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Abstract. This work focuses on the classical Berezin number and the q-Berezin number of bounded linear
operators on a reproducing kernel Hilbert space. In this study, we also present the q-Berezin transform,
the q-Berezin interval, and the q-Berezin number of the reproducing kernel Hilbert space, as well as show
various q-Berezin number inequalities that generalize prior inequalities provided with the standard Berezin
number. Some other connected questions are also addressed.

1. Introduction

This work introduces the q-Berezin number, a more extended variant of the Berezin number in reproduc-
ing kernel Hilbert spaces, and proves several new q-Berezin number inequalities for operators operating
on kernel Hilbert spaces. Let B (H) denote the C∗-algebra of all bounded linear operators acting on a non-
trivial complex Hilbert spaceH with the inner product ⟨., .⟩ and the associated norm ∥.∥. For T ∈ B (H), T∗

denotes the adjoint of T and |T| =
√

T∗T. Recall that, the numerical range of T ∈ B (H) is defined by

W (T) =
{
⟨Tx, x⟩ : x ∈ H and ∥x∥ = 1

}
,

while the numerical radius is defined as

w (T) = sup
{
⟨Tx, x⟩ : x ∈ H and ∥x∥ = 1

}
.

It is well-known that the norm ∥.∥ and the numerical radius w (.) are equivalent, where the following sharp
two sided inequality holds:

1
2
∥T∥ ≤ w (T) ≤ ∥T∥ ,

for any T ∈ B (H).
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For some results about the numerical radius inequalities and application, we refer to see [6, 7, 9, 16, 27, 36].
There exist several generalizations of the classical numerical range in the literature. Our focus will be on
the q-numerical range and its radius of an operator. Let T ∈ B (H) and q ∈ [0, 1]. The q-numerical range
Wq(T) and q-numerical radius wq(T) of T are defined respectively as

Wq(T) = {
〈
Tx, y

〉
: x, y ∈ H, ∥x∥ =

∥∥∥y
∥∥∥ = 1,

〈
x, y

〉
= q},

wq(T) = sup
z∈Wq(T)

|z|.

It is easy to verify that if q = 1 then Wq(T) reduces to the classical numerical range W(T).
Let us introduce the reproducing kernel Hilbert space. Let Ω be a subset of a topological space X such

that the boundary ∂Ω is nonempty. We say that an infinite dimensional Hilbert spaceH of functions defined
on Ω is a reproducing kernel Hilbert space (RKHS) if the following conditions are satisfied (see Aronszajn
[1], and also [8, 23, 24]):

(I) For any ρ ∈ Ω, the (evaluation) functionals f → f (ρ) are continuous onH ;
(II) For any ρ ∈ Ω, there exists fρ ∈ H such that fρ(ρ) , 0.
According to the classical Riesz representation theorem, assumption (I) implies that for any ρ ∈ Ω, there

exists a unique kρ ∈ H with the reproducing property that

f (ρ) =
〈

f , kρ
〉
H
, f ∈ H .

The function kρ is called the reproducing kernel of H at point ρ. Note that by (II), we surely have kρ , 0
and denote by Kρ the normalized reproducing kernel, that is Kρ = kρ/

∥∥∥kρ
∥∥∥
H

.
Following Nordgren and Rosenthal [30], we say that a RKHSH = H (Ω) is standard if Kρ → 0 (weakly)

as ρ → ζ for any point ζ ∈ ∂Ω. It is easy to see that all finite dimensional spaces are nonstandard since in
such spaces weak and strong convergences coincide. The common RKHSs of analytic functions, including
Hardy, Bergman, Dirichlet, and Fock spaces, are standard in this sense. This concept is useful in many
questions. For example, Nordgren and Rosenthal [30] established a characterization of compact operators
acting on such spaces in terms of the so-called Berezin symbols of their unitary orbits.

Let T be a bounded linear operator onH , the Berezin symbol (or Berezin transform) of T, which firstly
have been shown by Berezin [5] is the function of T̃ on Ω defined by

T̃
(
ρ
)
=

〈
TKρ,Kρ

〉
.

The Berezin set and Berezin number of the operator T are defined restively by:

Ber (T) =
{〈

TKρ,Kρ
〉

: ρ ∈ Ω
}

and

ber (T) = sup
{∣∣∣∣〈TKρ,Kρ

〉∣∣∣∣ : ρ ∈ Ω
}

.

