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On the modification of Picard operators on the semi-real axis

Basar Yilmaz**, Didem Aydin Ari?

?Department of Mathematics, Faculty of Engineering and Natural Science, Kirikkale University, 71450 Kirikkale, Turkey

Abstract. In this paper, we define and study the modified Picard singular integral operators on the
half plane. We demonstrate uniform convergence of P, operators, determine the degree of this uniform
convergence as well and examine the asymptotic behavior of the operators by proving a quantitative
Voronovskaya theorem. Moreover, we study uniform weighted approximation formula for the operators

of P; by using a weighted Korovkin type theorem. Finally, we give a result regarding global smoothness
preservation properties for the operators of P;,.

1. Introduction

One of the most important branches of approximation theory is the use of linear positive operators.
These operators play a key role in approximating functions and signals, particularly due to their stability
and preserving properties. They have been widely studied and applied in various fields of analysis and
numerical methods. One of these operators are the Picard integral operators.

Let f be real valued function in R. For n € IN and x € (—o0, 00), the classical Picard integral operators
are defined as

P =5 [ Fc pei )

Over time, researchers have developed these types of operators by introducing various modifications,
and their approximation behaviors have been extensively studied in the literature (see [1],[2],[5],[6], [15]
and [16]). Therewithal, in [3], Anasstasiou’s book contains numerous results on the different properties of
such operators. Furthermore, in [8], Picard singular integral operators modified by means of non-isotropic
distance and their pointwise approximation in different normed spaces are analyzed and in ([10], [14])
these type of integral operators were considered in exponential weighted spaces for function of one or two
variables. Also, in [9], Bardaro et al. defined a generalized form of these operators which fix ¢** and e**
with a > 0 and proved some approximation theorems.
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In [5], Aral et al. studied modified Picard singular integral operators defined for functions with domain
on the real line. The main motivation to introduce these operators with the domain restricted to the half-line
was to prove the different theorems that were not given in [5].

We consider the following modification of the classical operators defined by (1), where it is shown that
the corresponding operators fix the functions 1 and ¢**. Moreover, we introduce these classes intended to
be associated with functions defined on the semi-real axis. Specifically, the proposed generalizations of the
above operators are defined as follows:

n—2a
n > 2a. For f € C[0, c0), we consider

Let 0, := ~ ln( . ), which is positive for every fixed a > 0 and for sufficiently large n € IN such that

P (fix) = nff(yn (@) +t)e™dt, n>1 2
0
and where
Vn (X) =X =0y, X >0y, 1> 2a. 3)

Moreover, we define

ciro 2| Pulfix) if xelon ),
P”(f'x)‘{ fx)  ifxe[0,0,).

In the present paper, in connection with the operators defined in (2), we first present some lemmas that
are essential for proving our main theorems. In the third section, we establish the uniform convergence
of the operators and also determine the rate of this convergence. In the fourth section, we investigate the
asymptotic behavior of the operators P;, by proving a quantitative Voronovskaya theorem. Later on, we
study a uniform weighted approximation formula for the operators P;, by applying a weighted Korovkin-
type theorem. Subsequently, we show that similar results can also be obtained without relying on this
theorem. Finally, in the last section, we present a result concerning the global smoothness preservation
properties of the operators P;,.

2. Auxiliary Results

In this section, we begin by establishing some general results concerning these operators, as they will
be required in the subsequent parts of the paper.

Lemma 2.1. For the operators defined by (2), withn € N, n > 2a, x € [0, 00) and e,(t) = t',vr = 0,1,2,..., the
moments given as follows:

P (eo;x) = 1,

1

P (e;x) = yn(x)+ﬁ,
. 12 1
P (ex) = ()/n(x)+a) +;.

Proof. From (2), we obtain

o0

P (eo; x) = nfe‘”tdt.

0
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By changing the variable t = &, we have

(o9

P, (eo; x) = fe‘“du =Ir(1)=0'=1,

0

where I' (.) is Gamma function. Similarly, we can write

(2)

P (e1;%) =y )T (1) + —= = v, (x) + 1

and
G Vn(x)r(1)+2yn()r(2) n(f)

( (%) + 1)2 + 1
Vn n 7’12,

which proves the lemma. O

Lemma 2.2. If we denote Ty, (x) =P, (t—x)";x), r=0,1,2,...,and for each fixed x, then we have

Tn,O (x) = 1,
Tp1(x) = yu(x)—x+ %,
Ta0) = (n -0+ 2 () -1+ 2.

