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bDepartment of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey

Abstract. Let G = (V,E) be a simple connected graph of order n ≥ 2, size m with normalized Laplacian
eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0. Denote with sα(G) =

∑n−1
i=1 γ

α
i , where α is an arbitrary

real number, the sum of powers of normalized Laplacian eigenvalues of graphs. In this paper several
inequalities involving invariants of the form sα(G), for various real α are proved. Our results not only
generalize and improve some previous results on sα(G), Kemeny constant and Laplacian incidence energy,
but also present new bounds for these graph invariants.

1. Introduction

Let G = (V,E), V(G) = {v1, v2, · · · , vn} be a connected graph with n ≥ 2 vertices and m edges, with the
sequence of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(vi) given in a nonincreasing order. If
vertices vi and v j are adjacent in G we write i ∼ j.

Let A = A(G) be the adjacency matrix of G, and D = D(G) = dia1(d1, d2, . . . , dn) the diagonal matrix of its
vertex degrees. Then L = L(G) = D(G) − A(G) and L = L(G) = D−1/2LD−1/2 = I − D−1/2AD−1/2 = I − R are,
respectively, the Laplacian matrix and the normalized Laplacian matrix of G, where R = R(G) = D−1/2AD−1/2

is the Randić matrix.
Denote with ρ1 ≥ ρ2 ≥ · · · ≥ ρn the eigenvalues of Randić matrix. The following identities are valid for

ρi [3]:

n∑
i=1

ρi = tr(R) = 0 and
n∑

i=1

ρ2
i = tr(R2) = 2R−1(G) , (1)

where R−1(G) is the general Randić index R−1 (see [5]).
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The eigenvalues of matrix L, γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0, form the normalized Laplacian spectrum of
graph G. These eigenvalues have the following properties [7, 30]:

n−1∑
i=1

γi = tr(L) = n and
n−1∑
i=1

γ2
i = tr(L2) = n + 2R−1(G) . (2)

Spectral–based topological indices, or graph invariants, are molecular descriptors defined in terms of
the eigenvalues of the corresponding graph matrix. There are a number of such indices defined in the
literature. Here we are interested in the one defined in [4] as

sα(G) =
n−1∑
i=1

γαi , s0(G) = n − 1 ,

where α is an arbitrary real number. More on mathematical properties of this invariant one can find in, for
example, [1, 4, 8, 17]. Some special cases of this invariant are:

- the Laplacian incidence energy of graph, LIE(G), defined as [28]

LIE = LIE(G) = s1/2(G) =
n−1∑
i=1

√
γi ,

and
- Kemeny constant, K(G), introduced in [14] (see also [15, 16]), as

K(G) = s−1(G) =
n−1∑
i=1

1
γi
. (3)

Let us note that Kemeny’s constant [14] (see also [15]) represents the expected number of steps needed
for a random walker to reach a random vertex from some random starting vertex, with the starting and
ending vertices being selected according to the equilibrium distribution of the Markov chain. The nature of
random walks on a graph is closely tied to the structure of the graph. In [16] it was shown that this constant
can be studied through the use of the characteristic polynomial of the normalized Laplacian matrix and in
that case it is defined as (3).

The degree Kirchhoff index is graph invariant defined in terms of normalized Laplacian eigenvalues as
[6]

K f ∗(G) = 2m
n−1∑
i=1

1
γi
.

It is obvious that K f ∗(G) = 2mK(G), so we will not consider K f ∗(G) as a distinct invariant.
In this paper several inequalities involving invariants of the form sα(G), for various real α, are proved.

Our results not only generalize and improve some previous results on sα(G), Kemeny constant and Laplacian
incidence energy, but also present new bounds for these graph invariants.

2. Preliminaries

In this section we recall a couple of analytical inequalities for real number sequences that will be used
in proofs of theorems later in the paper.

