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Abstract. In this paper we consider some properties of symmetric and skew-symmetric matrices over the
max-plus algebra. These types of matrices have certain features that are valid in the conventional linear
algebra but not in the linear algebra over the max-plus semiring, and vice versa. Taking this into account, we
describe a new class of matrices over the max-plus algebra - the class of pseudo skew-symmetric matrices.
Pseudo skew-symmetric matrices are square matrices with a zero diagonal whose symmetric elements

cannot be negative at the same time. The basic properties of this class of matrices are introduced and
proved in this study.

1. Introduction

Matrices play a fundamental role in various mathematical contexts. For the purpose of this paper, we
will explore two specific types of matrices named symmetric and skew-symmetric matrices. A square
matrix A is symmetric if its transpose AT equals itself, i.e. A = AT. In simpler terms, the elements
along the main diagonal remain unchanged, and the elements above and below the diagonal are mirror
images of each other. Symmetric matrices find many applications in optimization, physics, and statistics.
A square matrix A is skew-symmetric (or antisymmetric) if its transpose is equal to its negative, i.e.
AT = —A. In skew-symmetric matrices, the diagonal elements are always zero. Although less common
in real-world applications, skew-symmetric matrices appear in mechanics, electromagnetism, and various
fields of mathematics. Understanding these properties of matrices improves our ability to handle complex
mathematical challenges. In the present study, we deal with matrices with values in the max-plus algebra,
from a similar point of view as in conventional linear algebra. We need to mention that, in this paper, a
notion of max-algebra is equal to a notion of max-plus algebra. Vectors and matrices over the max-algebra
can be defined naturally, as ordered n-tuples and m X n-tuples of elements from IR = R U {—o0}, respectively.
Other names used in the past for the max-algebra are ,,path algebra” [12] and ,,schedule algebra” [21]].
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The study of the max-algebra begins in the 1960’s with the papers of Cuninghame-Green [15], followed
by Carre [12], Gondran and Minoux [23], Vorobyov [28], etc. Basic questions, such as solving systems of
equations, the eigenvalue/eigenvector problem, and linear independence in the max-plus sense, are studied
in these papers. Strong development of the max-algebra starts from 1985 onwards. For more information,
we recommend readers an excellent monograph [6] (notations in this paper are aligned with this book), as
well as [3]], [4], [Z], [16].

Many features from the conventional linear algebra can be transferred to max-algebra by replacing ,,+”
with ,,@®” and ,, -” with ,,®”, like eigenvalues and eigenvectors (Chapter 4. in [6]), Cramer’s rule and Cayley-
Hamilton theorem [27], numerical range of matrices [30], etc. The max-algebra is widely used in many fields
such as mathematical physics, optimization, telecommunication networks, control theory, discrete event
processes, algebraic geometry, machine scheduling, parallel processing systems, manufacturing systems,
and traffic theory (see e.g. [1l, [4], [19], [25]). Many problems that are non-linear in conventional algebra
can be solved in the max-algebra using a linear approach. Also, many statements and procedures used in
conventional linear algebra have corresponding counterparts in the max-algebra.

The paper is organized as follows. After this introductory section, in Section 2 we introduce the most
important concepts concerning max-plus semirings (algebras) and complete max-plus semirings, as well
as matrices and vectors over them. We mentioned some new tools for dealing with matrices over the
max-plus algebra which can not be used in conventional linear algebra. Then, in Section 3, we introduce
the concepts of a max-plus symmetric and skew-symmetric matrices and present some characterisations
of those matrices. Further, we take into the consideration the conjugate matrix of a given matrix A whose
elements are real numbers, and describe the properties of the matrices which are obtained as the max-
algebraic sum/max-algebraic product of A and its transpose matrix or its conjugate matrix. In Section 4,
pseudo skew-symmetric matrices are defined and named max-algebraic pseudo skew-symmetric matrices
or shortly MAPSS matrices. Their properties and characteristics of the matrices obtained by applying the
max-algebraic operations on MAPSS matrices are also presented in this section. Beside, we define and
describe a class of weakly MAPSS matrices. In the last section, Section 5, we study MAPSS and weakly
MAPSS matrices with infinite entries and introduce their features.

The motivation for defining a new class of matrices - MAPSS matrices - has its roots in the paper of
Cuninghame-Green and Butkovic, which describes the solving of two-sided max-linear systems of the form
A®x = B®y, where A, B are matrices and x, y are vectors of compatible sizes. Namely, in [13], the authors
have presented an iterative method for solving the two-sided systems of the mentioned form - the so-called
Alternating method. If A and B are integer matrices, and one of them, for example 4, is finite, while the other
matrix does not contain a row nor column whose elements are all equal to —co, then the number of iterations
at the Alternating method is not greater than (n — 1) (1 + x(0)* ® A* ® A ® x(0)), where x(0) is random integer
vector and 7 is the column-dimension of A. Thus, A = A*® A appears in this expression, so we started with
the description of the properties of this matrix in order to consider ways to reduce the number of iterations
at the Alternating method even more. As a result of the new properties and conclusions we reached, we
defined a new class of matrices over max-algebra to which, as we shall see, the matrix A itself belongs.

Also, considering such a class of matrices in conventional linear algebra would not make much sense,
because all properties derive from the specific way in which operations in the max-algebra are defined.
That is the reason why we studied the mentioned class of matrices over this algebraic structure.

2. Preliminaries

An algebra 5§ = (5,8, ®,0,1) with two binary operations ® and ® on 5, and two constants 0,1 € Sis a
semiring if the following conditions hold:

(1) (5,8,0)is a commutative semigroup with neutral 0,

(2) (5,®,1)is a semigroup with identity 1,

(3) (distributivity laws) are satisfied: (1@ b)®c=@®c)® (0b®c)anda®@ (b Dc) = (@ ®b) ® (a®c), for all
a,bces,
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(4) 0®a=a®0=0,foreverya€5.

0Ois called the zero and 1 the identity of the semiring S. The operation @ is called addition, and the operation ®
is called multiplication. If the multiplication is also commutative, then 5 is called a commutative semiring. An
algebraic structure can be identified with its carrier set, and that is why we denote the carrier set of a
semiring § by the same symbol 5.

Typical examples of semirings are fields of real and rational numbers, the ring of integers and the semi-
ring of natural numbers with zero included (with respect to the usual addition and multiplication opera-
tions). We refer the reader to [22] for more information on semiring theory.

An element a € § is an idempotent if a @ a = a, or equivalently, if 1 @1 = 1. In the literature, semirings
whose all elements are idempotents are known as additively idempotent semirings, idempotent semirings or just
dioids.