It is clear that Berezin symbol T̃ is the bounded function onΩwhose value lies in the numerical range of T
and hence for any T ∈ B (H),

Ber (T) ⊂W (T) and ber (T) ≤ w (T) .

Furthermore, the Berezin number of an operator T obtain the following properties:
(i) ber (T) = ber (T∗).
(ii) 1

2 ∥T∥ ≤ ber (T) ≤ ∥T∥.
(iii) ber (αT) = |α| ber (T) for all α ∈ C.
(iv) ber (T + K) ≤ ber (T) + ber (K) for all T,K ∈ B (H).
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Notice that, in general, the Berezin number does not define a norm B (H) but if the RKHS H has the
”Ber” property (i.e., for any operators T,K ∈ B (H), T̃

(
ρ
)
= K̃

(
ρ
)

for all ρ ∈ Ω implies T = K) then it
defines a norm B (H) (see [22]). The Berezin symbol of an operator provides important information about
the operator and it has wide application in operator theory. It has been studied in details for Toeplitz and
Hankel operators on Hardy and Bergman spaces. Many researchers have explored the Berezin symbol,
Berezin set, and Berezin number throughout the years, including [2–4, 13–15, 17, 18, 21, 25, 28, 31–35].

In this paper, we prove q-Berezin symbols inequalities involving the q-Berezin number of operators.

2. Preliminary

In this section, we present some useful lemmas that we need for improving and generalizing some
inequalities. The first lemma is known in the literature as the generalized mixed Schwarz inequality.

Lemma 2.1 ([10, 26]). Let T ∈ B (H) and for any x, y ∈ H . If 0 ≤ α ≤ 1, then∣∣∣〈Tx, y
〉∣∣∣ ≤ 〈

|T|2α x, x
〉 1

2
〈
|T∗|2(1−α) y, y

〉 1
2 . (1)

Lemma 2.2. For a, b ≥ 0 and 0 ≤ α ≤ 1 and 1
p +

1
q
= 1

(i) aαb1−α
≤ αa + (1 − α) b ≤ (αar + (1 − α) br)1/r for r ≥ 1, (2)

(ii) (ab)1/2
≤

a + b
2
, (3)

(iii) ab ≤
ap

p
+

bq

q
≤

(
apr

p
+

bqr

q

)1/r

for r ≥ 1. (4)

Lemma 2.3 ([11, 27]). If T, S ∈ B (H) are positive operators, then∥∥∥T1/2S1/2
∥∥∥ ≤ ∥TS∥1/2 . (5)

Lemma 2.4 ([27]). If T, S ∈ B (H) are positive operators, then

∥T + S∥ ≤
1
2

(
∥T∥ + ∥S∥ +

√
(∥T∥ − ∥S∥)2 + 4

∥∥∥T1/2S1/2
∥∥∥2

)
. (6)

Lemma 2.5 ([29]). Suppose 0 ≤ q ≤ 1 and T ∈M2 (C). Then T is unitary similar to eit

(
γ α
β γ

)
for some 0 ≤ t ≤ 2π

and 0 ≤ β ≤ α. Also

Wq (T) = eit {γq + r
((

c + pd
)

cos (s) + i
(
d + ps

)
sin (s)

)
: 0 ≤ r ≤ 1, 0 ≤ s ≤ 2π

}
(7)

with c = a+b
2 , d = a−b

2 and p =
√

1 − q2.

The following well-known result follows from the spectral theorem for positive operators and Jensen’s
inequality (see [26]).

Lemma 2.6 (Hölder McCarthy inequality). Let T ∈ B (H), T ≥ 0 and let x ∈ H be any unit vector. Then
(a) ⟨Tx, x⟩r ≤ ⟨Trx, x⟩ for r ≥ 1,
(b) ⟨Trx, x⟩ ≤ ⟨Tx, x⟩r for 0 < r ≤ 1.
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3. q-Berezin number inequality

Definition 3.1. LetH be an RKHS and T be a bounded linear operator onH .
(i) For ρ, τ ∈ Ω, the q-Berezin transform of T (or q-Berezin symbol of T) is defined as:

T̃q
(
ρ, τ

)
=

{〈
TKρ,Kτ

〉
:
〈
Kρ,Kτ

〉
= q

}
.