Lemma 2.1. [23] Let p = (pi), i = 1, 2, . . . ,n − 1, be a sequence of non–negative real numbers and a = (ai),
i = 1, 2, . . . ,n − 1, sequence of positive real numbers. Then, for any r, r ≤ 0 or r ≥ 1, holdsn−1∑

i=1

pi


r−1 n−1∑

i=1

piar
i ≥

n−1∑
i=1

piai


r

. (4)
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When 0 ≤ r ≤ 1 the opposite inequality is valid. Equality holds if and only if either r = 0, or r = 1, or
a1 = a2 = · · · = an−1, or p1 = p2 = · · · = pt = 0 and at+1 = · · · = an−1, or pt+1 = · · · = pn−1 = 0 and
a1 = a2 = · · · = an−1, for some t, 1 ≤ t ≤ n − 2.

Lemma 2.2. [27] Let x = (xi) and a = (ai), i = 1, 2, . . . ,n− 1, are two positive real number sequences . Then for any
r ≥ 0 holds

n−1∑
i=1

xr+1
i

ar
i
≥

(∑n−1
i=1 xi

)r+1(∑n−1
i=1 ai

)r . (5)

Equality holds if and only if r = 0, or x1
a1
= x2

a2
= · · · = xn−1

an−1
.

Remark 2.3. The inequality (4) is known as Jensen’s inequality. However, (4) is quite different from the original
Jensen’s inequality proved in [13]. For the historical background on Jensen’s inequality one can refer to the monograph
[24] and paper [25]. The inequality (4) is very powerful since large number of classical analytical inequalities can be
obtained as a special case of (4). Some of the inequalities that can be obtained from (4) include Cauchy–Bunyakovsky–
Schwarz inequality, Hölder’s inequality,arithmetic–geometric mean inequality, etc. We will show that (5) is a corollary
of (4). Moreover, we will extend the conditions under which (5) is valid as well as when equality is achieved.

For r := r + 1, pi := ai, ai := xi
ai

, i = 1, 2, . . . ,n − 1, r ≤ −1 or r ≥ 0, the inequality (4) becomesn−1∑
i=1

ai


r n−1∑

i=1

ai
xr+1

i

ar+1
i

≥

n−1∑
i=1

xi


r+1

,

that isn−1∑
i=1

ai


r n−1∑

i=1

xr+1
i

ar
i
≥

n−1∑
i=1

xi


r+1

,

from which inequality (5) is obtained.This implies that inequality (5) holds if and only if r ≤ −1, or r ≥ 0.
When −1 ≤ r ≤ 0 the opposite inequality in (5) holds. Equality in (5) holds if and only if r = −1, or r = 0, or
x1
a1
= x2

a2
= · · · = xn−1

an−1
.

In monograph [7] the following result was proven.

Lemma 2.4. [7] Let G be a connected graph of order n. Then 0 < γi ≤ 2, for i = 1, 2, . . . ,n − 1. Moreover, γ1 = 2 if
and only if G is bipartite and γ1 ≥

n
n−1 with equality if and only if G � Kn.

Lemma 2.5. [9] Let G be a connected graph of order n ≥ 2. Then γ1 = γ2 = · · · = γn−1 if and only if G � Kn and
γ2 = γ3 = · · · = γn−1 if and only if G � Kn or G � Kp,q, p + q = n.

Lemma 2.6. [19] Let G be a connected graph of order n. Then

γi = 1 − ρn−i+1 , (6)

for i = 1, 2, . . . ,n.

Lemma 2.7. [3] Let G be a connected graph with n vertices and Randić eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρn. Then

n∑
i=1

ρ3
i = tr(R3) = 2

∑
i∼ j

1
did j

 ∑
k∼i,k∼ j

1
dk

 .
By Lemma 2.7 and (6) we have the following result.

