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Some extensions of the Pinelis-Stolarsky’s inequality for g—integrals
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Unska 3, HR-10000 Zagreb, Croatia

Abstract. The main results presented are inequalities similar to the Pinelis extension of Stolarsky’s type
inequality for g—integrals. Also, the applications for g—gamma and g—beta functions are given.

1. Introduction

Let us recall Stolarsky’s inequality given in [6] in 1991.
If a function f : [0,1] — [0, 1] is decreasing, then for any 4, b > 0 it holds

[ ste)acz [ ot)ax [ slotyan

1
Putting substitution t = xia in (1), we obtain

1 1
i = -1
fof(x)dx afot f(b) dt.

Then, putting Q(f,a) = fol %(t“) f(t) dt, the Stolarsky inequality (1) can be written in the form
Q(f/a + b) > Q(f,ﬂ) : Q(f/ b)

2)
Moreover (see [3] and [4]), by defining Q(f,0) = lirr(} Q(f, a), the following more precisely formulation of
a—
(2) is obtained: if f : [0, 1] — [0, 1] is decreasing, then
Q(f/o) : Q(fra + b) > Q(f,ﬂ) . Q(f/ b)

)
Also, Pecari¢ ([3]) proved reversed Stolarsky’s inequality: if f : [0,1] — [0, 1] is increasing, then
Q(f/o) : Q(f/a + b) < Q(f/a) . Q(f/ b)

(4)
In [4], the following generalizations of the Stolarsky inequality are given by I. Pinelis:
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Theorem A. Let o, p and y be non-negative numbers.
(i) If f and g are non-negative, decreasing functions on [0, 1] such that they are left-continuous on {0,1] and
right-continuous at 0, then

QUf,y) Qg a+B+y)+Qg,7) Qlf,a+p+y)
>Q(f,a+y)-Qg,p+y)+Qg,a+y)-Q(f,p+7), 5)

where

1 1
Q(f,a) = fo flx7)dx =a fo 1 f(x) dox.

(ii) If f and g are non-negative, increasing function on [0, 1] such that they are right-continuous on [0,1) and
left-continuous at 1, then the reverse sign in (5) holds.

Results from Theorem A are called the Pinelis-Stolarsky inequalities. Further investigation of the Pinelis
results is done in papers [8] and [9].

In this paper we will establish some results related to this inequality, similar to the Pinelis extension
of the Stolarsky inequality, given in [4] (see also [8]), but for g—integrals. Moreover, some applications for
g—gamma and g—beta functions will be given.

First, let us introduce the definitions of g—derivative and the definite g—integral as well as some basic
properties (see [2]).

The g—derivative of a function at point x (g € (0, 1)) is defined as a quotient

fx) — f(gx)
(1-qx °

Then, for eachi=0,1,2, ..., n, it follows that
f(@'x) - f(g""%) = (1 - q)g'xD, f(g'x).

By adding the above n + 1 identities and then letting n — oo, we obtain

D,f(x) =

f6) = fO) = (1= ) 4D (@),
i=0

The definite g—integral of a function f : [0,c) — R is defined as a

b o
[ soae=a-gp Y o ent
k=0

for b € (0, c), provided that the right-hand side converges.
As shown above, we have an analogue of the Newton-Leibniz formula

b
| Disae = 5= 500 ©
Moreover, it’s easy to prove g—product rule for g—derivatives:

Dy(f(x)g(x)) = f(x)D,g(x) + g(qx)D, f (x),

(see [2]) from which the formula for integration by parts for g—integrals follows:

b b
fo fx)Dgg(x)dgx = f(b)g(b) = f(0)9(0) — fo 9(q2)Dq f(x)dx.
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2. Main results

Through the article, we will use the following notation:

Qq(f/ 7, Ll) = L Dq(tr)f(t)dqt.

But for simplicity, in Theorems 2.1 and 2.2 we will use Q,(f,r) for Q,(f,,a) since there will be no
difference.
Now we are going to state and prove our results:

Theorem 2.1. Let a, f, y, 0 be positive real numbers. Let fi and f, be non-negative and decreasing integrable

functions on [0,a]. Let Q,(f,r) = f Dy(t") f(t)d,t for r > 0. Then the following inequality holds:
0

Qq(f1,0) - Qy(foa + B+ ) + Qu(fr, a + B+ 0) - Qy(f2,7)
2 Qq(fr,a+0) - Qu(f2, B+ 1) + Qy(f1, B+ 0) - Qyf2,  + ). (7)