(ii) The q-Berezin range of T (or q-Berezin set of T) is defined as:

Berq(T) =
{〈

TKρ,Kτ
〉

: ρ, τ ∈ Ω,
〈
Kρ,Kτ

〉
= q

}
.

(iii) The q-Berezin number of T (or q-Berezin radius of T) is defined as:

berq(T) =

 sup
ρ,τ∈Ω

|

〈
TKρ,Kτ

〉
|,

(〈
Kρ,Kτ

〉
= q

) .
If ρ = τ and q = 1, we get the Berezin number. So, this new concept generalizes the Berezin number

of reproducing kernel Hilbert space operators. It is clear that Berq(T) ⊂ Wq(T) and berq(T) ≤ ωq(T). For
T, S ∈ B (H), as Berezin symbol, it is clear from the definition of berq(T) to obtain the following properties:

(i) berq(T) = berq (T∗).
(ii) berq (T) ≤ berq(U∗TU), where U is unitary operator onH .
(iii) berq (αT) = |α| berq (T) for all α ∈ C.
(iv) berq (T + S) ≤ berq (T) + berq (S) .

Theorem 3.2. Let H be a standard RKHS on a connected domain Ω. Then for any q ∈ (0, 1), there exist ρ1, ρ2 ∈ Ω
such that ∥Kρ1∥H = ∥Kρ2∥H = 1 and ⟨Kρ1 ,Kρ2⟩H = q.

Proof. Let ρ0 ∈ Ω be arbitrary but fixed. Define the function

F : Ω→ C, F(ρ) := ⟨Kρ,Kρ0⟩H.

We have

F(ρ) =
kρ(ρ0)

∥kρ∥H ∥kρ0∥H
.

If the scalar kernel function

K(ρ, σ) := ⟨kσ, kρ⟩H

is jointly continuous onΩ ×Ω (a standard assumption in RKHS theory whenΩ has a topology), then both
the numerator ρ 7→ kρ(ρ0) and the denominator ρ 7→ ∥kρ∥H are continuous. Moreover, ∥kρ∥H > 0 for all ρ by
non-degeneracy. Therefore F is continuous on Ω. By definition of normalized kernel,

F(ρ0) = ⟨Kρ0 ,Kρ0⟩H = 1.

If ρ → ζ ∈ ∂Ω, the standard RKHS property ensures that Kρ ⇀ 0 weakly in H. Since inner products are
continuous with respect to weak convergence in the first argument,

lim
ρ→ζ

F(ρ) = ⟨0,Kρ0⟩H = 0.

Let γ : [0, 1) → Ω be a continuous path such that γ(0) = ρ0 and γ(t) → ζ ∈ ∂Ω as t → 1−. The existence of
such a path is guaranteed by the connectedness of Ω. The composition t 7→ F(γ(t)) is continuous, with

F(γ(0)) = 1, lim
t→1−

F(γ(t)) = 0.
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By the real intermediate value theorem, for any q ∈ (0, 1) there exists tq ∈ (0, 1) such that

F(γ(tq)) = q.

Setting ρ1 := ρ0 and ρ2 := γ(tq) yields

∥Kρ1∥H = ∥Kρ2∥H = 1, ⟨Kρ1 ,Kρ2⟩H = q.

This completes the proof.

Remark 3.3. (i) Joint continuity of K(ρ, σ) holds for many classical RKHS examples, including Hardy and Bergman
spaces on smoothly bounded domains.

(ii) The connectedness ofΩ is essential; without it, the intermediate value theorem may fail to connect the value 1
at ρ0 with 0 near the boundary.

(iii) The use of weak convergence to zero at the boundary is sufficient because we only need convergence of the
scalar product ⟨Kρ,Kρ0⟩H, not convergence in norm.

