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Some new bounds for the sum of powers of the normalized Laplacian
eigenvalues of graphs
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?Faculty of Electronic Engineering, University of Ni$, Nis, Serbia
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Abstract. Let G = (V,E) be a simple connected graph of order n > 2, size m with normalized Laplacian
eigenvalues y1 > y, > --- > y,.1 > Y, = 0. Denote with 5,(G) = Z?;ll y¢, where a is an arbitrary
real number, the sum of powers of normalized Laplacian eigenvalues of graphs. In this paper several
inequalities involving invariants of the form s,(G), for various real a are proved. Our results not only
generalize and improve some previous results on s,(G), Kemeny constant and Laplacian incidence energy,
but also present new bounds for these graph invariants.

1. Introduction

Let G = (V,E), V(G) = {v1,v2,- -+ ,vs} be a connected graph with n > 2 vertices and m edges, with the
sequence of vertex degrees A = dy > dp > --- > d, = 0 > 0,d; = d(v;) given in a nonincreasing order. If
vertices v; and v; are adjacent in G we write i ~ .

Let A = A(G) be the adjacency matrix of G, and D = D(G) = diag(di,d, . ..,d,) the diagonal matrix of its
vertex degrees. Then L = L(G) = D(G) — A(G) and £ = £(G) = D™V2LD"V2 = [ - D72AD"Y2 = [ - R are,
respectively, the Laplacian matrix and the normalized Laplacian matrix of G, where R = R(G) = D~1/2AD~1/2

is the Randié matrix.
Denote with p; > p, > --- > p, the eigenvalues of Randi¢ matrix. The following identities are valid for

Pi [3]:
Z pi=tr(R)=0  and p? = tr(R%) = 2R_1(G), (1)
i=1 i=

i=1

where R_1(G) is the general Randi¢ index R_; (see [5]).
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The eigenvalues of matrix L, y1 > y2 > -+ > y,_1 > y,, = 0, form the normalized Laplacian spectrum of
graph G. These eigenvalues have the following properties [Z, [30]:

n-1 n-1
Z yvi=t(L)=n  and Z V2 = tr(L2) = n + 2R 4(G). )
i=1 i=1

Spectral-based topological indices, or graph invariants, are molecular descriptors defined in terms of
the eigenvalues of the corresponding graph matrix. There are a number of such indices defined in the
literature. Here we are interested in the one defined in [4] as

n-1
(G =) 7, 5@ =n-1,
i=1

where a is an arbitrary real number. More on mathematical properties of this invariant one can find in, for
example, [1}14,[8,[17]. Some special cases of this invariant are:
- the Laplacian incidence energy of graph, LIE(G), defined as [28]

n-1
LIE = LIEG) = 512(G) = Y Vi,
i=1

and
- Kemeny constant, K(G), introduced in [14] (see also [15,[16]), as

n—1

1

K@G) =s4G) =) —.
(G) =51(G) L5,

(3)

Let us note that Kemeny’s constant [14] (see also [15]) represents the expected number of steps needed
for a random walker to reach a random vertex from some random starting vertex, with the starting and
ending vertices being selected according to the equilibrium distribution of the Markov chain. The nature of
random walks on a graph is closely tied to the structure of the graph. In [16] it was shown that this constant
can be studied through the use of the characteristic polynomial of the normalized Laplacian matrix and in
that case it is defined as (3).

The degree Kirchhoff index is graph invariant defined in terms of normalized Laplacian eigenvalues as

[6]
1

n-1
Kf(G) = 2m Z .
i=1 /!

It is obvious that Kf*(G) = 2mK(G), so we will not consider Kf*(G) as a distinct invariant.

In this paper several inequalities involving invariants of the form s,(G), for various real «, are proved.
Our results not only generalize and improve some previous results on s,(G), Kemeny constant and Laplacian
incidence energy, but also present new bounds for these graph invariants.

2. Preliminaries

In this section we recall a couple of analytical inequalities for real number sequences that will be used
in proofs of theorems later in the paper.