Also, from (3), we obtain

I
N

. 1
g?on(yn(x)—xnt E)

I
e

tim (70 () = 97 + 2 (7 (0 =) + 5

Lemma 2.3. For the operators P;,, we have

= e M _ \/n(n—za)eux

n-—a n—a

*(e ;X

( 2at .
v

3at
P (eix

n
EZW" (x) — eZax

)
) - n-—2a
)
)

=

7

O S O 2a / n—2a 5.
= ¢ = e,
n—-3a n-3a n

no_ (n- 2q)?

6311}/”(35)
n—4a nn—4a)

4at
Pieix

3. Uniform convergence of P,

In this section, we obtain the rate of convergence for P, operators. Let us denote by C|[0, c0), all real-
valued continuous functions on [0, c0) with the property that lim, .., f(x) exists and is finite. For this
estimation, we use the following modulus of continuity:

w*(f;0) = sup
x,te[0,00)
|e”‘—e’t|£6
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defined for every 6 > O and every f € C[0, ). Also we use the following property of modulus of continuity.

X 2
f )~ f @) s(1+%]w*(f;6), 5> 0. (4)

Further details on w” (.; 0) are provided in [13], where the following statement is also presented.
Theorem 3.1. If a sequence of positive linear operators A, : C[0, 00) — C [0, o0) satisfy the following equalities
A (%) = L) = n,

A, (e‘t;x) —e* = by,
A, (e‘Zt ; x) -

[0,00)

|40 f = fll, o < 20" (f; Van +2b,+¢,), feCl0,00),

where ||fH[gmoo) = sup )|f (x)|.

x€[oy,,00

[0,00)
then

Theorem 3.2. For each function f € C[0, o), the following inequality holds:

P f - f||[0,oo) <20 ( f; \2b, + c,,),

where
1 n n
b, = eZaln(n—Za) -1,
n+1
1 n n
CVI = e 11’1( n-2a —_ 1/
n+2

and both b,, and c,, tend to zero as n — oo.

Proof. By simple calculation, we obtain

n 1 n n
Pp* e_t;x L e_x+ﬂln(n—2a) ,
" ( ) n+1 n+1
n 1 n n
P e—Zt,,x =2 % _ e—2x+51n(n_2a) )
n ( ) n+2 n+2
Therefore, by using Theorem 1, we have
|5 (1;%) - 1”[0,1,«:) = 0,
P (e x)—e™ = b,
| " ( ) [0,,00) "
P (e x)—e ™ = ¢,
| " ( ) [02,00) !
where
n n
b = E% ln(m) —_ 1
" n+1
—  ,in(z) M
cp = ex "\ -1.
" n+2
and both b, and ¢, tend to zero as n — o0. When x € [0, ), we have
IPnf £l =lPuf-Al

[0,00) [on,00)

thus the proof is complete. [
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4. Quantitative Type Voronovskaya Theorem
In this section, we give the quantitative type Voronovskaya theorem for P;, operators.

Theorem 4.1. Let f, f”” € C[0, 00). Then we have

+ % |nTn,2 (x)|

I[P, (0 - F@]=2f @) < [T (x) -

f// (X)| + Dw* (f//; _),
where D is a positive constant.

Proof. By using the Taylor’s formula, there exist 1) lying between x and t such that

FO=F0+f @e-0+ D ¢ enn -7
where
o S0 =)

2

and h is a continuous function which vanishes at 0. In view of the definition of P}, operator, we obtain the
following equality for x € [0, c0) and if we apply the above formula to the operator P;,, then

P f0 = P00
F@T 0+ L0

Tuz () + P (1 (8, 2) (t = %)% x).
Also we can write that

[P (f;x) - f@]-2f @) < f @) [nTu1 () -2] +

To estimate the last inequality by using the inequality (4), we get

f Z(X) [nT, o (x)] + n®;, (Ih (t,x)| (t — x)z;x) .

i, x)|<(1+(_x5%_t)] W (f30).

