth
perturbational invariant is obtained without its conformal time derivative, we proved (Theorem 2.1) that
these perturbational invariants form a vector space of dimension seven.

In the Section 3, we multiplied scalar perturbational invariants by scalar functions m0, m2, m4. For analyz-
ing of these three scalar perturbational invariants quantum-mechanically, the Schrödinger-type equations
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given by the Equation (26) were necessary. With respect to these equations, we obtained the quantum
mechanical characteristics (energy levels and wave functions) of scalar perturbational invariants m0J

0,
m2J

2, m4J
4.

In the future research, we will try to obtain common hamiltonian for two different scalar perturbational
invariants. The second question which is opened does exist a hamiltonian which correspond to three scalar
perturbational invariants analyzed here as states.

5. Conclusion

We reviewed three functionally independent scalar perturbational invariants under scalar perturbations
in cosmology. These invariants are completed with their partial derivatives by conformal time. It is proved
that all of these six scalar perturbational invariants are elements of the nine-dimensional vector space of
column matrices. The three functionally independent scalar perturbations multiplied by scalar functions
are presented as matrices which was given in the Equations (22, 23, 24).

The three functionally independent scalar perturbational invariants expressed as the column matrices
are correlated with their partial derivatives by conformal time η by hermitian matrices of the type 9 × 9.

The eigenvectors and eigenvalues of the last transformation matrices are obtained. With that knowledge
about them, we are able to solve the corresponding Schrödinger equations. For any of scalar perturbational
invariants m0J

0, m2J
2, m4J

4 as quantum mechanical states, we obtained the corresponding expectations
and uncertainties.
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