Lemma 2.1. [23] Let p = (pi), i = 1,2,...,n — 1, be a sequence of non—negative real numbers and a = (a;),
i=1,2,...,n—1, sequence of positive real numbers. Then, for any r,r < 0orr > 1, holds

n—1 =1, n—1 r
[' Pi] Zpia,* > [Z piai] . 4)
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When 0 < r < 1 the opposite inequality is valid. Equality holds if and only if either r = 0, or v = 1, or
ap = = -+ =dpq, 00 pr =pp = =p=0and g = -0 = Ayo1, OF Py = - = puoy = 0 and
A =ay=---=ay, forsomet,1<t<n-2.

Lemma 2.2. [27] Let x = (x;) and a = (a;),i = 1,2,...,n —1, are two positive real number sequences . Then for any
r > 0 holds

oyl
() (5)
> —
i=1 a (Z?:ll ai)
Equality holds if and only if r = 0, 0r 3t = 22 = -+ = 21,

Remark 2.3. The inequality (@) is known as Jensen’s inequality. However, (4)) is quite different from the original
Jensen’s inequality proved in [13]|. For the historical background on Jensen’s inequality one can refer to the monograph
[24] and paper [25]. The inequality (4) is very powerful since large number of classical analytical inequalities can be
obtained as a special case of {@). Some of the inequalities that can be obtained from (4) include Cauchy—Bunyakovsky—
Schwarz inequality, Holder's inequality,arithmetic-geometric mean inequality, etc. We will show that (5) is a corollary
of {@). Moreover, we will extend the conditions under which (5) is valid as well as when equality is achieved.

Forr:=r+1,p;:=aja;:= ;i,’f, i=1,2,...,n-1,r<-1orr >0, the inequality () becomes

that is

from which inequality () is obtained.This implies that inequality (5) holds if and only if r < -1, or r > 0.
When -1 < r < 0 the opposite inequality in (B) holds. Equality in (5) holds if and only if r = =1, or r = 0, or

XMo_% o= X

" 2monogragﬁ [7] the following result was proven.

Lemma 2.4. [7] Let G bea connected graph of order n. Then 0 < y; <2, fori=1,2,...,n—1. Moreover, y1 = 2 if
and only if G is bipartite and y, > -5 with equality if and only if G = K,,.

Lemma 2.5. [9] Let G be a connected graph of order n > 2. Then y1 = yo = -+ = yy_1 if and only if G = K, and
ya=ys=-=ypaifandonlyif G=K,orG=K,,;, p+q=n.

Lemma 2.6. [19] Let G be a connected graph of order n. Then
Yi=1=pp-is1, (6)
fori=1,2,...,n
Lemma 2.7. [3] Let G be a connected graph with n vertices and Randi¢ eigenvalues p1 > p2 > -+ > p,. Then
Yoty =2% L [Z }
iy I \k 1k~]
By Lemma[2.7/and (6) we have the following result.

Lemma 2.8. Let G be a connected graph with n > 2 vertices. Then

y = (L) = )+ — Zde][Z dk]

k~ik~j

n—-1



M. Matejié et al. /Filomat 39:28 (2025), 9851-9864 9854

3. Main results

In this section, we present main results of this paper. At first, we determine a lower bound for the
expression s,.1(G) — 2as,(G) + a%s,-1(G), where a is an arbitrary real number with the property a # y; for at
leastonei, 1 <i<n-1.

Theorem 3.1. Let G be a connected graph with n > 2 vertices and a be an arbitrary real number such that a # y; for
at least onei,1 <i <n—1. Then for any real a, « < 0 or @ > 1, holds

(2R_1(G) — n(2a — 1) + a?(n — 1))*

2
$a+1(G) — 2a5,(G) + a°5,-1(G) 2 (@K(G) + 1 — 2a(n — 1))*1

(7)

When 0 < a0 < 1 the opposite inequality is valid. Equality holds if and only if either « = 0, ora = 1, or G = K,,, or
A=Y1= =Y > V1 = = Vp, OF Y1 = =V > Vi1 == = Y1 =4, forsomet, 1 <t <n—2.

Proof. For any real a and a holds

n-1 n—1 n-1
$0+1(G) — 2a5,(G) + a%s,-1(G) = Z Yl —2g Z Y+ a? Z yot
i=1 i=1

i=1

—_
—
o
=

n—
_ a—1
= Vi

i

(i —a)*.