Since

/I

(

e —et| <o

f” 8) e —e| >0

|h(t,x)|£{ (e

we have

G

|h (t,x)| < 2[1 + 5—) (f// (S)

We deduce that
n (1,01 (= 075%) < 200 (F736) T (x) + —a) “(f7;6) P, (( —e) (t—x)z;x).

Applying the Cauchy-Schwarz inequality, we obtain

P, (01t -%75x) < 200" (f7; 6)Tn2(x)+ W' (f;6) \/so* (e = e)*;x) VToa ().
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Choosing 6 = \Lfn ,we get

n®; (I (01 (- %)75x) < 2n0' (f”;%/_)n,z (x) + 20" (fi\/_) \/nzso;; (CRETWEY \/nZTnA (x).
n n

By using a computer program, the followings were obtained

0,

lim nzTnA (x)
4
lim 7P, ((e"‘ - e_t) ;x) = 0.

Thus, we arrive at

[P, (f;0) = f]-2f )| < [nTn(x) -2

, 1 ” N
£ ()| + E)nTn,z @||f” )| + Do (f W)

which was our claim. O

Let f € C"[0, o0) with w*(f(’); 0) < 00,0 > 0r e N, since for x € [0,, ) the operators P}, we set

m (k) ~
f_g(x)) the ™ dt.

Au(f;x) =P, (fix) —n Z
k=0 ' 0
We now study the convergence of P;, operators to the unit operator I with rates (see [3]) .

Theorem 4.2. The following inequality holds

W (f/ i In (n—n2u)m)

m!

|Au(fi0)| <

A, (5)

where

_2p V(%) 1 p=2y(x)
F(m+1)[1+(1 200 7re T 7)_n ]

T 1 m m+1
" 2 1“( nIIZn) (n+2)

—I'(m) [mﬁl ln( ” ) +(1=2070 4 2@y 101 ln< n )H"]

2a n-2a (n+2)" 1 2a n—2a

1 (b in(25)" + 2070 ) ).

n—2a

Proof. Let f € C"™ [0, c0), m € IN. By Taylor’s formula (see Lemma2(2), p.2 of [4]), we have

m (k)
fO)+t)= Z %tk + Ry (f;%,7(x) +1) ©)
k=0
where
y(x)+t
R (fi%,y(0) + 1) = o . il f [(F76) = F®)] () + £ = 5)" ds

for all x,t € R. Applying Theorem 6, (14) p. 4 of [4] , we can write

1
(m—1)!

(x)+t
[Run (f2,y(x) +1)] < fy '[f(m)(s)_f(m)(t)” ‘(y(x)_i_t_s)‘m—l B
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From (4), we have

[Rus (£, () + 1)
Y (xX)+t —t _ oS
(mil)!f (1+( 52 )] (f5)|(7/(x+t_5)|

1 (e e’ . .
T &2 C”*(ff'é)f |y@x) +t =) ds

-t _ o)) .
{1 + %] (f 6) ()/(x) +i- x) (7)

IN

From (6), we find

f"‘ (V(x))

fly@)+t) - Z =Ry (f;x,y(x) + 1)

and

* m (k) ~ oo
HL‘ f ()/(X) + i’) e "Mdt —n Z % tke—mdt - nL R,, (fr X, V(x) + t) et dt
0

k=0
That is
(k) )
P (fr20) = fr() - Zf 53,/( D)1 — T+ 1) = fo Run (f; %, y(x) + £) e,
k=1
We obtain

An(f;x) = nj:o Ry (f;x,7(x) + t) e ™dt

for all x € [0,,, ) . Furthermore we have

|An(f/x)| < ]’lfoo |Rm (f,x,‘)/(x) + t)e—nt|dt
0

from (7),
- 2
nwx- ,6 00 e—f — e—()/(x)+t)
|An(f;2)| < % [“(5% ((x) + t —x)" [ dt
: 0
* ,6 00 : -2t _ *]/(X)*Zt —2y(x)-2t
< nw* (f;0) 148 2e +e (t—— ( )) ot
m Jo | 2 —2a
o 10 (F0) (T L a1 2267 + 720 ( ( ))1
- m! 0 02
et 4 o= t1+2) (1—2‘3_7/(X)+f3_2y(x))) %
nw* (f;0) ( ¥
- m! 0 M\ gm mygm—1 1 m (1 m §
(= (e h In (55 ) - + (D)™ (£ In(325)) )
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1-2, Y(x) 2y(x)
e T(m + 1) + 2 e T + 1)

(£ 1 (120704 20) g 1
hw (f’ 6) m r(m) 2a In (n Zu) &2 m (n+2)m r(m) 2a In ( n—nZa)
m!