Theorem 3.4. LetH = H (Ω) be an RKHS. Let T ∈ B (H) and q ∈ (0, 1). Then

q

4
∥T∥ ≤ berq(T) ≤ ∥T∥ (8)

and for any normal operator T,

q

2
∥T∥ ≤ berq(T) ≤ ∥T∥ . (9)

Proof. Let Kρ and Kτ be normalized reproducing kernels and let 0 ≤ q ≤ 1. For proving (8), note first

that, if Kρ, Kτ in H are such that
〈
Kρ,Kτ

〉
= q, then x , y and x , −y. Put x = Kρ+Kτ

∥Kρ+Kτ∥
, z = Kρ−Kτ

∥Kρ−Kτ∥
and

y =qx+
√

1 − q2z. ⟨x, z⟩ = 0 is easily obtained. Also
〈
x,y

〉
= q and

∥∥∥y
∥∥∥ = 1. Putting y′ =qz+

√
1 − q2x, we

have

Re
(〈

Tx,y
〉
+

〈
Tz,y′

〉)
≤

∣∣∣〈Tx,y
〉
+

〈
Tz,y′

〉∣∣∣ ≤ 2berq (T) . (10)

It is known that
∥∥∥Kρ + Kτ∥∥∥2

= 2 + 2q and
∥∥∥Kρ − Kτ∥∥∥2

= 2 − 2q. On the other hand,

Re
(〈

Tx,y
〉
+

〈
Tz,y′

〉)
= Re

 q

2 + 2q

〈
T
(
Kρ + Kτ

)
,
(
Kρ + Kτ

)〉
+

√
1 − q2

√
2 + 2q

√
2 − 2q

〈
T
(
Kρ + Kτ

)
,
(
Kρ − Kτ

)〉
−
q

2 − 2q

〈
T
(
Kρ − Kτ

)
,
(
Kρ − Kτ

)〉
+

√
1 − q2

√
2 + 2q

√
2 − 2q

〈
T
(
Kρ − Kτ

)
,
(
Kρ + Kτ

)〉 (11)

= Re
[
q

2 + 2q

〈
TKρ,Kρ

〉
+

q

2 + 2q

〈
TKρ,Kτ

〉
+

q

2 + 2q

〈
TKτ,Kρ

〉
+

q

2 + 2q
⟨TKτ,Kτ⟩

+
1
2

〈
TKρ,Kρ

〉
−

1
2

〈
TKρ,Kτ

〉
+

1
2

〈
TKτ,Kρ

〉
−

1
2
⟨TKτ,Kτ⟩

+
q

2 − 2q

〈
TKρ,Kρ

〉
−

q

2 − 2q

〈
TKρ,Kτ

〉
−

q

2 − 2q

〈
TKτ,Kρ

〉
+

q

2 − 2q
⟨TKτ,Kτ⟩

+
1
2

〈
TKρ,Kρ

〉
+

1
2

〈
TKρ,Kτ

〉
−

1
2

〈
TKτ,Kρ

〉
−

1
2
⟨TKτ,Kτ⟩

]
. (12)
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By (10) and (12), we get(
q

2 + 2q
+

q

2 − 2q
+ 1

)
Re

(〈
TKρ,Kρ

〉)
+

(
q

2 + 2q
+

q

2 − 2q
− 1

)
Re (⟨TKτ,Kτ⟩)

≤ 2berq (T) −
(
q

2 + 2q
−

q

2 − 2q

)
Re

(〈
TKρ,Kτ

〉
+

〈
TKτ,Kρ

〉)
≤ 2berq (T) +

(
q

2 − 2q
−

q

2 + 2q

) (∣∣∣∣〈TKρ,Kτ
〉
+

〈
TKτ,Kρ

〉∣∣∣∣)
≤ 2berq (T) +

4q2

4 − 4q2

(∣∣∣∣〈TKρ,Kτ
〉
+

〈
TKτ,Kρ

〉∣∣∣∣)
≤ 2berq (T) +

4q2

4 − 4q2

(∣∣∣∣〈TKρ,Kτ
〉∣∣∣∣ + ∣∣∣∣〈TKτ,Kρ

〉∣∣∣∣)
≤

(
1 +

4q2

4 − 4q2

)
2berq (T)

=
2

1 − q2 berq (T) .

Therefore(
q

2 + 2q
+

q

2 − 2q
+ 1

)
Re

(〈
TKρ,Kρ

〉)
≤

2
1 − q2 berq (T) +

(
1 −

q

2 + 2q
−

q

2 − 2q

)
|⟨TKτ,Kτ⟩|

≤
2

1 − q2 berq (T) + |⟨TKτ,Kτ⟩|

≤
2

1 − q2 berq (T) + ber (T) . (13)

Replacing T by eiθT with θ ∈ R in (13), we have(
q

2 + 2q
+

q

2 − 2q
+ 1

)
Re

(〈
eiθTKρ,Kρ

〉)
≤

2
1 − q2 berq (T) + ber (T) .