]
—_

Vi—i 2 . . .
On the other hand, forr =a,a <0ora >1,p; = O ’y_”) ,a; =yi,i=1,2,...,n—1, the inequality (@) becomes

n—-1 (Vz _ a)z a-1 n-1 n—1 a
[Z T] Z i yi—a? 2 {Z(%‘ - a)z] ) ©)
i=1 ! i=1 1

i=

From (2) we obtain that

v -t a
l)/ =Z(yi—2a+y—):azK(G)+n—Za(n—1)
i-1 i i=1 i

and
n—-1 n-1
Z(yi —a)’ = Z(yf —2ay; +a*) =n+2R_1(G) - 2an + a*(n — 1).
i=1 i=1

From the above identities and (8) and (9), we obtain

(@K(G) + 1 —2a(n = 1)*(5241(G) = 2a5,(G) + a’s4-1(G)) >

) (10)
> (2R_1(G) —nRa—1)+a*(n —1))*.

Sincea # y; for at least one i, 1 <i < n—1, it follows that a?K(G) + n —2a(n — 1) # 0, so from immediately
follows (7). The case when 0 < a < 1 can be proved analogously.

Equality in (9) holds if and only if eithera = 0,ora =1, 0ry1 =--- = ypq,0ra=py1 =+ =Py > Y1 =
= Yp1, 0L Y1 = =Y > Y1 = = Vp1 =4, forsomet, 1 <t <n-2. By Lemmathis implies that
equality in (7) holds if and only if eithera =0, ora =1, or G= Ky, 0ora=y1 == =Y > Y1 = -+ = Y1,
ory;=-=y>yp1="=yy1=4,forsometf, 1 <t<n-2. O

For a = 0 we obtain the following corollaries of Theorem
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Corollary 3.2. Let G be a connected graph with n > 2 vertices. Then, for any real o, & < 0 or a > 1, holds

(n +2R_1(G))*

Sa+1 (G) Z na_l

(11)

When 0 < a < 1 the opposite inequality is valid. Equality holds if and only if either a« = 0, or a = 1, or G = K,,.
The inequality (I1) was proven in [17].
Corollary 3.3. Let G be a connected graph with n > 2 vertices. Then
3
n
KG) 2 ——5-
© o
Equality holds if and only if G = K,,.

(12)

The inequality was proven in [17].

Corollary 3.4. Let G be a connected graph with n > 2 vertices. Then, for any real a, a < 0 or o > 1, holds

ne
S4(G) = m .

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if G = K,,.
Corollary 3.5. Let G be a connected graph with n > 2 vertices. Then

kG > ;1)2 . (13)

Equality holds if and only if G = K.

The inequality was proven in [26] (see also [2} 10} 12, 21]).
For a = 1 we have the following corollary of Theorem 3.1}

Corollary 3.6. Let G be a connected graph with n > 2 vertices. Then, for any real a, a < 0 or > 1, holds

(2R4(G) - 1)*
K(G)—n+2p01

8a+1(G) = 254(G) + 8,-1(G) 2 (

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a =1, or G = K,,, or
YI= =Y > Y1 =" =VYp1 =1, forsomet, 1 <t <n-2,

Lemma [2.8] gives the expression for calculating the exact value for s3(G) which is complex and time
consuming to compute. Therefore it is purposeful to determine its boundaries.

Corollary 3.7. Let G be a connected graph with n > 2 vertices. Then

(2R1(G) — 1)

53(G) 2 n+ 4RA(G) + L=

Equality holds if and only if G= K, or y1 =+ =yt > Y1 =+ =Yp_1 = 1, forsome t, 1 <t <n—2.

Corollary 3.8. Let G be a connected graph with n > 2 vertices. Then

nd
LIE(G) > 1 {m . (14)

Equality holds if and only if G = K,,.
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Inequality was proven in [28].
Corollary 3.9. Let G be a connected graph with n > 2 vertices. Then

[ 5
LIE(G) >n ST (15)

Equality holds if an only if G = K,,.

Inequality was proven in [28].
Using Lemmas and 2.5 the proof of the next theorem is analogous to that of Theorem B.1} thus
omitted.