Proof. Since f1 and f, are decreasing functions on [0, 4] and g € (0,1), we have

filh) — fiat) _

Dyfilt) = == S (8)
fori=1,2 and for each t € [0, 4a].
The integration by parts gives us
Q0= [ s =as - [y, o

Before the main calculation, let us transform the product of two integrals which will appear in the proof.
Using the definition of the integral and the multiplication of two series, we have the following:

j: @)Dy filtydgt - | (qH)PDyfa(t)d,t

g RS

— (1 _ q)2a2( qk(aqk+l)Aqu1(aqk))(Z qk(aqk”)Bquz(aqk))
k=0

P
1l

0
n

— (1 _ q)2a2 Z ( qk(ﬂqk+l)Aqf1 (aqk)qn_k(ﬂqn_k+l)Bquz(qun_k))
n=0 k=0
— (1 _ q)2a2+A+BqA+B Z qn( Z(qk)A (qnfk)Bqul (aqk)quz(uqnfk)). (10)
n=0 k=0

Using (9), multiplying given expressions and applying formula (10) four times, we get

Qp(f1,0) - Qu(fa,a + B+ ) + Qufr,a + B +06)- Qu(f2,7)
= Qu(f,a+0)- Qu(f2, p+y) = Qu(f1, p+0) - Qu(f2,a +7)

= fa@r @) [ Dy
0
() f: (@1 Dy iyt + j: @Dy fi (gt - j: @YD, fo(b)dyt

+ fi(@) fo(@)a™ PO — gt B0 £ (a) f (91)" Dy f2(D)dqt
0
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~0 @) [ @ o+ [ @D sode [ aD a0
- AR 4 @) [ oD a0
+a 0 [ Do [ @rDyiode [ 60D, pod
- R@A@ T+ 5w [ D,
ca o) [ enysae - [Carnysoae [ go
=210 [t @ - D0+ @) [ a7 (@ D,

+ a7 fo(a) fow (@)°((gh)" = a®)Dy f1(B)dgt + a” fo(a) f; (qty** (@ — (aD)*")Dy fi(t)dyt

s

+ (1 _ q)2a2+a+ﬁ+;/+éqa+ﬁ+y+6

qn( Z(qk)é(qn—k)a+ﬁ+)/qul (aqk)quz(aq”‘k))
k=0

I
f==}

n

n( Z(qk)a+ﬁ+6(qn—k)quf1 (aqk)quz(aqn—k

n=0 k=0

)
qn( ki‘a( 4@ D, fi (ag") D, fx(a qn—k))
)

Eﬂa

+ (1 _ q)2a2+a+ﬁ+y+6qa+ﬁ+y+6

- (1 _ q)2a2+a+ﬁ+y+5qa+ﬁ+)/+é

[ 1D

-(1- q)2a2+a+ﬁ+)/+6qa+ﬂ+)/+6 qn( Z (qk)ﬁﬂS(qn—k)aﬂ/qul (aqk)quz (aqn—k
k=0

Il
o

n

= fi(a) f @ @ = (gD = Dy fo(t)yt
+a f(a) f; @17 = @)@ = @)Dy (Dt + (1 = e (ag)™*F*7*0

x Y 4" Y @@ @ = @@ - @D A @D, falag ).

n=0 k=0

Now we can conclude that
@ — @)™ ((qt) —af) <0,

for each t € [0, 4] since gt < a for g € (0,1)
and also that
(@7 = @) - (@ - @) =0,

since both factors are either non-positive or non-negative.

Then, using (8), we conclude that the last expression is non-negative, so inequality (7) is proven. [

Theorem 2.2. Let a, f, y, 6 be positive real numbers. Let f1 and f, be non-negative and increasing integrable

functions on [0,a]. Then the following inequality holds:

Qq(f1,0) - Qq(fo,a+ B+y) + Qu(fr, + B+ 0) - Qu(f2, )
< Qu(fi,a+06)- Qu(fe, B+ )+ Qufi, B+0) - Qu(f,a+ ),

where Q,(f, 1) is defined as in Theorem 2.1.
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Proof. Since f1 and f, are increasing functions on [0,4] and g € (0, 1), we have

fih — fi(gh)

—F—20 12
(=0 .

fori=1,2 and for each t € [0, a].
The integration by parts gives us

qui(t) =

Qy(f, 1) = f; Dy(t") f(t)dgt = a’ f(a) — f; ()" Dy f (D)t
Moreover, by using the analogue of the Newton-Leibniz formula (6), we obtain
' Dy(f(£)dgt < a f(a)
=q — - ! d,t = = (qt) d,t.
QU = i@ f Dot = [ (7550 - ey puscos (13)