Let IN denote the set of natural numbers and let § be a semiring. For any m,n € IN, an m X n-matrix
with entries in $ (or over $) is defined as any mapping A : {1...m} x {1...n} — S, and for arbitrary
(i, 7)) €{1...m}x{1...n}, the value a;; is said to be the (i, j)-element or (i, j)-entry of the matrix A. The set of all
m X n-matrices with entries in § is denoted by 5. Following that, a vector of length m over §, for a given
m € N, is a mapping v : {1...m} — 5. The notation §" is used for the set of all vectors of a length m over
5. Thus, we can say that 1 X n-matrix is a row vector (of length n), and an m X 1-matrix is a column vector
(of length m). An identity matrix of order n is an n X n-matrix I over S whose (j, k)-element is equal to 1, if
j=k and O, if j # k, for all j k € {1...n}. The transpose of a matrix A € §"*", is a matrix AT € §™" whose
(i, j)-element is equal to the (j, 7)-element of the matrix A, foralli,j € {1,...,n}.

For m,n € N, the matrix addition is a binary operation on 5" defined for A, B € 5" such that C = A®B
and its entries are

cij = aij @ bij,

foralli € {1...m} and j € {1...#n}. It is an associative and commutative operation on ", and it can be
easily shown that (5", ®, O,x,) form a commutative semigroup with identity Oyyxy.

For arbitrary m,n,p € IN, the matrix product or matrix multiplication is defined between matrices from
™" and $™ as follows: for matrices A € $"*" and B € 5%, their product is a matrix C = A® B € §™%
with entries given by

n @

Ci = Z aij ® bj, 1)

j=1
forall (i,k) € {1...m} x {1...p}. Whenever the matrix product is defined it is associative, i.e.,
(A®B)® C=A®(B®C(),

forall A € ™" B e §" and C e $*, L

In this paper we deal with a particular type of semiring (algebra) R = (R, ®, ®, —o0,0), with the carrier
set R = R U {—o0}, and binary operations @ and ® defined as follows: for arbitrary a,b € R we put
a® b = max(a,b), and

(2)

a+b ifabelR,
®b= .
—oo ifa=-ocoorb=—oco.
The operation ® = max refers to the usual ordering < of real numbers extended to R so that —c is the least
element. This semiring is known as the max-plus algebra. The zero of the semiring R is —co and the identity
is 0. The max-plus algebra R is a commutative dioid which does not have the greatest element.
The operation @ is called the max-algebraic addition, and ® is the max-algebraic multiplication. For the
sake of simplicity, we will call them addition and multiplication, respectively.
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Dually, the semiring R = (R, &, ®’, +o0, 0) with the carrier set R = R U {+o0}, and two binary operations
@ and ®’ defined as follows:

+b ifa,beRR,
a®' b =min(a,b), a®' b= ¢ 1 4
+oo ifa=+coorb=+oo.
will be called the min-plus semiring. For R we also use the name min-plus algebra, or simply min-algebra.
When dealing with vectors and matrices, max-algebraic operations are defined as follows. Let A, B and
C be matrices of compatible sizes with entries from R. Then

C=A®B if cj=a;®b;=max|aby}, forallij, 3)
. @ . .

C=A®B if ¢= Zk: 0 ® byj = max {ai + by}, foralli,} 4)

0®A=A®0=(0®a;), foralldcR. (5)

Throughout this paper, max-algebraic sum and max-algebraic product will be denoted by Y.® and []°%,
respectively. In addition, N will denote the set with elements {1,2,...,n}, where n € IN.

The identity max-algebraic matrix, denoted by I, is a square matrix of an arbitrary size whose diagonal
elements are equal to zero (which is neutral element for ®) and the off-diagonal elements are all equal to
—oo (neutral for ®). A diagonal matrix is a square matrix whose off-diagonal elements are equal to —co and
the diagonal elements are real numbers.

If A is a square matrix, then the expression A® A®...® A, in which A appears n times, will be denoted
by A" and called the n-th power of A. The (i, j)-entry of A" will be denoted by ag.').

When it comes to the priority of max-algebraic operations, it is the same as the priority of the corre-
sponding operations in the conventional linear algebra. Thus, the max-algebraic power has the highest
priority, while the max-algebraic multiplication has higher priority than the max-algebraic addition.

The max-algebraic operation @ is not invertible, but it is idempotent, therefore some new tools have to be
provided in the max-algebra, which do not exist in the conventional linear algebra, and which allow solving
the main problems. The introduction of new tools is necessary because in the max-algebra there are no in-
verse matrices, except for the class of generalized permutation matrices [17]. That is why many procedures
from the conventional linear algebra cannot be used in the max-algebra. Some of those new tools are maxi-
mum cycle mean, transitive closures, conjugation and dual operators, and max-algebraic permanent (see,
for example, Sect. 1.6 in [6]]).

In the max-algebra, matrices can be associated with weighted digraphs. Using them, here we can define
the following matrices: irreducible/reducible matrices, definite and strongly definite, increasing, diagonally
dominant, normal and strictly normal matrices. Also, in the max-algebra two matrices can be equivalent,
similar and directly similar. Beside, we can talk about diagonal similarity scaling [8].

3. Symmetric and skew-symmetric matrices

In the conventional linear algebra, a matrix A is symmetric if A = AT. A matrix A is skew-symmetric if
A = —AT. Symmetric and skew-symmetric matrices are square matrices. A skew-symmetric matrix has
zeros on the main diagonal. Also, the following is valid in the conventional linear algebra (clearly, here
,+” and ,, -” are the addition and multiplication of matrices in the linear-algebraic sense): if A is a square
matrix, then A + AT, A- AT and A - (-AT) are symmetric, while A + (-AT)is a skew-symmetric matrix. We
consider whether these properties are also valid in the max-algebra.
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Before that, we will state some features of transpose of the matrix and symmetric matrix that are valid
in max-algebra. When dealing with the transpose of a matrix, it is not difficult to show that, as in the con-
ventional linear algebra, the following properties hold:

(AeB)T = AToBT, (6)
OAT = 0eAT, 7)
(A®B) = BT®AT, 8)

forall A,B € R" and 0 € R.
The following theorem describes the properties of symmetric matrices in the max-algebra. These prop-
erties have their analogues in the conventional linear algebra.

Theorem 3.1. Let A, B € R"™" be symmetric matrices and 6 € R. Then:

1. 0 ® A is a symmetric matrix;

2. A @ B is a symmetric matrix;

3. If A® B = B® A holds, then A ® B is a symmetric matrix;
4. Ifs € N, then A® is a symmetric matrix.

Proof. 1. This follows directly from the definitions of symmetric matrices and the max-algebraic scalar
multiplication (Eq. (B)).
2. If A and B are symmetric matrices, we have that

ajj = aji and bl‘]‘ = b]‘i, for all i,j e N.
Let C = A ® B. Then, the following holds:
Cij = max {Ll,'j, bi]‘} = max {aﬁ, b]','} = Cji-

Therefore, the matrix C is symmetric.
3. Let us use the notation C = A® Band D = B® A. Then, we calculate the elements of these matrices as

@ ®
Cij = Z A ® bk]' and dij = Z bix ® ay;.
keN keN

Since A ® B = B® A, the equality of the previous expressions holds, i.e.:

@ ®
Z ajx ® bkj = Z by ® ;-

keN keN

From there, as well as from the commutativity of the operation ® in R, and the symmetry of the matrices A
and B, we get

3] (s3] (53] 3]
Cij:Z lll'k@bk]':Z bik®ak]'=Z akj®bik:Z ll]'k®bki=Cj1‘.

keN keN keN keN

So, C = A ® B is a symmetric matrix.