Theorem 3.10. Let G be a connected bipartite graph with n > 3 vertices and a an arbitrary real number such that
a # yj, for at least one i,2 < i <n —1. Then, for any real «, « < 0 or a > 1, holds

$a+1(G) = 2as,(G) + HZSa_l(G) > 20t 2- a)z +
(2QR_1(G) = na —1) +a’(n - 1) — 2 —a)>)*

2\a—1
(22K(G) — n(2a 1) + 22 - &2’

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, 5,

ptg=nora=yy= - =Y:>VY1 =" =Yp-1,0rY2 = =Yt > Y1 = 0 = Y :ﬂ/fOTSOWlEt/
2<t<n-2

For a = 0 we have the following corollary of Theorem 3.10]
Corollary 3.11. Let G be a connected bipartite graph with n > 3 vertices. Then, for any real a, @ < 0 or @ > 1, holds

(2R (G) +n—4)~

a+1
Sa+1(G) Z 2 * + (n _ 2)0(—1

(16)
When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, 5,
p+g=n.

The inequality (I6) was proven in [17].
Corollary 3.12. Let G be a connected bipartite graph with n > 3 vertices. Then

(n—2)°
QR_1(G) +n— 42"

Equality holds if and only if G = K, 5, p + q = n.

K(G) > % + (17)

The inequality was also proven in [17].
Corollary 3.13. Let G be a connected bipartite graph with n > 3 vertices. Then

(2R1(G) +n—4)?
n-2 '
Equality holds if and only if G = K, ;, p + q = n.

s3(G) > 8 +

Corollary 3.14. Let G be a connected bipartite graph with n > 3 vertices. Then

| (-2

Equality holds if and only if G = K, ;, p + q = n.
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The inequality is a special case of more general result obtained in [17].

Theorem 3.15. Let G be a connected graph with n > 3 vertices,  be an arbitrary real number and b real number
such that y1 = y2 = -+ 2 vu—1 2 b > 0and b # y; for at least one i. Then, for any real &, « <0 or a > 1, holds

(s+1(G) — bsp(G))*
(s(G) — bsp—1(G))*~1

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a =1, or G = K,,, or
YI= =Y > Y1 ==Yy =b, forsomet,1<t<n-2.

Proof. For any a, $, b hold

Sa+ﬁ(G) 2 b5a+ﬁ71(G) +

(19)

n—1

Susp(G) = bsarg1(G) = Y (i = by (20)

i=1

On the other hand, forr =a,a <0ora >1,p; = (y; — b))/f_l, a; =i, i =1,2,...,n -1, the inequality
becomes

n-1 a1, n—=1 @
[Z(% - b)y! _1] Y i=by e {Z(% by ] : (21)
i=1 i=1 i=1

that is .
a— o
(55(6) = b5p-1(G)) " (5044(G) = bsasg-1(G)) = (s41(G) ~ bs(G)) -
If b # y;, for at least one i, 1 < i < n — 1, then sg(G) — bsg_1(G) # 0, therefore, from the above inequality we
obtain (I9). Similarly, it can be proved that when 0 < a < 1, opposite inequality is valid in (I9).

Equality in holds if and only if either @« = 0, ora@ =1, 0r 1 = Y2 = -+ = Yp_1, 00 Y1 = +++ = Yy >
Vir1 =+ Yn-1 = b, forsome t, 1 <t < n—2. By Lemma this implies that equality in holds if and
only if eithera =0,ora=1,orG= Ky, ory1 =+ =9y > Y1 =+ Yp-1 = b, forsome t, 1 <t <n—2.

O

For § = 0 we have the following corollary of Theorem

Corollary 3.16. Let G be a connected graph with n > 2 vertices, and b real number such that y1 >y, > -+ >y, >
b > 0and b # vy, for at least one i. Then, for any real o, o < 0 or & > 1, holds

(n—b(n—1))*
(n—1-bK(G))+ 1"

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a =1, or G = K,,, or
YI= =Y > Y1 =" =VYp1 =D, forsomet, 1 <t <n-2.

Sa(G) = bsa—l(G) +

Corollary 3.17. Let G be a connected graph with n > 2 vertices and y1 > yp 2> -+ 2 Yu_1 = 1. Then, for any real o,
a<0ora>1,holds

50(G) 2 82-1(G) + (n = 1~ K(G))'™*.

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a =1, or G = K,,, or
YI= =Y > Y1 ==Y =1, forsomet, 1<t <n-2.