Let us transform the product Q,(f1, A) - Q4(f2, B) according to (13) and using the formula for the product
of two series. For easier reading, we introduce the following abbreviations:

filag . i
Fi=———,i=1,2, G = “,G:”k”.
@) - £(0) R

Now, we have
Qq(fi,A)- Qy(fo,B) = f: (@*F1 = (qty")Dg fi(t)dgt - j: (@®Fy = (qt)°)D, fo(Ddyt

= (1= P ) @ F ~ g YD e Y, 6"z = 0Dy foar)

k=0 k=0

= (1 -gra Py q"( Y (Fr - G (E2 ~ GHD, filaghD, fz(aq”_k)). (14)
= =0

Using (14), we obtain

Qy(f1,0) - Qy(fo,a +B+7y) + Qu(fi,a + B +0) - Qu(fa,y)
- Qq(fl/a + 5) : Qq(fZ/ﬁ + 7/) - Qq(flrﬁ + 6) : Qq(fZ/a + V)

(A ([(E7R@ e
~ ([ G i - o pwscoms)-[[ =y ~ 00 Ipusos

a aa+/3+bf1 (ﬂ) 24+ a;/fz(a)
([ G o) ( [ (e - P

)
a a+0 () o a B+y () 5
_ (L(flia)_flff(o)- - (qt) 5)qu1(t)dqt)-(£(f2ia) fo:(O) q t) V)quz(t)dqt
1 B+6 ) aty
([ a2 o7 o) ( [ (a2~ Pt

(1 q)Z 2+a+p+y+0 Z q Z(Fl Gé)(l;'z 0‘+}g+} qfl (aqk)quZ(aqn—k)

n=0 k=0

+ (1 q)Z 2+a+p+y+0 Z q Z(F a+ﬁ+6)(F2 _ G)Z/)Dqﬁ(llqk)quz(ﬂq"*k)
n=0 k=0

\_/\_/vv
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_ (1 _ q)2a2+a+ﬁ+;/+b Z qn Z(Pl _ Gzlx+b)(F2 _ GgH/)qul(aqk)quz(aqn—k)

n=0 k=0
— (1= gP2a P2 Y g Y (Fy = G ) (Fa — G5 7)Dy £i(aq")D, fa(ag" ™)
n=0 k=0

o] n
= (1 — g)2g2rospry+d Z q”(Z(F1 “Fa - G3F2 — GyPYF + OGS + FiF,
n=0 k=0
Ga+ﬁ+6 F—G'F a+p+d ~y a+d p+y a+d ~P+Y
-G 2 — 21+G1 Gz—F1F2+G1 F2+G2 Pl_Gl G2

— 1Py + GEOF, + GEF, - GG )D, filagD, fz(aq”_k))

= (1 — g)2a®orbhr+d Z q”(z (- F1G(Gs - 1)(G, - 1) - FaG(G - 1)(G - 1)
n=0 k=0

+ GIGL(GE - G(CE - G))D, filaghD, fz(aq"‘k)).

Since fi and f, are non-negative and increasing on [0, 4], we have F; > 1 for i = 1,2 and by using (12),
we obtain

Qp(f1,0) - Qu(fa,a + B+ ) + Qu(fr,a + B +06)- Qu(f2,7)
= Qu(f,a+0)-Qu(f2, p+y) = Qu(fi, p+0) - Qu(fr,a +7)

00

< (1 — g)2a2rarpir+d Z q”( Z (- GL(Gs - 1)(Gh - 1) - G(GY - (G, 1)
n=0 k=0

+ GIG, (G - GG, - G))Dy fi(ag")D, fz(aq”_k)) <0,
since, using 0 < g < 1, we have
- G(G§ - 1)(G5 - 1) - GY(GY - 1)(G - 1) + G2GL(GE - GY)(Gh - GF)
= GJ(G3 - 1)(Gh = 1)(G? - 1) + GY(GY - 1)(G} - 1)(G) - 1)
- GYGY(GE - 1)(GE - 1) - GIGL(Gh - 1)(G¥ - 1) <0,
which proves inequality (11). [
Remark 2.3. Putting y = 6 in Theorems 2.1 and 2.2, we get the qg—versions of Theorems 2.1 and 2.2 from [8].