By taking the supremum over θ ∈ R in the above inequality, we reach(
q

2 + 2q
+

q

2 − 2q
+ 1

) ∣∣∣∣〈TKρ,Kρ
〉∣∣∣∣ ≤ 2 − q2

1 − q2 berq (T) + ber (T) .

Taking the supremum over ρ ∈ Ω in the above inequality, we have(
q

2 + 2q
+

q

2 − 2q
+ 1

)
ber (T) ≤

2 − q2

1 − q2 berq (T) + ber (T) .

Hence

q

1 − q2 ber (T) ≤
2

1 − q2 berq (T) .

It follows that
q

2
ber (T) ≤ berq (T) . (14)

From 1
2 ∥T∥ ≤ ber (T), we have

q

4
∥T∥ ≤ berq (T) . (15)
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For proving the other side of the inequality in (10), we proceed with the following inequality∣∣∣∣〈TKρ,Kτ
〉∣∣∣∣ ≤ ∥∥∥TKρ

∥∥∥ ∥Kτ∥ ≤ ∥T∥ ∥∥∥Kρ∥∥∥ ∥Kτ∥ = ∥T∥ .

Taking the supremum over all ρ, τ ∈ Ω in the above inequality with
〈
Kρ,Kτ

〉
= q, we reach

berq (T) ≤ ∥T∥ . (16)

Combining the inequality (15) and inequality (16), we have

q

4
∥T∥ ≤ berq(T) ≤ ∥T∥ .

To prove (9), we note that for a normal operator T, ber (T) = ∥T∥ and so by (14)

q

2
∥T∥ ≤ berq(T) ≤ ∥T∥ .

It is clear that, putting q→ 1 in (8), we have the well-known inequalities

1
4
∥T∥ ≤ ber (T) ≤ ∥T∥ .

This completes the proof.

Corollary 3.5. Let T ∈ B (H) and q ∈ (0, 1). Then we deduce that
(i) q2 ber (T) ≤ berq (T) ,
(ii) q4 ∥T∥ ≤ berq(T) ≤ ∥T∥ ,
(iii) If T ∈ B (H) is normal operator, then q2 ∥T∥ ≤ berq(T) ≤ ∥T∥.

Lemma 3.6. Suppose 0 ≤ q ≤ 1 and T ∈ M2 (C). Then T is unitary similar to eiθ

(
γ α
β γ

)
for some 0 ≤ t ≤ 2π and

0 ≤ β ≤ α. Also

Berq(T) =
{
γq + r

((
c + pd

)
cos (s) + i

(
d + pc

)
sin (s)

)
: 0 ≤ r ≤ 1, 0 ≤ s ≤ 2π

}
,

with c = α+β2 , d = α−β2 and p =
√

1 − q2.

Proof. From Berq(T) ⊆Wq (T), proof is the similar to the one in the case of Wq (T).

Theorem 3.7. Let H = H (Ω) be an RKHS. Let T be a bounded linear operator on H with T2 = 0. Then for any
q ∈ [0, 1),

berq(T) ≤
(
1 −

3q2

4
+ q

√
1 − q2

)1/2

∥T∥ . (17)

Proof. For any Kρ inH , by the equalityH =ran (T)⊕ ker (T∗), one can uniquely write Kρ = u+ v, for some u
in ker (T∗) and v in ran (T). The inequality T2 = 0 stands for ran (T) ⊥ ran (T∗), since

〈
T∗Kρ,TKρ

〉
= 0, for any
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ρ ∈ Ω. Thus,
〈
TKρ,Kρ