Corollary 3.18. Let G be a connected graph with n > 2 vertices and y1 > y2 > -+ > y,_1 > 1. Then

1
<n-1-——.
K(G) <n-1 R0
When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if G = Ky, or y1 = -+ =yt > Y1 =

o Yuo1 =1, for somet, 1 <t <n-2.
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Corollary 3.19. Let G be a connected graph with n > 2 vertices and y1 >y > -+ > y,_1 > 1. Then

1

S3(G) >n+ ZR_l(G) + m .

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if G = Ky, or y1 = --- =yt > Y =
co=yu1 =1, forsomet,1<t<n-2.

Considering Lemmas and 2.5| with the similar procedure in Theorem the proof of the next
theorem can be obtained.

Theorem 3.20. Let G be a connected bipartite graph with n > 3 vertices and b be an arbitrary real number such that
Y2 >+ 2 Yuo1 2 b >0whereb # y; for at least one i, 2 < i < n —1, and p an arbitrary real number. Then, for any
real o, o < 0ora > 1, holds

(s5:1(G) = bs(G) - (2 = h)2?)*

_ a+p-1
Sa+ﬁ(G) > bSa+ﬁ_1(G) + (2 b)2 + (Sﬁ(G) — bSﬁ_l(G) — (2 ~ b)Zﬂ—l)“—l .

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, 5,
pHq=mno0ry,=--=y>Yu1=-=Yu1 =b, forsomet, 1<t <n-2.

Corollary 3.21. Let G be a connected bipartite graph with n > 3 vertices and b be an arbitrary real number such that
Y2=2y32-- 2V 2b>0andb # p; for at least one i, 2 < i < n — 1. Then, for any real @, « < 0 or & > 1, holds

(n—2)*(1-b)"
(n-2-b(k©) - 1)

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, 5,
p+g=n.

S4(G) = bsy—1(G) + (2 — b)za—l +

Corollary 3.22. Let G be a connected bipartite graph with n > 2 vertices and y1 > yp > -+ = yy_1 2 1. Then, for
any real &, « < 0or a > 1, holds

54(G) = 5,_1(G) + 271,

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, 5,
p+g=n.

Corollary 3.23. Let G be a connected bipartite graph with n > 2 vertices. Then, for any real a, @ < 0 or @ > 1, holds

5.(G)>n—2+2%. (22)

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, 5,
p+g=n.

The inequality was proven in [4] (see also [1])).
Corollary 3.24. Let G be a connected bipartite graph with n > 2 vertices. Then
LIEG) < V2 +n-2. (23)
Equality holds if and only if G = Ky, 4, p + q = n.

The inequality (23) was proven in [11] (see also [20]).
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Remark 3.25. Every tree is a bipartite graph. Thus, for any tree T according to we have that
LIE(T) < V2+n-2,
with equality holding if and only if T = Ky ;1.
The above result was proven in [11].
Corollary 3.26. Let G be a connected bipartite graph with n > 2 vertices. Then
s3(G)2n+6.
Equality holds if and only if G = K, 5, p + q = n.
Corollary 3.27. Let G be a connected bipartite graph with n > 2 vertices. Then

KG) > 2" ~ 3 (24)

Equality holds if and only if G = Ky, 4, p + q = n.

The inequality was proven in [29].
In the next theorem we establish a relationship between sa+ﬁ(G) and sa+ﬁ_1(G), where a, @ and f are real
numbers.

Theorem 3.28. Let G be a connected graph with n vertices,  an arbitrary real number, and a real number such that

a>y1 2y, > 2yu1 >0anda #y, forat least onei, 1 <i <n—1. Then, for any real o, « < 0 or @ > 1, holds
(asp(G) — 5p41(G))"

(asp-1(G) — sp(G))a~1~

5a4p(G) < @ S04p1(G) (25)

When 0 < a < 1 the opposite inequality is valid. Equality holds if and only if either « = 0,0r « = 1, or G = K,,, or

A=Y= =Yr>Yi1="=Yp1,forsomet, 1 <t<n-2.