Lemma 2.8. Let G be a connected graph with n ≥ 2 vertices. Then

n−1∑
i=1

γ3
i = tr(L3) = 6R−1(G) + n − 2

∑
i∼ j

1
did j

 ∑
k∼i,k∼ j

1
dk

 .
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3. Main results

In this section, we present main results of this paper. At first, we determine a lower bound for the
expression sα+1(G) − 2asα(G) + a2sα−1(G), where a is an arbitrary real number with the property a , γi for at
least one i, 1 ≤ i ≤ n − 1.

Theorem 3.1. Let G be a connected graph with n ≥ 2 vertices and a be an arbitrary real number such that a , γi for
at least one i, 1 ≤ i ≤ n − 1. Then for any real α, α ≤ 0 or α ≥ 1, holds

sα+1(G) − 2asα(G) + a2sα−1(G) ≥
(2R−1(G) − n(2a − 1) + a2(n − 1))α

(a2K(G) + n − 2a(n − 1))α−1 . (7)

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
a = γ1 = · · · = γt > γt+1 = · · · = γn−1, or γ1 = · · · = γt > γt+1 = · · · = γn−1 = a, for some t, 1 ≤ t ≤ n − 2.

Proof. For any real α and a holds

sα+1(G) − 2asα(G) + a2sα−1(G) =
n−1∑
i=1

γα+1
i − 2a

n−1∑
i=1

γαi + a2
n−1∑
i=1

γα−1
i

=

n−1∑
i=1

γα−1
i (γi − a)2 .

(8)

On the other hand, for r = α, α ≤ 0 or α ≥ 1, pi =
(γi−a)2

γi
, ai = γi, i = 1, 2, . . . ,n− 1, the inequality (4) becomes

n−1∑
i=1

(γi − a)2

γi


α−1 n−1∑

i=1

γα−1
i (γi − a)2

≥

n−1∑
i=1

(γi − a)2


α

. (9)

From (2) we obtain that

n−1∑
i=1

(γi − a)2

γi
=

n−1∑
i=1

(
γi − 2a +

a2

γi

)
= a2K(G) + n − 2a(n − 1)

and
n−1∑
i=1

(γi − a)2 =

n−1∑
i=1

(γ2
i − 2aγi + a2) = n + 2R−1(G) − 2an + a2(n − 1) .

From the above identities and (8) and (9), we obtain

(a2K(G) + n − 2a(n − 1))α−1(sα+1(G) − 2asα(G) + a2sα−1(G)) ≥

≥ (2R−1(G) − n(2a − 1) + a2(n − 1))α .
(10)

Since a , γi for at least one i, 1 ≤ i ≤ n−1, it follows that a2K(G)+n−2a(n−1) , 0, so from (10) immediately
follows (7). The case when 0 ≤ α ≤ 1 can be proved analogously.

Equality in (9) holds if and only if either α = 0, or α = 1, or γ1 = · · · = γn−1, or a = γ1 = · · · = γt > γt+1 =
· · · = γn−1, or γ1 = · · · = γt > γt+1 = · · · = γn−1 = a, for some t, 1 ≤ t ≤ n − 2. By Lemma 2.5, this implies that
equality in (7) holds if and only if either α = 0, or α = 1, or G � Kn, or a = γ1 = · · · = γt > γt+1 = · · · = γn−1,
or γ1 = · · · = γt > γt+1 = · · · = γn−1 = a, for some t, 1 ≤ t ≤ n − 2.

For a = 0 we obtain the following corollaries of Theorem 3.1.



M. Matejić et al. / Filomat 39:28 (2025), 9851–9864 9855

Corollary 3.2. Let G be a connected graph with n ≥ 2 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα+1(G) ≥
(n + 2R−1(G))α

nα−1 . (11)

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn.

The inequality (11) was proven in [17].

Corollary 3.3. Let G be a connected graph with n ≥ 2 vertices. Then

K(G) ≥
n3

(n + 2R−1(G))2 . (12)

Equality holds if and only if G � Kn.

The inequality (12) was proven in [17].

Corollary 3.4. Let G be a connected graph with n ≥ 2 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≥
nα

(n − 1)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if G � Kn.