4. Let A be a symmetric matrix, i.e. a;; = aj;, for all i, j € N. By the principle of mathematical induction
we will prove that afj) = a;f).

For n = 1, the statement of the theorem is valid, because, according to the condition of the theorem, A is
symmetric. Suppose that the statement holds for some n = p, p € N:

® _
a; = ay . )
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Let us prove then that the statement is also valid forn = p+ 1. As AP*! = AP ® A, as @) holds, and as ® is
commutative in R, we have

@+1) _ V% 0 _V°ewm., _V\V° ®) _ _(p+D)
A=Y ea;=) al@ai=) apedl =d".
keN keN keN

We conclude that A® is a symmetric matrix.
This completes the proof. [J

Remark 3.2. If A is symmetric, then according to statement 4. of Theorem the matrix A? is a symmetric
matrix. In addition, it is easy to see that for the diagonal elements of this matrix holds:

a? = 2max {a;} = 2max {ay}.
u keN keN
However, this does not have to be true for all powers of a matrix, as the next example shows.

Example 3.3. Let the symmetric matrix A be given by:
7 1 3
A=|1 6 =2f.
3 -2 5

Then
14 8 10 21 15 17
8 12 4|, A% =15 18 11|, A*=|22 24 18 29 30 25

24 18 20 31 25 27

A? =

4

10 4 10 17 11 15

28 22 24 35 29 31
AS =

Note that A2, A% and A* are symmetric matrices, and the same property have matrices A5, A®, etc. Also,
note that for the diagonal elements of A2, according to Remark holds

14 =2max{7,1,3}; 12=2max{1,6,-2}; 10=2max{3,-2,5}.

Moreover, in this case the same property holds for the diagonal elements of matrices A> and A* (where 3
and 4, respectively, multiply the maximum):

21 =3max{7,1,3}; 18 =3max{l,6,-2}; 15=3max{3,-2,5}.

28 =4max{7,1,3}; 24 =4max{1,6,-2}; 20=4max{3,-2,5}.

However, when it comes to the matrix A°, this property will not be valid (because aé‘? =27 # 25 =
5max {3, -2, 5}), so this feature does not apply in the general case. =

In the rest of the paper, for the matrix A € R™", the matrix —AT will be denoted by A*. Hence, for any
entry a;; of € A*itholds a; = —a ji)- This matrix is usually called the conjugate matrix of A and it will be very
important in our further considerations (the study of conjugate matrices dates back to the earliest papers in
max-algebra and plays a crucial role in solving max-linear systems, see [18]). Note that when dealing with
the matrix A*, we assume that the entries of the matrix A are real numbers. Later, it will be discussed the
case when infinite entries appear in the matrix A.

It is easy to see that (A*)" = Aand (0 ® A)" = -0 ® A, for every 0 € R.

In the next three theorems, we consider the properties of the following matrices: A ® AT, A ® A* and
A® AT. The matrix A ® A* has some special properties and will be discussed in the next section.

Theorem 3.4. Let A € R™". Then A’ = A® AT is a symmetric matrix for whose diagonal elements hold

a; =aj, forallie€N. (10)
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Proof. For the elements of the matrices A and AT holds ul.T]. =aj;, foralli, j € N,sowe have

alfj = max {a,-j,aiTj} = max {a]Ti, aﬁ} = a}i, foralli,j e N.
Hence, A’ is a symmetric matrix.

For the diagonal elements, since ug = q;;, it follows

aj; = max {aii, ag} = max {a;;,a;} = a;;, forallie€N,
and the proof is complete. [
Theorem 3.5. Let A € R™". Then A® = A® AT is a symmetric matrix and for its diagonal elements holds

o _ N T
al = ZI}EVX lag) = Zrkneela\]x {aki} : (11)
TS NXm T_NXn

Proof. If A € R"™", then AT e R"™™", 50 A® € R
We calculate the element afj as

®

0 _ 2 ' , T

a; = Ajk ®ak].,
keN

for all i,j € N. Taking into account the connection between the elements of A and AT, as well as the
commutativity of the operation ® for real numbers, we have

@ & @
[ . T _ T I . T _ ¢
ajj = E Ajk ®akj = E 4, ®ajk = E Ajk ®aki = Llﬁ,
keN keN keN

foralli,j € N, so A® is symmetric.
For the diagonal elements of the matrix A°, for every i € N, is valid

® ®
o _ 2 ' T _ 2 ' _ _
a; = aix @ ay; = A @ Ay = max {ay + ax} = 2max {ay}.
keN keN
keN keN

The second equality in is obvious, considering a = a}. [

Theorem 3.6. Let A € R™" and A®* = A® A*. Then

1. A® is a square matrix, but neither symmetric nor skew-symmetric;

A*® cannot have two symmetric negative elements;

Ifajj # ajj, foralli,j € N, then A® is a matrix that does not have two equal symmetric elements;
For the diagonal elements of A® hold as, = lail , forallie N;

, foralli,jeN.

ARSI

If A is symmetric, then a;; = |a,-]-

Proof. 1. Clearly, A® is a square matrix. It can be easily checked that the matrix we get when A is max-
algebraically multiplied by its negative transpose matrix is neither symmetric nor skew-symmetric.
2. Suppose that the element al.’]. is negative. Then, we have

L4 —_— .o * _— Py R— I
a;; = max {a”,aij} = max {u,], a]l} <0.

So, it must be a;; <0 and —a;; <0, i.e. a}i > 0andaj; > 0. Now, we have

L] — .. *
aj; = max {aﬂ,aﬁ} > 0.
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With this we proved that the element, symmetric to the negative element in the matrix A®, must be positive.
3. Element a;; is calculated as

L] — .. *
aj; = max {azj,ai].},

for all i, j € N. Without loss of generality, we can suppose that max {aij,a:],} = a;j, i.e. that ai‘j = a;j. Then,

* * *
ajj > IZZ-]- = a4 < _aij = {lj

i < aji.
Therefore, we have that
L — I * _— .o
a%; = max {aﬂ,aﬁ} =aj.