Proof. For any real a, @ and f, the following identities are valid

n—-1

n—-1
5445-1(G) — Sasp(G) = a Z y?+ﬁ—1 B Z V;H/% =
i=1 i=1

ik

(26)

_

=Y @— iyt

i

1l
—_

On the other hand, forr =a,a <0ora>1,p; = (a— yi)yf_l, a;=vy;,i=1,2,...,n—1,where §is an arbitrary
real number, the inequality () becomes

n—

n-1 a1, 4 n-1 a
[Z(a - myfl) Y @-ypy 2 [Z(a : y»y?] : (27)
i=1 i=1 i=1

Also, the following identities are valid

n—

1
Z(ﬂ - Vz‘)V'f_l = asp-1(G) = 54(G),

i=1
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and
e

1
(a =iy} = ass(G) — 5:1(G).
1

From the above and and (27) we obtain

a-1 a
(a5p-1(G) = 55(G)) " (a50+p-1(G) = 504(G)) = (a5p(G) =~ 51(G) -
Since a # y; for atleast one i, 1 <i < n — 1, it follows that asg_1(G) — s3(G) # 0. Thus, we obtain that

(asg(G) — sp+1(G))*
asa+ﬁ_1(G) - Sa+ﬁ(G) 2 (as,g_l(G) _ Sﬁ(G))‘%l ’

from which is obtained. The case when 0 < a < 1 is proved analogously.
By Lemmas 2.1 and 2.5 equality in (27), and consequently in (25), holds if and only if either a = 0, or
a=1l,orG=Kyora=y; ==y >y ==Yy, forsomet, 1 <t <n-2.
0

For § = 0 we obtain the following corollary of Theorem

Corollary 3.29. Let G be a connected graph with n > 2 vertices and a arbitrary real number such thata >y > y, >
o+ 2 yp-1 > 0anda # p; for at least one i, 1 < i < n— 1. Then, for any real &, « < 0 or a > 1, holds

(a(n —1) = n)®

Sa(G) < asa—l(G) - (LIK(G) —n+ 1)0(—1 '

When 0 < a < 1 the opposite inequality is valid. Equality holds if and only if either « = 0,0r « = 1, or G = K,,, or
A=Y1 =" =VY> V1 == Vp1,forsomet, 1 <t <n-2.

Corollary 3.30. Let G be a connected graph with n > 2 vertices. Then, for any real o, « < 0 or a > 1, holds

(n-2)*

Sa(G) < 250(—1(G) - (ZK(G) —n+ 1)&—1 '

When 0 < a0 <1 the opposite inequality is valid. Equality holds if and only if either « = 0, ora = 1, or G = K,,, or
2=y1 = =Y > Y1 =+ =Yp, forsomet, 1 <t <n-2,

Corollary 3.31. Let G be a connected graph with n > 2 vertices. Then

1 (n—2)?
>=(n-1+ —=_|.
K(G) = 5|7 1+n—2R_1(G) (28)
Equality holds if and only if G = K, 0r 2 =y1 =+ =Yt > Ypy1 =+ = Y1, forsome t, 1 <t <n—2.

Corollary 3.32. Let G be a connected graph with n > 2 vertices. Then

(n-2)°

5(06) <200+ 2R4(O) = R T v
and

(n - 2R_1(G))?

s3(G) < 2(n + 2R_1(G)) — p—

Equality holds if and only if G = K, or 2 =y1 =+ =Yt > Ype1 = +++ = Y1, for some t, 1 <t <n—2.
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Using Lemmas and 2.5] the proof of the next theorem is obtained analogous to that of Theorem
hence omitted.

Theorem 3.33. Let G be a connected bipartite graph with n > 3 vertices, p an arbitrary real number, and a real
number such that a > y, > -++ > y,—1 > 0and a # y; for at least one i, 2 < i < n — 1. Then, for any real a, « < 0 or
a > 1, holds

(asp(G) — sp:1(G) — (a — 2)2F)"

— (g — 2)2a+B-1 _
sa+ﬁ(G) < asoﬁ—ﬁ—l (G) ((1 2)2 ({IISﬁ_l(G) — Sﬁ(G) — ({Il _ 2)2,8—1)a—1 .