Corollary 3.5. Let G be a connected graph with n ≥ 2 vertices. Then

K(G) ≥
(n − 1)2

n
. (13)

Equality holds if and only if G � Kn.

The inequality (13) was proven in [26] (see also [2, 10, 12, 21]).
For a = 1 we have the following corollary of Theorem 3.1.

Corollary 3.6. Let G be a connected graph with n ≥ 2 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα+1(G) − 2sα(G) + sα−1(G) ≥
(2R−1(G) − 1)α

(K(G) − n + 2)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
γ1 = · · · = γt > γt+1 = · · · = γn−1 = 1, for some t, 1 ≤ t ≤ n − 2.

Lemma 2.8 gives the expression for calculating the exact value for s3(G) which is complex and time
consuming to compute. Therefore it is purposeful to determine its boundaries.

Corollary 3.7. Let G be a connected graph with n ≥ 2 vertices. Then

s3(G) ≥ n + 4R−1(G) +
(2R−1(G) − 1)2

K(G) − n + 2
.

Equality holds if and only if G � Kn, or γ1 = · · · = γt > γt+1 = · · · = γn−1 = 1, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.8. Let G be a connected graph with n ≥ 2 vertices. Then

LIE(G) ≥

√
n3

n + 2R−1(G)
. (14)

Equality holds if and only if G � Kn.
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Inequality (14) was proven in [28].

Corollary 3.9. Let G be a connected graph with n ≥ 2 vertices. Then

LIE(G) ≥ n

√
δ
δ + 1

. (15)

Equality holds if an only if G � Kn.

Inequality (15) was proven in [28].
Using Lemmas 2.1, 2.4 and 2.5, the proof of the next theorem is analogous to that of Theorem 3.1, thus

omitted.

Theorem 3.10. Let G be a connected bipartite graph with n ≥ 3 vertices and a an arbitrary real number such that
a , γi, for at least one i, 2 ≤ i ≤ n − 1. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα+1(G) − 2asα(G) + a2sα−1(G) ≥ 2α−1(2 − a)2 +

+
(2R−1(G) − n(2a − 1) + a2(n − 1) − (2 − a)2)α(

a2K(G) − n(2a − 1) + 2a − (2−a)2

2

)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n, or a = γ2 = · · · = γt > γt+1 = · · · = γn−1, or γ2 = · · · = γt > γt+1 = · · · = γn−1 = a, for some t,
2 ≤ t ≤ n − 2.

For a = 0 we have the following corollary of Theorem 3.10.

Corollary 3.11. Let G be a connected bipartite graph with n ≥ 3 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα+1(G) ≥ 2α+1 +
(2R−1(G) + n − 4)α

(n − 2)α−1 . (16)

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n.

The inequality (16) was proven in [17].

Corollary 3.12. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

K(G) ≥
1
2
+

(n − 2)3

(2R−1(G) + n − 4)2 . (17)

Equality holds if and only if G � Kp,q, p + q = n.

The inequality (17) was also proven in [17].

Corollary 3.13. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

s3(G) ≥ 8 +
(2R−1(G) + n − 4)2

n − 2
.

Equality holds if and only if G � Kp,q, p + q = n.

Corollary 3.14. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

LIE(G) ≥
√

2 +

√
(n − 2)3

2R−1(G) + n − 4
. (18)

Equality holds if and only if G � Kp,q, p + q = n.
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The inequality (18) is a special case of more general result obtained in [17].

Theorem 3.15. Let G be a connected graph with n ≥ 3 vertices, β be an arbitrary real number and b real number
such that γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ b > 0 and b , γi for at least one i. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα+β(G) ≥ bsα+β−1(G) +
(sβ+1(G) − bsβ(G))α

(sβ(G) − bsβ−1(G))α−1 . (19)

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
γ1 = · · · = γt > γt+1 = · · · = γn−1 = b, for some t, 1 ≤ t ≤ n − 2.