Let us point out special results for Theorems 2.1 and 2.2 obtained for f; = f, = f and for y = ¢:

Corollary 2.4. Let a, p and y be positive real numbers. Let f be non-negative and integrable function on [0, a] and

let Q,(f,1) = [ Dy(t") f(t)d,t for each r > 0.
(i) If f is decreasing, then the following inequality holds:

Qu(fsy)- Qu(fra+B+y) 2 Qu(fsa+y)- Quf, B +7). (15)
(ii) If f is increasing, then the following inequality holds:
Qu(fs1)- Qp(f,a+B+y) < Qufsa+y) - Qu(f, B +7). (16)

Remark 2.5. Fory = 01in (15) and (16), we especially obtain results of the same type as inequalities (3) and (4), that
is, we obtain the Stolarsky inequality and its reversed inequality for g—integrals.

Remark 2.6. Instead of the monotonicity conditions of functions f;, i = 1,2 in Theorems 2.1 and 2.2 and Corollary
2.4, it is enough to assume that D, f;(t) < 0 and D, fi(t) > 0 respectively for i = 1,2 and for each t € [0, a].



I. Brnetic¢ / Filomat 39:28 (2025), 10141-10148 10147

3. Application to q-gamma and q-beta functions

Now we apply the main results to obtain inequalities for the j—gamma and g—beta functions.
First, we recall some notions and notations used in g—theory (see [1], [2]):

1 +a) = ﬁu +q'a).
j=0

1+ 11);"

(]. +ﬂ)g = m

A g—analogue I'; of the gamma function is given as
%
L -
T,(t) = f X E My, >0, (17)
0
where E7 is j—analogue of the exponential function:
s n
X _ n(n-1)/2 X _ — ©
E= D, g = A+ -0y,

where

1-g"
[y = T

Moreover, equation
Lyt +1) = [t];T,(8), t >0
is valid (see [1] for instance).

So, we can rewrite (17) in the following way

1

T (t+1) = [t],T,(t) = f ’ Dy(x)E; " dx, t > 0.
0
The g—beta function B,(t, s) is defined as

Fq(s)rq ()

—, t,5>0
[y(t+s)

By(t,s) =

and has the following g—integral representation

1
B,(t,s) = f XA = )y
0

It is clear that:
1
[],B,(t,s) = f Dy(x")(1 — )~ dyx.
0

Some further results about the g—gamma and g—beta functions can be found in [1],[2],[5],[7].

Here, we will point out that in [7] it is proven that for f(x) = (1 - qx)f]‘1 we have D, f(x) < 0fors > 1and
Dyf(x)>0for0<s<1.

Now, taking into account that both I';(t + 1) and [t];B,(t, s) are of the form ﬂ D, (x") f (x)d,x for monotone
function f, we obtain interesting inequalities for g—gamma and g—beta functions directly from the results
of Theorems 2.1 and 2.2.
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Corollary 3.1. Let o, 8, v, 0 be positive real numbers. Then the following inequality holds:

[G6+1) Tyla+p+y+D)+Ta+p+06+1)-Ty(y +1)
2T (a+06+1) - T;B+y+1)+T,(p+06+1) -Tyla+y+1).

Corollary 3.2. Let o, B, v, 6 be positive real numbers. Then the following inequalities hold:
()
[6]5la + B + y14B4(6,8) - By(a + B +7y,5) + [ylgla + B + 6];By(a + B+ 6,5) - By(y,5)
> [+ 0L4[B + y1;Bsla +6,8) - B4(B +y,8) + [B + Olyla + y1;By(B + 6,8) - By(a +y,5)

foreachs >1,

(ii)

[0lyla + B+ y1;B4(6,5) - By(a + B +7y,5) + [ylyla + B + 61;By(a + B +6,5) - By(y,s)
< [a+06)[B + ylyByla +6,8) - By(B +7y,5) + [B + 0lyla + y];By(B + 6,5) - By + y,5)

foreach 0 <s < 1.

Remark 3.3. Especially, for positive o, § and y the following Stolarsky type inequality holds
Ly+1) - Tya+p+y+1) 2T(a+y+1)-TyB+y+1).
Moreover, for positive a, B and 'y and for s > 1 the following inequality holds

[Ylgla + B+ y13By(y,s) - Byla + B +7y,8) = [a+ y[B + y]yBy(a + y,8) - By(B +7,9)

and for each 0 < s < 1 it holds

lgla+ B+ y1yBy(y,8) - Byla+ p+y,s) < [a+ yl[B + y1;Bsla +y,5) - B4(B + 7, 5).
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