When 0 < a < 1 the opposite inequality is valid. Equality holds if and only if either « = 0, or @ = 1, or G = K, 5,
pHg=mno0ra=y,=-- =Y > Y1 =" =VYpq, forsomet,2<t<n-2,

Corollary 3.34. Let G be a connected bipartite graph with n vertices and a be a real number such thata >y, > -+ >
Yn-1 > 0and a # y; for at least one i,2 < i <n —1. Then, for any real a, « < 0 or o > 1, holds

(a—1)*(n—-2)"
(aK(G) - n+1-22)

Sa(G) < asa—l(G) - (lZ - 2)2“_1 - 1

When 0 < a < 1 the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or G = K, ,
pPHq=m0r2=yy=-=V> Y1 ==Yy, forsomet,2 <t <n-2.

Theorem 3.35. Let G be a connected graph with n > 2 vertices and «, B arbitrary real numbers. Then, for any real
r,r<—=1orr >0, holds

50(G)™ < 55(G) Sr+1a-rs(G) - (29)

When -1 < r < 0, the opposite inequality is valid. Equality holds if and only if either r = 0, orr = =1, or @ = 3, or
G =K,.

Proof. The following identity is valid

n—1
Se+1)a-rp(G) = Z me)a_rﬁ = (30)
P ;

On the other hand, whenr < -l orr >0, forx; = y¢,a; = yf, i=1,2,...,n -1, the inequality (5) becomes

n-1 o ayr+ n-1,a a r+
Z ) ! S (Zl=1 7/z) _sa(G™ (31)

= oy (xEhly sOr
Now, from the above and Eq. we obtain (29).
The case when -1 < r < 0 is proved analogously.

By Lemmas[2.2]and 2.5} equality in (3I), and thus in 29), holds if and only if either r = -1, or r = 0, or
a=porG=K, O

For real parameters a and  we have the following corollaries of Theorem 3.35}

Corollary 3.36. Let G be a connected graph with n > 2 vertices. Then

n
R1(G) 2 -1

(32)

with equality holding if and only if G = K,,.
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The inequality was proven in [18].

Corollary 3.37. Let G be a connected graph with n > 2 vertices. Then

2

n

s3(G) = XG)’

O 2 TR
n3

S3(G) > m

Equalities hold if and only if G = K,,.
Corollary 3.38. Let G be a connected graph with n > 2 vertices. Then
LIE(G) < fn(n -1). (33)
Equality holds if and only if G = K.
The inequality was proven in [28].
Corollary 3.39. Let G be a connected graph with n > 2 vertices. Then

LIE(G)?

(34)

Equality holds if and only if G = K.
The inequality was proven in [22].

Corollary 3.40. Let G be a connected graph with n > 2 vertices. Then

LIE(G) < /(n — 1)3(n + 2R_1(G)).
Equality holds if and only if G = K,,.
Corollary 3.41. Let G be a connected graph with n > 2 vertices. Then

LIE(G)*
1’13

Equality holds if and only if G = K.

K(G) =

The above inequality is stronger than (34).
Considering Lemmas[2.2}[2.4land 2.5|and similar arguments as in the case of Theorem the following
result can be proven.

Theorem 3.42. Let G be a connected bipartite graph with n > 3 vertices and «, p arbitrary real numbers. Then for
any real v, v < =1 orr > 0, holds

(4(G) — 29"
(s5(G) - 26)

When -1 < r < 0, the opposite inequality is valid. Equality holds if and only if either r = =1, 0rr = 0, or & = j3, or
G=Kyyptqg=n

Ser+Da=rp(G) = 20FDA7F 4
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Now, we have the following corollaries of Theorem

Corollary 3.43. Let G be a connected bipartite graph with n > 2 vertices. Then

R4(G) > 1. (35)

Equality holds if and only if G = K, ;, p + q = n.

Corollary 3.44. Let G be a connected bipartite graph with n > 3 vertices. Then

[\

60 -8) (K@) -5) = @-27,

g, (1H2RA(G) -4

55(G) e

\%

Equality holds if and only if G = K, ;, p + q = n.

Corollary 3.45. Let G be a connected bipartite graph with n > 3 vertices. Then

1 (LIEG) - V2)?

> = )
KO =3+ R0 -1

Equality holds if and only if G = K, 5, p + q = n.

Corollary 3.46. Let G be a connected bipartite graph with n > 3 vertices. Then

e L (LIE(G)—\/E)4
©z3+ 2

Equality holds if and only if G = Ky, 4, p + q = n.

The above inequality is stronger than the one given in Corollary
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