Proof. For any α, β, b hold

sα+β(G) − bsα+β−1(G) =
n−1∑
i=1

(γi − b)γα+β−1
i . (20)

On the other hand, for r = α, α ≤ 0 or α ≥ 1, pi = (γi − b)γβ−1
i , ai = γi, i = 1, 2, . . . ,n − 1, the inequality (4)

becomesn−1∑
i=1

(γi − b)γβ−1
i


α−1 n−1∑

i=1

(γi − b)γα+β−1
i ≥

n−1∑
i=1

(γi − b)γβi


α

, (21)

that is (
sβ(G) − bsβ−1(G)

)α−1 (
sα+β(G) − bsα+β−1(G)

)
≥

(
sβ+1(G) − bsβ(G)

)α
.

If b , γi, for at least one i, 1 ≤ i ≤ n − 1, then sβ(G) − bsβ−1(G) , 0, therefore, from the above inequality we
obtain (19). Similarly, it can be proved that when 0 ≤ α ≤ 1, opposite inequality is valid in (19).

Equality in (21) holds if and only if either α = 0, or α = 1, or γ1 = γ2 = · · · = γn−1, or γ1 = · · · = γt >
γt+1 = · · ·γn−1 = b, for some t, 1 ≤ t ≤ n − 2. By Lemma 2.5, this implies that equality in (19) holds if and
only if either α = 0, or α = 1, or G � Kn, or γ1 = · · · = γt > γt+1 = · · ·γn−1 = b, for some t, 1 ≤ t ≤ n − 2.

For β = 0 we have the following corollary of Theorem 3.15.

Corollary 3.16. Let G be a connected graph with n ≥ 2 vertices, and b real number such that γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥

b > 0 and b , γi for at least one i. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≥ bsα−1(G) +
(n − b(n − 1))α

(n − 1 − bK(G))α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
γ1 = · · · = γt > γt+1 = · · · = γn−1 = b, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.17. Let G be a connected graph with n ≥ 2 vertices and γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ 1. Then, for any real α,
α ≤ 0 or α ≥ 1, holds

sα(G) ≥ sα−1(G) + (n − 1 − K(G))1−α .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
γ1 = · · · = γt > γt+1 = · · · = γn−1 = 1, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.18. Let G be a connected graph with n ≥ 2 vertices and γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ 1. Then

K(G) ≤ n − 1 −
1

2R−1(G)
.

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if G � Kn, or γ1 = · · · = γt > γt+1 =
· · ·γn−1 = 1, for some t, 1 ≤ t ≤ n − 2.
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Corollary 3.19. Let G be a connected graph with n ≥ 2 vertices and γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ 1. Then

s3(G) ≥ n + 2R−1(G) +
1

(n − 1 − K(G))2 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if G � Kn, or γ1 = · · · = γt > γt+1 =
· · · = γn−1 = 1, for some t, 1 ≤ t ≤ n − 2.

Considering Lemmas 2.1, 2.4 and 2.5 with the similar procedure in Theorem 3.15, the proof of the next
theorem can be obtained.

Theorem 3.20. Let G be a connected bipartite graph with n ≥ 3 vertices and b be an arbitrary real number such that
γ2 ≥ · · · ≥ γn−1 ≥ b > 0 where b , γi for at least one i, 2 ≤ i ≤ n − 1, and β an arbitrary real number. Then, for any
real α, α ≤ 0 or α ≥ 1, holds

sα+β(G) ≥ bsα+β−1(G) + (2 − b)2α+β−1 +
(sβ+1(G) − bsβ(G) − (2 − b)2β)α

(sβ(G) − bsβ−1(G) − (2 − b)2β−1)α−1
.

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n, or γ2 = · · · = γt > γt+1 = · · · = γn−1 = b, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.21. Let G be a connected bipartite graph with n ≥ 3 vertices and b be an arbitrary real number such that
γ2 ≥ γ3 ≥ · · · ≥ γn−1 ≥ b > 0 and b , γi for at least one i, 2 ≤ i ≤ n − 1. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≥ bsα−1(G) + (2 − b)2α−1 +
(n − 2)α(1 − b)α(

n − 2 − b
(
K(G) − 1

2

))α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n.