Since a;j # aj;, it follows that a;]. * a]’.i.
4. For the diagonal elements of the matrix A® holds

a;; = max =aii,a;} = max {a;;, —a;} = |a;|, forallie N.
5. If A is symmetric, then we have

7

{Il;j = max {aij, {Il;j} = max {111']', —{1]‘7‘} = max {aij, —111‘]‘} = |al-]-
foralli,j € N.
With this, the proof is completed. [

Based on the previous theorems, we conclude that the matrices A’ = A ® AT and A® = A® AT are
symmetric, like corresponding matrices in conventional linear algebra. The matrix A®* = A @ A" is neither
symmetric nor skew-symmetric, in contrast to conventional linear algebra, where the corresponding matrix
is skew-symmetric.

Example 3.7. Let matrix A € R¥* be given:

34 1 26 -3
-11 69 -2 038
102 4 9 76|
123 6.7 -52 -8

A=

Then, we have

34 1 102 123 68 79 136 157 34 11 26 -3
A = 1 69 4 6.7 A0 = 79 138 109 136 o -1 69 -2 08

102 4 9 76 | 13.6 109 204 225] 102 4 9 76|

123 67 76 -8 157 13.6 225 24.6 123 67 -52 8

We can see that A’ and A® are symmetric matrices, while A® is neither symmetric nor skew-symmetric.
Also, for diagonal elements of those matrices holds (for example, for i = 4):

Ay, = =8 =au; 1124 =24.6 = 2max{12.3,6.7,-5.2,—-8}; ay, = 8 = lagl.
which is consistent with the proved properties about diagonal elements from previous theorems. ®

Note that the properties described by the theorems in this section hold dually in min-algebraic theory.
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4. Pseudo skew-symmetric matrices

In this section, we introduce and describe a new class of matrices in the max-algebra. The matrix A ® A*
also belongs to that class (recall that the matrix A* denotes —AT), so we describe this matrix first. Here we
assume that the entries of a matrix A are real numbers. The case when infinite entries appear in a matrix A
will be discussed in Section 5.

Lemma 4.1. Let A € R™"™. Then the matrix A = A® A" is a square matrix with a zero diagonal.

Proof. If A € R™", then the matrix A* belongs to R"™", so A belongs to R, i.e. it is a square matrix.
For the elements of matrices A and A* it holds a,f]. = —aj;, for all i, j € N. Therefore, for the diagonal

elements of the matrix A, we have
~ & * & .
dii = Z Ak @ ay; = Z aj ® (—ax) = max{ay + (—ax)} =0, forallie N,
keN keN keN

which proves the statement. [

In the conventional linear algebra A - A* is a symmetric matrix. This property is not valid in the max-
algebra for A ® A", which can be easily examined.
However, the following holds.

Theorem 4.2. For a matrix A € R™™, symmetric entries of the matrix A cannot be negative at the same time.
Proof. Let i, i,j € N be a negative entry of the matrix A. We calculate this entry as

@ . .
ﬁij:Z aik®a;].:rkn€z;1\]x{a,-k+a;].}, i,jEN
keN

Suppose that the greatest summand of this max-algebraic sum is achieved for some p € N:
dij = ajy +11;j <0.

Then
—(ajp + a;].) >0 =3 a;i +ajp >0 =3 ap + a;i > 0.

The last expression is one of the summands in the max-algebraic sum when calculating the entry a;;:

&
dji = Z ajk ® a4;; = max {ajl +ay,..., a5 +‘1p,‘/~-/ajn +am.}.
keN

Therefore, at least one of the summands in the above sum is positive, so the max-algebraic sum is also pos-
itive. This means that @; > 0, which proves that two symmetric entries of A cannot be negative at the same
time. [

Based on the proof of this theorem, we can draw the following conclusions:

Corollary 4.3. If the entry i;; of the matrix A is negative, then the corresponding symmetric entry dj; must be strictly
positive, i.e., the case that dj; equals zero is excluded.

Corollary 4.4. In the matrix A, the off-diagonal entries cannot all be negative.

Remark 4.5. Note that in the matrix A two symmetric entries can be positive at the same time, i.e., Theorem
does not assert that symmetric entries in A must necessarily be of different signs.
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Example 4.6. Let a matrix A € R¥3 be given by:

15 4 8
A=16 -9 -1].
2 2 =10

Then

0 18
A:A®A*: 0o 9l

-2 11 0

We can see that A is a square matrix with zero diagonal.
The entry 4, is calculated as:

dr = max {azl +day,, a0 + a5y, a3 + “51} = max {6 + (—15), -9 + (-4), -1 + (-8)}
= max{-9,-13,-9} = -9.

%

The maximum is reached in ay; +47; and ag3 + a3y, and they are negative. Therefore, it will be —(a2; +a3,) > 0
and —(ap3 + a;l) >0,s04a11 +4aj, > 0and as3 + a3, > 0.
These two expressions appear when calculating the entry di,:

A1 = max {a11 + a3, 412 + a4y, 413 + ugz} =max {15+ (-6),4+9,8 + 1} = max{9,13,9} = 13.

So, the entry symmetric to the negative entry in the matrix A is positive.
Let us also note that, for example, @3> = 11 and 43 = 9. Therefore, symmetric entries of the matrix A can
be positive at the same time. =

Due to certain similarities with the skew-symmetric matrices, we will call the above considered matrices
max-algebraic pseudo skew-symmetric matrices.

Definition 4.7. A max-algebraic pseudo skew-symmetric matrix, abbreviated as MAPSS matrices, is a square
matrix with zero diagonal that does not have two symmetric negative entries.

Clearly, A = A® A* belongs to the class of MAPSS matrices, but does not mean that every MAPSS matrix
is obtained as the max-algebraic product of some matrix and its conjugate matrix.

Also, every square matrix with zero diagonal, whose off-diagonal elements are all non-negative, is a
MAPSS. 1t is not difficult to conclude that every skew-symmetric matrix is a MAPSS matrix, too. This is
not true for symmetric matrices.

Let us also note that the matrix of size n X n whose all entries are equal to zero, also represents a MAPSS
matrix, considering that it is a square matrix with a zero diagonal that does not have symmetric negative
entries.

In the rest of this section, we consider MAPSS matrices with real entries.

It is important to note the following: based on Corollary for the matrix A = A ® A" the following
holds: if 4;; < 0, then @;; > 0. However, for an arbitrary MAPSS matrix M holds: if m;; <0, thenmj; > 0, i.e.,
the possibility of m; being zero is not excluded.

The next lemma is about the number of negative elements in a MAPSS matrix.

Lemma 4.8. The number of negative entries in a MAPSS matrix A € R™" cannot be greater than (n> — n)/2.