#1402 ) (Lin(27))"

(126776 4o=27())
r(m + 1) [nnl &2 (n+;l)m+1

(L. 1—2e7®) 427 ()
" (£;9) =L (m) [1’}1# + 5 62+e )m(n+g)’"’]] % ln(n Za)

+(o1y (1 2 o) (L in (25)”

If we choose 6 = Zl_a ln( 1 )m,

r(m+1)[nlm+

w’ (f i ln(n 2,1)"1) —F(m)[ m

nm-1

(1-2e770) 427 n
%ln(ﬁ)m (11+2)’”+]

+

(1=2e77W 4720y ] 1in ( )
n —1
ﬁ m(ﬁ) (n+2)m n—2a

IN

|Au(f; )|

+1y (14 S22 ) (L1n (72"

n-2a

FOn-+1)[ 4 Q2 ) ]

m 1 m m+1
n 20 11’1( n—nZa) (71+2)

e |1 " -
@ (f, 5 1n(25) ) _r(m)[mln(,,”za) + (1 = 2070 4 g2y i) - ) ]

' 2anm-1 2a(n+2)™ 1
m:

+HD" (£ (55))" + (1 - 2070 + o 20) )

Thus we obtained (5). O

Theorem 4.3. Let f € C"1[0,00), such that f exists, m € IN. Furthermore suppose that f0(t)e™ € L1(R) for
all j =1,2,..,m—1,n> 0. Suppose that there exist g;,, 20 j=1,2,...,m, gin € L1(R) such that for each x € R, we
have

|fP G+ 1) e™ < gin(t),

for almost all t € R, all t € R, all j = 1,2,...,m. Then fO (x + t)e™ defines a Lebesque integrable function with
respect to t foreach x € R, all j =1,2,...,m, and

@ (f:0) =2, (f0;x),
forallx e R,all j=1,2,..,m
Proof. It can be obtained as in Theorem 11,3 pp.141 of in[3]. O
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Theorem 4.4. Let f € C"™*[0,00) m € N, k € Z* and o* (f(’””); (5) < 00,6 >0, fori=0,1,2,..k. We consider
the assumptions of Theorem 5 as valid for m = k there. Then

o (f(m+i); 1 ln(n 2ﬂ)m)

m!

A

|(An(f; x))(i)’ <
6>0,i=1,2,..,k, meR.

Proof. We have this inequality by using Theorem 5, Theorem 6 and Theorem 11, 16 pp. 149in [3]. [

5. Weighted Approximation

In this case we consider the exponential weighed space B,, with a fixed a > 0, which is the set of all real
valued functions defined on R* satisfying the condition | f (x)| < Mpq (x), pa (x) = e, where M is a positive
constant. Also C,, a denotes the subspace of all continuous functions belonging to B,,. This space is a
normed space with the norm

| |f (x)|
e1R+ pa(x)”
Let Ck (R*) be the subspace of all functions f € C,, (R*) such that hm Lrtx ((x))l = k, where k is a positive

Constant
Now we shows the conditions under which both classes of operators maps C,, (R*) to B, (R*) with the
uniformly bounded norm.

Pa(-

Lemma 5.1. Let0 <a < b. P, isa positive linear operator from the space C, into C,, such that the norms ( c e
Pa Pb

are uniformly bounded.