Corollary 3.22. Let G be a connected bipartite graph with n ≥ 2 vertices and γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ 1. Then, for
any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≥ sα−1(G) + 2α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n.

Corollary 3.23. Let G be a connected bipartite graph with n ≥ 2 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≥ n − 2 + 2α . (22)

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n.

The inequality (22) was proven in [4] (see also [1]).

Corollary 3.24. Let G be a connected bipartite graph with n ≥ 2 vertices. Then

LIE(G) ≤
√

2 + n − 2 . (23)

Equality holds if and only if G � Kp,q, p + q = n.

The inequality (23) was proven in [11] (see also [20]).
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Remark 3.25. Every tree is a bipartite graph. Thus, for any tree T according to (23) we have that

LIE(T) ≤
√

2 + n − 2 ,

with equality holding if and only if T � K1,n−1.

The above result was proven in [11].

Corollary 3.26. Let G be a connected bipartite graph with n ≥ 2 vertices. Then

s3(G) ≥ n + 6 .

Equality holds if and only if G � Kp,q, p + q = n.

Corollary 3.27. Let G be a connected bipartite graph with n ≥ 2 vertices. Then

K(G) ≥
2n − 3

2
. (24)

Equality holds if and only if G � Kp,q, p + q = n.

The inequality (24) was proven in [29].
In the next theorem we establish a relationship between sα+β(G) and sα+β−1(G), where a, α and β are real

numbers.

Theorem 3.28. Let G be a connected graph with n vertices, β an arbitrary real number, and a real number such that
a ≥ γ1 ≥ γ2 ≥ · · · ≥ γn−1 > 0 and a , γi for at least one i, 1 ≤ i ≤ n − 1. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα+β(G) ≤ a · sα+β−1(G) −
(asβ(G) − sβ+1(G))α

(asβ−1(G) − sβ(G))α−1 . (25)

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
a = γ1 = · · · = γt > γt+1 = · · · = γn−1, for some t, 1 ≤ t ≤ n − 2.

Proof. For any real a, α and β, the following identities are valid

asα+β−1(G) − sα+β(G) = a
n−1∑
i=1

γ
α+β−1
i −

n−1∑
i=1

γ
α+β
i =

=

n−1∑
i=1

(a − γi)γ
α+β−1
i .

(26)

On the other hand, for r = α, α ≤ 0 or α ≥ 1, pi = (a−γi)γ
β−1
i , ai = γi, i = 1, 2, . . . ,n−1, where β is an arbitrary

real number, the inequality (4) becomesn−1∑
i=1

(a − γi)γ
β−1
i


α−1 n−1∑

i=1

(a − γi)γ
α+β−1
i ≥

n−1∑
i=1

(a − γi)γ
β
i


α

. (27)

Also, the following identities are valid

n−1∑
i=1

(a − γi)γ
β−1
i = asβ−1(G) − sβ(G) ,
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and
n−1∑
i=1

(a − γi)γ
β
i = asβ(G) − sβ+1(G) .

From the above and (26) and (27) we obtain(
asβ−1(G) − sβ(G)

)α−1 (
asα+β−1(G) − sα+β(G)

)
≥

(
asβ(G) − sβ+1(G)

)α
.

Since a , γi for at least one i, 1 ≤ i ≤ n − 1, it follows that asβ−1(G) − sβ(G) , 0. Thus, we obtain that

asα+β−1(G) − sα+β(G) ≥
(asβ(G) − sβ+1(G))α

(asβ−1(G) − sβ(G))α−1 ,

from which (25) is obtained. The case when 0 ≤ α ≤ 1 is proved analogously.
By Lemmas 2.1 and 2.5, equality in (27), and consequently in (25), holds if and only if either α = 0, or

α = 1, or G � Kn, or a = γ1 = · · · = γt > γt+1 = · · · = γn−1, for some t, 1 ≤ t ≤ n − 2.