Proof. The total number of entries in the matrix A € R™" is n?. Since the diagonal entries are equal to zero
and there are 7 of them, the number of off-diagonal entries is n? — n. Taking into account that in the MAPSS
matrices two symmetric entries cannot be negative at the same time, we conclude that at most half of this
value can be negative. O
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We will now consider whether the properties, which are valid in the conventional linear algebra for
symmetric/skew-symmetric matrices, are valid in the max-algebra for MAPSS matrices. In the conventional
linear algebra, for symmetric/skew-symmetric matrices it holds: the transpose and negative transpose
of a symmetric (skew-symmetric) matrix is symmetric (skew-symmetric); if we multiply a symmetric
(skew-symmetric) matrix by a scalar, the result will be a symmetric (skew-symmetric) matrix; the sum of
two symmetric (skew-symmetric) matrices is a symmetric (skew-symmetric) matrix; the product of two
symmetric (skew-symmetric) matrices is not a symmetric (skew-symmetric) matrix.

For MAPSS matrices, these properties are described by following statements.

Theorem 4.9. Let A be a MAPSS matrix. Then AT is a MAPSS matrix, while A* is not.

Proof. If A is a MAPSS matrix, it is clear that transpose of this matrix will also be a square matrix with
zero diagonal. Moreover, if there are no symmetric elements in A which are negative at the same time, this
property will also be valid in A7, so this matrix is a MAPSS matrix.

The matrix A is not MAPSS. Itis a square matrix with zero diagonal, but since A can have two symmetric
positive entries, it follows that A* can have two symmetric negative entries. [

Theorem 4.10. The result of the max-algebraic multiplication of a MAPSS matrix by a scalar is not MAPSS in a
non-trivial case.

Proof. Let A be a MAPSS matrix and 0 an arbitrary scalar. The trivial case is when 0 = 0. Then, we have
O0®A = A, and it is a MAPSS matrix.

If © < 0, the condition that the matrix 6 ® A does not have two symmetric negative entries may be
disrupted, while for 8 > 0, this condition will be valid. But this matrix in both cases will have all entries
equal to 0 on the main diagonal, so we conclude that 6 ® A is not a MAPSS matrix. [

Theorem 4.11. The max-algebraic sum of two MAPSS matrices is also MAPSS.

Proof. Let A, B € R™" be MAPSS matrices and let C = A®B. Clearly, Cis a square matrix with zero diagonal.
Suppose that C has a negative entry:

Cij = max {11,-]-, bij} <0,
for some 7, j € N. This means that is a;; < 0 and b;; < 0. Given that A and B are MAPSS matrices, the
corresponding symmetric entries will be non-negative: a;; > 0 and bj; > 0. Now, we have:

Cji = max {aﬁ, bﬁ} > 0.
Therefore, the matrix C cannot have two symmetric negative entries, so it is a MAPSS matrix. [

Theorem 4.12. The max-algebraic product of two MAPSS matrices is a square matrix that does not contain two
symmetric negative entries, but does not have a zero diagonal.

Proof. Let A, B € R™" be MAPSS matrices and let D = A ® B. It is clear that D is also from R™". Suppose
that D has a negative entry:

52
d,‘j = Z ﬂik®bkj = max{ail +b1j,...,aii +b,-]-...,a,-n + bnj} <0,
keN

for some 7, j € N. This means that all summands in this sum are negative. Given that A is a zero-diagonal
matrix, we have that a;; = 0, so it must be a;; + b;; < 0, i.e. b;; < 0. Since B is a MAPSS matrix, we have that
bj;i > 0. We calculate the entry d;; as

@
d]',' = Z Cl]'k®bk,' = max{ajl + bli,...,ajj + b]‘i...,ll]‘n + bm}.
keN
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Given that a;; = 0 and b;; > 0, we have that at least one summand of the above max-algebraic sum is
non-negative. Therefore, the entire sum will be non-negative, i.e., d; > 0. With this, we have proven that
the matrix D cannot have two symmetric negative entries. However, this matrix is not MAPSS because the
diagonal entries are not equal to zero in the general case, which is not difficult to verify. [

Corollary 4.13. If A is a MAPSS matrix, then AP, p > 2, is not a MAPSS matrix.

_ Recall that we previously described properties of matrices A’ = A & AT, A =A®AT, A*=A®A"and
A = A® A" in the max-algebra, where A was an arbitrary or square matrix. We will now describe these
matrices under the condition that A is a MAPSS matrix.

Theorem 4.14. Let A € R™" be a MAPSS matrix. Then the following holds:

1. A’ = A® AT is a MAPSS matrix whose entries are all non-negative;
2. A% = AQ AT is not MAPSS, but its entries are all non-negative;

3. A* = A® A" isa MAPSS matrix;

4. A =A®A"isa MAPSS matrix.

Proof. It is clear that the listed matrices are square matrices. It remains to check whether they are with zero
diagonal and whether they do not have two symmetric negative entries.

1. From Theorem stands that if A is a MAPSS matrix, then AT is a MAPSS, too. Also, by Theorem
the max-algebraic sum of two MAPSS matrices is a MAPSS matrix, whence A’ = A @ AT is a MAPSS
matrix.

The entry al’,], is calculated by

o Y i o i
a;; = max {a,],aij} = max {a,],aﬂ}, foralli,j e N.

Given that A is a MAPSS matrix, we have that a;; and a;; cannot be negative at the same time, i.e., one of
them is non-negative, so the maximum is non-negative, too. Therefore, we conclude that all entries in A’
are non-negative.
2. Ttis easy to see that the matrix A% = A ® AT is not MAPSS, because it does not have a zero diagonal.
Let us suppose that the entry afj is negative, i.e.,

®
o _ Z ' , T
a;; = ajx ®”k,' <0,
keN

for some i, j € N. This means that a; ® a{j <0, forallk € N.
Fork =1

aji +Ll1T]» <0.

Given A is a MAPSS matrix, it has a zero diagonal, so a;; = 0. From here, al.T]. <0, ie., a;<0.
For k = j, we have

. T
aij +a;; < 0.

Since a]T]. = aj; = 0, it follows that a;; < 0.

We got that 2;; < 0 and a;; < 0, so since A cannot have two symmetric negative entries, we reject the
assumption that A° has a negative entry.

3. Since A is a MAPSS matrix and A* has a zero diagonal, the matrix A* = A® A" will have zero diagonal,
too. Suppose thata; <0, i.e.,

ai‘j = max {aij, a;‘j} <0,
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for some 7, j € N. Then, we have that both 4;; and a;‘j are negative. Since A is a MAPSS matrix and a;; < 0, it
follows that aj; > 0. Therefore:

a]‘.l. = max {u]-l-, a;i} > 0.
So, A*® cannot have two symmetric negative entries.

Hence, A® is a MAPSS matrix.

4. This statement holds for an arbitrary matrix A (from Lemma and Theorem , so will also be
valid in the case when A is a MAPSS matrix.