Proof.

eu)/n(x) %
Sup | n ﬂ|
xe[ay,00)  Pb ()

\n(n—2a) LDy _ q @)

n—a

.X)”Ph

sup
x€[oy,00)

the operators #;, maps the space C, into C,,. Also, for x € [0, ) we obtain,

\/n(n 24a) eax o

P(pa;X) —pa(¥) P (paiX) = pa (x)

pp (%) B po () :

e(afh)x @ -1

n-—a
_ e(u—b)x 1-— @
= n—a
and
* | _ n(n — 2a) (a=b)x
|Pn (Pa/x)_p“”pb - (1 B W]YES[ZI;O)E
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\n(n—2a)

< 1- ,
n—a

which tends to zero when 1 — oo. This shows that the norms “Pj, || c _c. areuniformly bounded. 0
Pa P

Theorem 5.2. Let 0 <a <b. For f € C,, (R*), we have
lim [[P;, (f;2) = f ()], =0
Proof. Using the theorem in [11] we see that it is sufficient to verify the following three conditions

lim |2, (py; ) = pif|, =0, v=0,1,2.
Since #;, (1;x) = 1 and P;, (ez‘”;x) =¥ for v =0and v = 2, the above equality is true. For v = 0, from (8),
the proof is obvious. 0O

6. Global Smoothness Preservation Results

Modulus of continuity with exponential weight is a good instrument to estimate the rate of convergence
of sequences of linear positive operators in the exponential weighted spaces. For this purpose we use the
weighted modulus of continuity defined by

_ o fo-fo)
”“ﬁ‘ﬁgiﬁnﬁ‘

, 020 )]

for f € C’,;ﬂ (R*) (See [7]).
By using the above weighted modulus of continuity, the result regarding global smoothness preservation
properties for the operators of P;, will be given as follows:

Theorem 6.1. Let 6 > 0 and w (f;06) < oo for f € C[0, o), then we have
@ (P, (f);0) < Cw (f;0).
This inequality is obtained with sharpness, i.e., f(x) = ™, a > 0.

Proof.

P (fix) =Py (fiy) =n f (f (7 (0O + £) = f (vu () + D) e dt.
0

Thus, we have for n > 2a

Py, (f;x) = Py (f: )|

Snf fOn+H - fOn)+1)

A @+) 4 pa(ya(y)+)

(eﬂ(j/,,(x)+f) + E“(Vn(}/)+t))| e "dt

_ nf fOu@ 4D = fOnW)+ O iy, @e) ot gy nf fOn@+D = fFOn@) 4D oy, ()40 ot gy

ea(y,,(x)+t) +ea(y,,(y)+t) ea(;/,,(x)+t) + ea(y,,(y)+t)
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fOn@+) - fOu+D| 0 fOn@+)—-fOu)+D| .
e ) e e (¢52)+ A P T e e e (“0)
x>0 x>0
_ FOn@+)=f W+ 0 at. « ( at.
= |XS—I;£5 2 0+1) ¢ (ra(2)+0) (P n (ea ,x) +P, (e ; y))
x>0
0D - fF ) + ) (Jn(n—zm o, N0 =20) ay]
= sup e+ e
lx=y|< @+t 4 pa(ya(y)+t) n—a n—a
x>0
= sup f(Vn(x)"'t)—f(Vn(]/)"‘t) VT‘[(?Z—ZII!) (eux_{_e/zy).
el O 0G|
x>0
P -Pu(fiy)| - v (n -2
(f«:‘2 + e G9) <w (f; a(yn () = yn (y))|) %,
Thus for a sufficiently large n; we get
@ (P, (f);0) < Ca(f;0)

where C is a constant. Thus the proof is completed. [J

7. Graphical Applications

Figures illustrates the behavior of the approximation process for different choices of parameters. Each
curve corresponds to a distinct parameter setting, as described in the related subsections. These visual
representations clearly demonstrate how sensitive the operators are to parameter changes, supporting the

theoretical findings discussed earlier.

o.ef—
05°
0.4;
0.3?—
0.2;
0.1 —

0.2 0.4 0.6 0.8 1.0

(@) P;, (f) (black), P, (f) (red) and f (blue) for f(x) =

e¥,n=4anda=1}

erf—
o.sf—
0.3?—
o.zf—
0.1 —

0.2 0.4 0.6 0.8 1.0

(b) P;, (f) (black), P, (f) (red) and f (blue) for f(x) =

e, n=4anda=1
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0.5?— .
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