〉
= ⟨Tu,v⟩. Now for each ρ, τ ∈ Ωwith

〈
Kρ,Kτ

〉
= q, we reach

∣∣∣∣〈TKρ,Kτ
〉∣∣∣∣2 = ∣∣∣∣〈TKρ,qKρ +

√
1 − q2̂kξ

〉∣∣∣∣2
≤

(∣∣∣∣q 〈TKρ,Kρ
〉∣∣∣∣ + ∣∣∣∣ √1 − q2

〈
TKρ ,̂kξ

〉∣∣∣∣)2

≤ q2
∣∣∣∣〈TKρ,Kρ

〉∣∣∣∣2 + (
1 − q2

) ∣∣∣∣〈TKρ ,̂kξ
〉∣∣∣∣2 + 2q

√
1 − q2

∣∣∣∣〈TKρ,Kρ
〉∣∣∣∣ ∣∣∣∣〈TKρ ,̂kξ

〉∣∣∣∣
≤ q2
|⟨Tu,v⟩|2 +

(
1 − q2

) ∣∣∣∣〈TKρ ,̂kξ
〉∣∣∣∣2 + 2q

√
1 − q2 |⟨Tu,v⟩|

∣∣∣∣〈TKρ ,̂kξ
〉∣∣∣∣

≤ q2
∥T∥2 ∥u∥2 ∥v∥2 +

(
1 − q2

)
∥T∥2

∥∥∥Kρ∥∥∥2
∥∥∥∥̂kξ

∥∥∥∥2
+ 2q

√
1 − q2 ∥u∥ ∥v∥

∥∥∥Kρ∥∥∥ ∥∥∥∥̂kξ
∥∥∥∥ ∥T∥2

(by the Cauchy-Schwarz inequality)

≤ q2
∥T∥2

(
∥u∥2 + ∥v∥2

2

)2

+

(
1 − q2 + 2q

√
1 − q2

(
∥u∥ + ∥v∥

2

)2)
∥T∥2

(by the inequality (3))

≤ q2
∥T∥2

(
⟨u + v,u + v⟩

2

)2

+

(
1 − q2 + 2q

√
1 − q2

(
∥u∥2 + ∥v∥2

2

))
∥T∥2

(by f
(u + v

2

)
≤

f (u) + f (v)
2

)

=
q2

4
∥T∥2

∥∥∥Kρ∥∥∥2
+

(
1 − q2 + q

√
1 − q2

∥∥∥Kρ∥∥∥2
)
∥T∥2

=
q2

4
∥T∥2 +

(
1 − q2 + q

√
1 − q2

)
∥T∥2

=

(
1 −

3q2

4
+ q

√
1 − q2

)
∥T∥2 .

Taking the supremum over ρ, τ ∈ Ω in the above inequality with
〈
Kρ,Kτ

〉
= q, we have

berq(T) ≤
(
1 −

3q2

4
+ q

√
1 − q2

)1/2

∥T∥ .

This completes the proof.

Corollary 3.8. When q tends to 1 in (17), we have

ber (T) =
1
2
∥T∥ ,

for any T ∈ B (H) with T2 = 0.

Theorem 3.9. LetH = H (Ω) be an RKHS. If T ∈ B (H) and q ∈ (0, 1), then

berq(T) ≤
(
q2

4

(
∥T∥ +

∥∥∥T2
∥∥∥1/2

)2
+

(
1 − q2 + 2q

√
1 − q2

)
∥T∥2

)1/2

. (18)
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Proof. Let Kρ, Kτand k̂ξ be normalized reproducing kernels and let 0 ≤ q ≤ 1. Then∣∣∣∣〈TKρ,Kτ
〉∣∣∣∣2 ≤ 〈

|T|Kρ,Kρ
〉
⟨|T∗|Kτ,Kτ⟩

(by the inequality (1)

=
〈
|T|Kρ,Kρ

〉 〈
|T∗|

(
qKρ+

√
1 − q2̂kξ

)
,
(
qKρ+

√
1 − q2̂kξ

)〉
≤ q2

〈
|T|Kρ,Kρ

〉 〈
|T∗|Kρ,Kρ

〉
+

(
1 − q2

) 〈
|T|Kρ,Kρ

〉 〈
|T∗| k̂ξ ,̂kξ

〉
+ 2 Re

(
q
√

1 − q2
〈
|T|Kρ,Kρ

〉 〈
|T∗|Kρ ,̂kξ

〉)
≤ q2


〈
|T|Kρ,Kρ

〉
+

〈
|T∗|Kρ,Kρ

〉
2


2

+
(
1 − q2

) 〈
|T|Kρ,Kρ

〉2
+

〈
|T∗| k̂ξ ,̂kξ

〉2

2

+ 2q
√

1 − q2
〈
|T|Kρ,Kρ

〉 ∣∣∣∣〈|T∗|Kρ ,̂kξ〉∣∣∣∣
(by inequality (3) and f

(u + v
2

)
≤

f (u) + f (v)
2

)