Thus, the proof is completed. [J

Note that, according to Theorem we have that the max-algebraic sum of two MAPSS matrices is a
MAPSS matrix, but from the proof of property 3. of the previous theorem, we can conclude more than that:
the max-algebraic sum of a MAPSS matrix and an arbitrary square matrix with zero diagonal is a MAPSS
matrix. It is not difficult to conclude that this fact will hold in the general case:

Corollary 4.15. If Aisa MAPSS matrix and A1, Ay, . . . are square matrices with zero diagonal (of course, all matrices
must be of the same size), then

ABDAIDASD...
is a MAPSS matrix.
Lemma 4.16. If A is symmetric and MAPSS, then A® = A.

Proof. 1f A is symmetric and MAPSS, all off-diagonal elements must be non-negative, i.e., a;; > 0, for all
i,j€N,i# j. Then, u;.*]. <0, foralli,j € N,i# j. Therefore, we have:

04 — .. * — ..
aj; = max {al],aij} = ayj,

so the statement is proved. 0O

4.1. Weakly MAPSS matrices

By the properties proved in Theorem[3.6] A* = A® A" (where A is an arbitrary matrix) is a square matrix
that cannot have two symmetric negative entries. However, it is not a MAPSS matrix because it does not
have a zero diagonal, which is not difficult to prove. Nevertheless, based on the theorems of this section,
we can draw conclusions about the class of matrices to which A® belongs, i.e., about the class of square
matrices that do not have two symmetric negative entries (diagonal entries can be arbitrary). Let us call
this class the class of weakly MAPSS matrices.

Based on the proven claims about MAPSS matrices, we now consider whether these claims also hold
for weakly MAPSS matrices. As we will see, some properties remain unchanged, but others will not hold
due to the absence of the zero-diagonal condition.

Clearly, every MAPSS matrix is a weakly MAPSS matrix.

When it comes to the number of negative entries, there is a difference compared to MAPSS matrices.

Lemma 4.17. The number of negative entries in a weakly MAPSS matrix A € R"™" cannot be greater than (n>+n) /2.

Proof. In Lemmal4.8] it was shown that the number of negative entries in a MAPSS matrix cannot be greater
than (n? — 1)/2 (all these elements are off-diagonal). In weakly MAPSS matrices, the diagonal entries can
be arbitrary (i.e. they can all be negative), so we add n diagonal entries to this number:

n* =n)/2+n=m>+n)/2.

This completes the proof. [
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Theorem 4.18. Let A be a weakly MAPSS matrix. Then AT is weakly MAPSS, while A* is not.
Proof. Follows directly from the proof of Theorem[d9] [

Theorem 4.19. The result of applying the max-algebraic multiplication of a weakly MAPSS matrix by a scalar is
weakly MAPSS if that scalar is non-negative.

Proof. Based on the proof of the Theorem it is simply concluded that if the scalar is non-negative,
then the max-algebraic multiplication of a weakly MAPSS matrix by a scalar will be a weakly MAPSS
matrix. If the scalar is negative, the condition that there are no two symmetric negative entries may (but
not necessarily) be disrupted, which depends on the value of the scalar and the values of the elements in
the matrix. O

Theorem 4.20. The max-algebraic sum of two weakly MAPSS matrices is also weakly MAPSS.

Proof. It follows immediately from the Theorem and the fact that every MAPSS matrix is a weakly
MAPSS. O

Theorem 4.21. The max-algebraic product of two weakly MAPSS matrices is not necessarily a weakly MAPSS
matrix.

Proof. This can easily be shown by an counterexample (see Example f.24]below). [

Theorem 4.22. The max-algebraic product of two MAPSS matrices is a weakly MAPSS matrix.

Proof. This claim is proved by Theorem O

Theorem 4.23. If A is weakly MAPSS, then A’, A® and A are weakly MAPSS as well, while the matrix A® is not.
Proof. Based on the proof of Theorem it is easy to conclude that the statement holds for matrices A’,

A® and A. For the matrix A® = A® AT, the condition that two symmetric negative entries need to be absent
does not have to be satisfied, which is not difficult to show, and hence this matrix is not weakly MAPSS. O

Lemma is not valid for weakly MAPSS matrices, i.e., in the general case A* = A ® A* # A, because
the diagonal entries in A® need not be the same as in A.

Example 4.24. Let a weakly MAPSS matrix A be given by

-11 2 -4
A=|-6 =18 -3].

3 6 9
Then:
-1 2 3 4 -7 8 11 6 -3 0 20 -4
A=l 2 -18 6|, A°=|-7 -6 6|, A*=|-2 18 -3|, A=|5 0 -9].
3 6 9 8 6 18 4 6 9 14 24 0

As described above, the matrices A’, A* and A are weakly MAPSS, while A° is not (note that this matrix is
actually the max-algebraic product of two weakly MAPSS matrices A and AT, which is consistent with the
above statement that the max-algebraic product of two weakly MAPSS need not be weakly MAPSS). =

Lemma 4.25. If one summand in the max-algebraic sum of matrices is weakly MAPSS, then this max-algebraic sum
itself is weakly MAPSS.
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Proof. Let S be a matrix which is the max-algebraic sum of a weakly MAPSS matrix A and an arbitrary
number of other (not necessarily weakly MAPSS) matrices B, C, ... (all matrices are of the size n X n):
S=A®B&Co...
Let s;j be a negative entry, i.e.,
$ij = max {aij, bij, cij, .. } <0,
for some i, j € N. It means that all the entries in this maximum must be negative:
aij <0, bij <0, cij <0,
Since A is weakly MAPSS and a;; < 0, it must be a;; > 0. Now, for s;; we have:
§ji = max {aﬁ, bﬁ,cﬁ,...}.
So, here at least one value is non-negative, from where we conclude that s;; is non-negative, too.
Therefore, S is a weakly MAPSS matrix. [
Corollary 4.26. If A is a weakly MAPSS matrix, then
rA)=AeA’aA’s...
and
AA) =IoAsA’eoA’ ...
are weakly MAPSS matrices as well.

These matrices are known in max-algebra as weak and strong transitive closure (or also metric matrix [[17]
and Kleene star [3]), respectively. Note that the only matrix at A(A) with entries equal to —co is the matrix
I, however this does not affect the validity of the statement because —co is a neutral element for @.

4.2. Dual class in min-algebra

Finally, let us recall that for a pair of operations (&, ®) we can define a dual pair of operations (&, ®").
Therefore, just as in the max-algebra we defined a class of square matrices with zero diagonal that do
not have two symmetric negative entries, in the min-algebra we can define a class of square matrices
with zero diagonal that do not have two symmetric positive entries, i.e., a class of min-algebraic pseudo
skew-symmetric matrices (we can use the same notation, MAPSS, for the class of min-algebraic pseudo
skew-symmetric matrices, if it does not cause confusion). Everything previously said for MAPSS matrices
in the max-algebra will also be valid for the corresponding dual class in the min-algebra (when we replace
,maximum” with , minimum?”, ,positive” with ,negative” etc.).