For β = 0 we obtain the following corollary of Theorem 3.28.

Corollary 3.29. Let G be a connected graph with n ≥ 2 vertices and a arbitrary real number such that a ≥ γ1 ≥ γ2 ≥

· · · ≥ γn−1 > 0 and a , γi for at least one i, 1 ≤ i ≤ n − 1. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≤ asα−1(G) −
(a(n − 1) − n)α

(aK(G) − n + 1)α−1 .

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
a = γ1 = · · · = γt > γt+1 = · · · = γn−1, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.30. Let G be a connected graph with n ≥ 2 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≤ 2sα−1(G) −
(n − 2)α

(2K(G) − n + 1)α−1 .

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn, or
2 = γ1 = · · · = γt > γt+1 = · · · = γn−1, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.31. Let G be a connected graph with n ≥ 2 vertices. Then

K(G) ≥
1
2

(
n − 1 +

(n − 2)2

n − 2R−1(G)

)
. (28)

Equality holds if and only if G � Kn, or 2 = γ1 = · · · = γt > γt+1 = · · · = γn−1, for some t, 1 ≤ t ≤ n − 2.

Corollary 3.32. Let G be a connected graph with n ≥ 2 vertices. Then

s3(G) ≤ 2(n + 2R−1(G)) −
(n − 2)3

(2K(G) − n + 1)2 ,

and

s3(G) ≤ 2(n + 2R−1(G)) −
(n − 2R−1(G))2

n − 2
.

Equality holds if and only if G � Kn, or 2 = γ1 = · · · = γt > γt+1 = · · · = γn−1, for some t, 1 ≤ t ≤ n − 2.
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Using Lemmas 2.1, 2.4 and 2.5, the proof of the next theorem is obtained analogous to that of Theorem
3.28, hence omitted.

Theorem 3.33. Let G be a connected bipartite graph with n ≥ 3 vertices, β an arbitrary real number, and a real
number such that a ≥ γ2 ≥ · · · ≥ γn−1 > 0 and a , γi for at least one i, 2 ≤ i ≤ n − 1. Then, for any real α, α ≤ 0 or
α ≥ 1, holds

sα+β(G) ≤ asα+β−1(G) − (a − 2)2α+β−1
−

(asβ(G) − sβ+1(G) − (a − 2)2β)α

(asβ−1(G) − sβ(G) − (a − 2)2β−1)α−1
.

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n, or a = γ2 = · · · = γt > γt+1 = · · · = γn−1, for some t, 2 ≤ t ≤ n − 2.

Corollary 3.34. Let G be a connected bipartite graph with n vertices and a be a real number such that a ≥ γ2 ≥ · · · ≥

γn−1 > 0 and a , γi for at least one i, 2 ≤ i ≤ n − 1. Then, for any real α, α ≤ 0 or α ≥ 1, holds

sα(G) ≤ asα−1(G) − (a − 2)2α−1
−

(a − 1)α(n − 2)α(
aK(G) − n + 1 − a−2

2

)α−1 .

When 0 ≤ α ≤ 1 the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q,
p + q = n, or 2 = γ2 = · · · = γt > γt+1 = · · · = γn−1, for some t, 2 ≤ t ≤ n − 2.

Theorem 3.35. Let G be a connected graph with n ≥ 2 vertices and α, β arbitrary real numbers. Then, for any real
r, r ≤ −1 or r ≥ 0, holds

sα(G)r+1
≤ sβ(G)rs(r+1)α−rβ(G) . (29)

When −1 ≤ r ≤ 0, the opposite inequality is valid. Equality holds if and only if either r = 0, or r = −1, or α = β, or
G � Kn.