≤
q2

4

(〈
(|T| + |T∗|)Kρ,Kρ

〉)2
+

1 − q2

2

(〈
|T|Kρ,Kρ

〉2
+

〈
|T∗| k̂ξ ,̂kξ

〉2)
+ 2q

√
1 − q2 ∥|T|∥ ∥|T|∗∥

∥∥∥Kρ∥∥∥3
∥∥∥∥̂kξ

∥∥∥∥
(By Cauchy-Schwarz inequality)

≤
q2

4
ber2 (|T| + |T∗|) +

1 − q2

2

(
ber2 (|T|) + ber2 (|T∗|)

)
+ 2q

√
1 − q2 ∥|T|∥ ∥|T|∗∥

≤
q2

4

(
∥|T| + |T∗|∥2

)
+

1 − q2

2

(
∥|T|∥2 + ∥|T|∗∥2

)
+ 2q

√
1 − q2 ∥|T|∥ ∥|T|∗∥ .

Here, ∥|T|∥ = ∥|T∗|∥ = ∥T∥, ∥|T| |T∗|∥ =
∥∥∥T2

∥∥∥ and applying Lemma 2.4 and Lemma 2.3 for the pair |T| , |T∗|, we
reach

∥|T| + |T∗|∥ ≤
1
2

(
∥|T|∥ + ∥|T∗|∥ +

√
(∥|T|∥ − ∥|T∗|∥)2 + 4

∥∥∥|T|1/2 |T∗|1/2∥∥∥2
)

≤
1
2

(
2 ∥T∥ +

√
4 ∥|T| |T∗|∥

)
= ∥T∥ +

∥∥∥T2
∥∥∥1/2

.

Thus ∣∣∣∣〈TKρ,Kτ
〉∣∣∣∣2 ≤ q2

4

(
∥T∥ +

∥∥∥T2
∥∥∥1/2

)2
+

(
1 − q2

)
∥|T|∥2 + 2q

√
1 − q2 ∥|T|∥2 .

In the above inequality, by taking the supremum over all ρ, τ ∈ Ωwith
〈
Kρ,Kτ

〉
= q, we get

ber2
q(T) ≤

q2

4

(
∥T∥ +

∥∥∥T2
∥∥∥1/2

)2
+

(
1 − q2 + 2q

√
1 − q2

)
∥|T|∥2 .

Here, we reach

berq(T) ≤
(
q2

4

(
∥T∥ +

∥∥∥T2
∥∥∥1/2

)2
+

(
1 − q2 + 2q

√
1 − q2

)
∥T∥2

)1/2

.

Which completes the proof.
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Corollary 3.10. If T ∈ B (H) and if we let q tend to 1, then we have

ber(T) ≤
1
2

(
∥T∥ +

∥∥∥T2
∥∥∥1/2

)
(see, [19, 20]).

Theorem 3.11. LetH = H (Ω) be an RKHS. For any T ∈ B (H) and q ∈ (0, 1), the following inequalities hold:

q2

16
∥T∗T + TT∗∥ ≤ ber2

q (T) ≤
q2

2
(
1 −

√
1 − q2

)2 ∥T
∗T + TT∗∥ . (19)

Proof. Let T ∈ B (H). For each ρ, τ, ξ ∈ Ω with
〈
Kρ,Kτ

〉
= q, by using the Kτ=qKρ+

√
1 − q2̂kξ with〈

Kρ, k̂ξ
〉
= 0, we get∣∣∣∣〈TKρ,Kτ

〉∣∣∣∣2 ≤ ∣∣∣∣〈TKρ,qKρ+
√

1 − q2̂kξ
〉∣∣∣∣2

≤

(
q

∣∣∣∣〈TKρ,Kρ
〉∣∣∣∣ + √

1 − q2
∣∣∣∣〈TKρ ,̂kξ

〉∣∣∣∣)2

≤

(
qber (T) +

√
1 − q2berq (T)

)2
.

By taking the supremum over all ρ, τ ∈ Ωwith
〈
Kρ,Kτ

〉
= q, we have

ber2
q(T) ≤

(
qber (T) +

√
1 − q2berq (T)

)2
.

Therefore

berq(T) ≤ qber (T) +
√

1 − q2berq (T) .