Example 4.27. For a matrix

/2 3 6/5 -1/2 2 -1
A=|-2 3/2 -8,  wehave A'=|-3 -3/2 6 |
1 -6 11/9 -6/5 8 -11/9

Then, with respect to the min-algebraic multiplication, we get

0 3/2  -1/2
A=A A"=|-46/5 0  -83/9|.
-9 -15/2 0
As we can seeg, it is a zero-diagonal square matrix that does not have two symmetric positive entries. All
properties described above are valid, in dual form, for this MAPSS matrix. =

At the end of this section, let us note the following: bearing in mind that (AT)T = A and (4*)" = 4, it is
easy to conclude that all described features are also valid for matrices AT A AT®A A ®Aand A*® A.
Thus, A* ® A is a MAPSS matrix as well.
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5. MAPSS and weakly MAPSS matrices with infinite entries

Here we aim our attention to MAPSS and weakly MAPSS matrices whose entries can be —co and +co.
The set R = RU{—oo} will be extended by the element +c0 and we will write R = RU{+00} = RU{—c0, +00}.

The oredering on R is extended to an ordering on IR, denoted by the same symbol <, so that +oo is the
greatest element, and this naturally extends the max-algebraic addition operation & so that

A®+00 = +ooa = +00, forallaeR.
Moreover, the max-algebraic multiplication operation ® is extended to R by
AQ +00 =4+00Q®a = +00 Q@ +00 = +00, forallae R, —00 ® +00 = +00 ® —0C0 = —00,

Besides, (—00)" = +00 and (+00)* = —co. Let us also note that at MAPSS matrices with infinite entries, apart
from the well-known condition a;; < 0 = a;; > 0, also applies: 4;; = —c0 = a;; > 0, i.e., we consider —co as a
negative element.

In the sequel, a vector whose all entries take value —co or +co will be called an e-vector. In particular, if
an e-vector is a row (resp. column) vector of some matrix, it will be called an e-row (resp. e-column). The
e-vector whose all entries are —co will be denoted by ¢7, and the ¢-vector whose all entries are +co will be
denoted by ¢*.

Theorem 5.1. IfA € R™" then A= A® A" isa weakly MAPSS matrix.

Proof. Let A € R, then A* € R™" and A € R™",
We need to prove that the matrix A does not have two symmetric negative entries. Suppose that a;; is a
negative entry, for some 7, j € N. We distinguish two cases:

1. —oo < d;; < 0. In this case d;; is a negative real number, so according to the proof of Theorem dji
must be positive, i.e., @;; > 0. This property is preserved even when —oco appears when calculating a;;,
because then +oco will appear when calculating @j;, and therefore 4;; = +oc0. These are again elements
with opposite signs.

2. djj = —oo. Here we have

ajj = max {aik + a;].} = —00,
€

keN

whence we get that a; + a;(], = —oo, for all k € N. That means: a; = —oco or a;, = —oco (or both), for all

ke N, ie.:

kj

(“Zi = 400 \Y; aj = +oo), forall k € N. (12)
Now, when calculating @;;, we have
aji = I]1;1€?VX {Cl]'k + aki} ,
so, according to , all summands in the above maximum are equal to +co, whence we conclude
that @ i = +oo.
This completes the proof. [
Remark 5.2. Based on the proof of the previous theorem, we can conclude that if ;; = —oco (or d;; # —oo, but

—oo appears when calculating a;;), then it follows that 4;; = +c0. The converse is not valid, i.e., if 4;; = +oo,
then the corresponding symmetric entry need not be —co.
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Thus, regardless of the existence of infinite entries in a matrix A, the matrix A will be weakly MAPSS.
In the following theorem, we consider whether the existence of infinite entries can disrupt the condition of
existence of zero diagonal in A, i.e., under what conditions A is a MAPSS matrix.

Theorem 5.3. The matrix A is MAPSS if and only if A does not have an &-row.

Proof. For matrix A € R™", based on Theorem A € R™" is weakly MAPSS in the general case. The
zero diagonal condition remains to be considered.

(=) : If A does not have an ¢-row, it means that in every row we have at least one entry that is different
from +oco. Let in i-th row (i € N) there is an entry a;, # +oo, for some p € N. Recall that —a;, = a;i. From

here, we conclude that a;, # Fco. It is clear then that a;, and a); are opposite real numbers, i.e., aj, +a,, = 0.
The diagonal entry of the matrix A in the i-th row is calculated by

*

"
pi,...,ain +am}.

di = max {aik + a]*(i} = max {ﬂ,‘l + af“., e Opi +a
keN

In this maximum, we have at least one value that is equal to 0 (a;, + a;i = 0), while all others are either zeros

(if ay # oo, for k € N \ {p}) or —co (if ay = +oo, for k € N\ {p}). So, the maximal value is zero, and therefore
a;; = 0. This proves that A has zero diagonal.
(&) : If Ais MAPSS, then it has zero diagonal, i.e.,

dj; = max {aik + a,*a.} =0, foralli € N,
keN

what means that, for every i € N, there exist some p € N so that a;, +a;, = 0, i.e., a;, and a, are opposite
pi pi

real numbers (the case when these entries are equal to oo is impossible, because then their sum cannot be
zero). Therefore, in the i-th row of A, the entry a;, is different from +co, so A does not have an e-row. [

Corollary 5.4. The matrix A can be MAPSS if A contains an e-column.

Example 5.5. For a given matrix

—c0o —oo 3 0 —-o0o 11
A=|-5 -3 +oo|, we have A=|400 0 +oof.
2 1 -8 +00 7 0

The matrix A does not have an e-row and we can see that A is a MAPSS matrix: it has zero diagonal
and does not have two symmetric negative entries. Moreover, by Theorem [5.1|and Remark the entry
symmetric to #j; = —o0 is dy; = +o0, while the entry symmetric to dy3 = +ooneednottobe —0 (43, =7). =

In the next lemma, €; and &, will denote two different vectors, both with entries +o0, but on the different
positions, for example €1 = (—00, 400, +00, —00) # (400, —00, +00, —00) = &).

Lemma 5.6. 1. If the i-th row of a matrix A is &=, then the i-th row of A is &, too.
2. If the i-th row of a matrix A is €*, then the i-th column of A is &~

3. Ifthe i-th row of a matrix A is ey, then the i-th row of A is €2, where €1 # ¢ and the i-th entry €(2i) of &2 is equal
to —oo.

Proof. 1. In the calculation of entries of the i-th row of the matrix A participate the entries of the i-th row of
the matrix A, which are all equal to —co. Thus, all the summands in the corresponding max-algebraic sums

are of the form —co + A, A € IR, which is equal to —co in any case. Then, it is clear that max-algebraic sums
themselves (i.e., the elements of the i-th row in A) will be —co as well.