Proof. The following identity is valid

s(r+1)α−rβ(G) =
n−1∑
i=1

γ
(r+1)α−rβ
i =

n−1∑
i=1

(γαi )r+1

(γβi )r
. (30)

On the other hand, when r ≤ −1 or r ≥ 0, for xi = γαi , ai = γ
β
i , i = 1, 2, . . . ,n − 1, the inequality (5) becomes

n−1∑
i=1

(γαi )r+1

(γβi )r
≥

(∑n−1
i=1 γ

α
i

)r+1(∑n−1
i=1 γ

β
i

)r =
sα(G)r+1

sβ(G)r . (31)

Now, from the above and Eq. (30) we obtain (29).
The case when −1 ≤ r ≤ 0 is proved analogously.
By Lemmas 2.2 and 2.5, equality in (31), and thus in (29), holds if and only if either r = −1, or r = 0, or

α = β, or G � Kn.

For real parameters α and βwe have the following corollaries of Theorem 3.35.

Corollary 3.36. Let G be a connected graph with n ≥ 2 vertices. Then

R−1(G) ≥
n

2(n − 1)
, (32)

with equality holding if and only if G � Kn.
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The inequality (32) was proven in [18].

Corollary 3.37. Let G be a connected graph with n ≥ 2 vertices. Then

s3(G) ≥
n2

K(G)
,

s3(G) ≥
(n + 2R−1(G))2

n
,

s3(G) ≥
n3

(n − 1)2 .

Equalities hold if and only if G � Kn.

Corollary 3.38. Let G be a connected graph with n ≥ 2 vertices. Then

LIE(G) ≤
√

n(n − 1) . (33)

Equality holds if and only if G � Kn.

The inequality (33) was proven in [28].

Corollary 3.39. Let G be a connected graph with n ≥ 2 vertices. Then

K(G) ≥
LIE(G)2

n + 2R−1(G)
. (34)

Equality holds if and only if G � Kn.

The inequality (34) was proven in [22].

Corollary 3.40. Let G be a connected graph with n ≥ 2 vertices. Then

LIE(G) ≤ 4
√

(n − 1)3(n + 2R−1(G)) .

Equality holds if and only if G � Kn.

Corollary 3.41. Let G be a connected graph with n ≥ 2 vertices. Then

K(G) ≥
LIE(G)4

n3

Equality holds if and only if G � Kn.

The above inequality is stronger than (34).
Considering Lemmas 2.2, 2.4 and 2.5 and similar arguments as in the case of Theorem 3.35, the following

result can be proven.

Theorem 3.42. Let G be a connected bipartite graph with n ≥ 3 vertices and α, β arbitrary real numbers. Then for
any real r, r ≤ −1 or r ≥ 0, holds

s(r+1)α−rβ(G) ≥ 2(r+1)α−rβ +
(sα(G) − 2α)r+1(

sβ(G) − 2β
)r .

When −1 ≤ r ≤ 0, the opposite inequality is valid. Equality holds if and only if either r = −1, or r = 0, or α = β, or
G � Kp,q, p + q = n.
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Now, we have the following corollaries of Theorem 3.42.

Corollary 3.43. Let G be a connected bipartite graph with n ≥ 2 vertices. Then

R−1(G) ≥ 1 . (35)

Equality holds if and only if G � Kp,q, p + q = n.

Corollary 3.44. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

(s3(G) − 8)
(
K(G) −

1
2

)
≥ (n − 2)2 ,

s3(G) ≥ 8 +
(n + 2R−1(G) − 4)2

n − 2
.

Equality holds if and only if G � Kp,q, p + q = n.

Corollary 3.45. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

K(G) ≥
1
2
+

(LIE(G) −
√

2)2

n + 2R−1(G) − 4
.

Equality holds if and only if G � Kp,q, p + q = n.

Corollary 3.46. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

K(G) ≥
1
2
+

(
LIE(G) −

√
2
)4

(n − 2)3 .

Equality holds if and only if G � Kp,q, p + q = n.

The above inequality is stronger than the one given in Corollary 3.45.
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