Thus

berq(T) ≤
q

1 −
√

1 − q2
ber (T) . (20)

From the inequality ber2 (T) ≤ 1
2 ∥T

∗T + TT∗∥ and (20), we reach

ber2
q(T) ≤

q2(
1 −

√
1 − q2

)2 ber2 (T) ≤
q2

2
(
1 −

√
1 − q2

)2 ∥T
∗T + TT∗∥ .

This proves the right-hand side of (19). For the other side of the inequality , we will need to use the
inequalities 1

4 ∥T
∗T + TT∗∥ ≤ ber2 (T) and (14). Then we reach

q2

16
∥T∗T + TT∗∥ ≤ ber2

q(T).

This completes the proof.

Corollary 3.12. If we tend q to 1 in Theorem 3.11, then we have

1
16
∥T∗T + TT∗∥ber ≤ ber2 (T) ≤

1
2
∥T∗T + TT∗∥ber .
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Corollary 3.13. Applying inequalities (14) and (20), we obtain the following inequality
q

2
ber(T) ≤ berq(T) ≤

q

1 −
√

1 − q2
ber (T) ,

for all T ∈ B (H) and q ∈ (0, 1).

Theorem 3.14. LetH = H (Ω) be an RKHS. If T ∈ B (H) is a positive operator and q ∈ (0, 1), then

berq(Tm) ≤ (ber(T))m for any m ∈ [0, 1] , (21)

berq(Tm) ≥
(
berq(T)

)m for any m > 1. (22)

Proof. Assume that the inequality (21) holds for some α, β ∈ [0, 1]. Then we only have to prove (21) holds
for α+β2 ∈ [0, 1] by continuity of an operator. In fact, we have for any ρ, τ ∈ Ω that∣∣∣∣∣〈T

α+β
2 Kρ,Kτ

〉∣∣∣∣∣2 ≤ ∣∣∣∣∣〈T
α
2Kρ,T

β
2Kτ

〉∣∣∣∣∣2
≤

〈
TαKρ,Kρ

〉 〈
TβKτ,TKτ

〉
(by Cauchy-Schwarz inequality)

≤

〈
TKρ,Kρ

〉α
⟨TKτ,Kτ⟩β

(by Lemma 2.6 (a))

≤ (ber (T))α (ber (T))β

= (ber (T))α+β .

By taking the supremum over ρ, τ ∈ Ω in the above inequality with
〈
Kρ,Kτ

〉
= q, we have(

berq
(
T
α+β

2

))
≤ (ber (T))

α+β
2 .

This implies the desired inequality berq(Tm) ≤ (ber(T))m for any m ∈ [0, 1].
Let m > 1. Then 1

m ∈ (0, 1). For any ρ, τ ∈ Ω,〈
TKρ,Kτ

〉
=

〈
Tm 1

mKρ,Kτ
〉

≤

〈
TmKρ,Kτ

〉 1
m (by the inequality (21))

for any m > 1. If we take the power of m and then take absolute value from both sides of the inequality,
then we obtain the following inequality:∣∣∣∣〈TmKρ,Kτ

〉∣∣∣∣ ≥ ∣∣∣∣〈TKρ,Kτ
〉∣∣∣∣m .

By taking the supremum over ρ, τ ∈ Ω in the above inequality with
〈
Kρ,Kτ

〉
= q, we get

berq(Tm) ≥
(
berq(T)

)m for any m > 1.

This completes the proof.

Corollary 3.15. Let T ∈ B (H) be a positive operator. Then we get

berq(T) ≤ ber(T).

Proof. If we set m = 1 in the inequality (21), then we have the desired inequality.

Corollary 3.16. Let T ∈ B (H) be a positive operator and let m > 1. Then we get

ber(Tm) ≥ (ber(T))m ,

(see [12, 21]).



V. Stojiljković et al. / Filomat 39:28 (2025), 10129–10140 10140

References

[1] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
[2] A. Augustine, M. Garayev, P. Shankar, On the Berezin range and the Berezin radius of some operators, arXiv preprint arXiv:2411.10771,

2024.
[3] M. Bakherad, M. T. Garayev, Berezin number inequalities for operators, Concrete Oper. 6(1) (2019), 33–43.
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[14] M. T. Garayev, H. Guedri, M. Gürdal, G. M. Alsahli, On some problems for operators on the reproducing kernel Hilbert space, Linear

Multilinear Algebra 69(11) (2021), 2059–2077.
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