2. In this case the matrix A* will have ¢~ as a column, so by analogical reasoning like in 1. we get to the
proof.
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3. Similarly to 1., in the calculation of entries of the i-th row of the matrix A, summands in the appropriate

max-algebraic sums have form —oco + A or +c0 + A, where A € R, which is equal to —co or +0co in any case.
Thus, the entries of the i-th row of A are equal to —oo or +00, and these entries form the vector ;.

For the diagonal entry of A in the i-th row (i.e., the i-th entry of ¢;), stands that the corresponding
max-algebraic sum contains only summands of the form (—o0) + (+00) or (+00) + (—o0), which is —eo. Thus,
gg) = —oo.

Therefore, the theorem is proved. [J

Corollary 5.7. Ifa matrix A has an e-row, then A has at least one diagonal entry which is equal to —co.

Example 5.8. For a given matrix

3 5 -2 6 0 400 13 14
—00 400 —00 —00 ~ 400 —00 400 —0
A=y g o 1| weget A=l o 0 15
-11 400 -6 8 2 400 10 O

In the second row, the matrix A contains the vector &; = (=00, +00, —c0, —00), while the matrix A in the same
row contains the vector ¢, = (+00, —00, +00, —00). It is evident that &1 # ¢;.
Also, according to Corollary matrix A has diagonal element equal to —oo (4 = —o0 = 8;2))_ u

Theorem 5.9. If one entry in the i-th row of a matrix A is —oo (+00), and A has no other entries equal to oo, then all
entries in the i-th column (row) of the matrix A are equal to +oo, except the diagonal element, which is equal to zero.

Proof. Since A € R™™ does not have an e-row, then according to Theorem A € R™" is a MAPSS matrix,
so it has a zero diagonal.

In the matrix A, let a;, be the entry of the i-th row (i € N) which is equal to —oo, for some p € N. Then,
@, = +oo. The entry @,; appears in the calculation of entries of the i-th column of the matrix A, so the
corresponding max-algebraic sums (for the non-diagonal elements) will contain summands of the form
A+(+00), A € R, which gives +0 in any case. Note that here A € R, because by the condition of the theorem,
the only entry of A equal to —co is a;,. The case a;, + @, = =00+ (+00) appears in the calculation of the
diagonal entry, so here A is certainly a real number. Thus, all max-algebraic sums contain a summand +oo,
and therefore all the non-diagonal entries of the i-th column in A are equal to +co.

If the entry of the i-th row of the matrix A is equal to +oo, it will participate in the calculation of the
entries of the i-th row of A, so by analogical reasoning as mentioned we get to the proof in this case. [J

One can easily come to a conclusion that the existence of infinite entries in MAPSS (weakly MAPSS)
matrix A will not affect the number of negative entries in that matrix and will not affect the properties of
matrices AT, A* and 6 ® A (where 0 is scalar). So, Lemma (Lemma , Theorem (Theorem
and Theorem [4.10](Theorem [4.19) are valid for MAPSS (weakly MAPSS) matrices with infinite entries, too.

It remains to consider what happens with the max-algebraic sum and product of two MAPSS matrices
with infinite entries.

Theorem 5.10. The max-algebraic sum of two MAPSS matrices with infinite entries is also a MAPSS matrix.

Proof. LetC = A® B, where A,B € R™" are MAPSS matrices with infinite entries. It is clear that C will also
be a square matrix (of size n X n) with zero diagonal.

If ¢;j is a negative real number, then, according to the proof of Theorem the symmetric entry need
to be non-negative (the appearance of —co in the calculation of ¢;; will not affect the correctness of the
statement, which can be easily concluded). It remains to consider the case when ¢;; is equal to —co:

C,‘j = max {ll,']', bij} = —09,
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for some i, j € N. It follows that a;; = —co and b;; = —co. Given A and B are MAPSS matrices, it must be
aj; > 0 and bj; > 0. Now, we have

cji = max {11]-,-, bj,-} > 0.
Hence, the matrix C cannot have two symmetric negative entries, so it is a MAPSS matrix. []
The next statement follows immediately from previous theorem.

Theorem 5.11. The max-algebraic sum of two weakly MAPSS matrices with infinite entries is also a weakly MAPSS
matrix.

Theorem 5.12. The max-algebraic product of two MAPSS matrices with infinite entries is a weakly MAPSS matrix.

Proof. Let A and B be MAPSS matrices with infinite entries and let denote D = A ® B =€ R™*". Clearly, D is
a square matrix and it is not difficult to conclude that D does not have zero diagonal.

The case when d;; is negative real number is considered in Theorem[4.12} and the statement holds in this
case (if —oco appear when calculating d;;, then +oco will appear when calculating d;;. Therefore, we have that
—o0 < djj <0and dj; = +oo, so the statement is valid).

Let

d;j = max {aik + bk]-} = —co,
keN

for some i, j € N. So, aj + byj = —oo, for all k € N. For k = i we have a;; + b;; = —c0. Since A is MAPSS, a;; = 0
and hence b;; = —co. Now, since B is MAPSS and b;; = —oo, it must be b;; > 0. When calculating d;;, we get

dji = rkne?\lx {ajk + bki} = max {Qﬂ + bh’,. s jj + bj,‘, ceosljn + bm'} .

Since a;; = 0 and bj; > 0, it follows aj; + b;; > 0. Thus, at least one value in the upper maximum is non-
negative, and so d;; is non-negative, too. With this we proved that D cannot have two symmetric negative
entries, so it is a weakly MAPSS matrix. 0O

When it comes to weakly MAPSS matrices with infinite entries, like for weakly MAPSS matrices with
real entries, their max-algebraic product is not weakly MAPSS, which is easily checked.

Also, the diagonal and identity matrices are neither MAPSS nor weakly MAPSS, since they contain
symmetric entries equal to —oo.

6. Conclusion

In this paper, we defined a new class of matrices over the max-algebra. Many of the described prop-
erties can be easily derived from the very definition of these matrices and they are the basis for further
considerations. Of course, many new questions emerge that can be considered further. First of all, further
examination of the properties of MAPSS matrices and their comparison with corresponding results from
conventional linear algebra. Also, examining the properties that the digraphs of these matrices will have,
and based on those properties making conclusions about some basic concepts related to these matrices,
such as the maximum cycle mean, critical cycles or max-algebraic permanent. The next question that can be
examined is: for a given matrix A, whether and how one can determine a matrix A such that A® A" is exactly
equal to A. This can easily lead us to the question of solving max-linear systems of equations in which
MAPSS matrices appear: how the properties of MAPSS matrices will affect solving these systems, etc.

In addition, in recent times, papers have been published that, within the context of max-algebra, consider
matrix powers [9], weakly and strongly stable (robust) matrices ([9], [10], [11]), max-numerical range of
matrices ([31]], [30], [33]), matrix roots [26], complementary basic matrices [14], totally positive matrices
[20], etc. The position of MAPSS matrices in relation to these topics can also be examined.
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