

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The pseudospectra of linear combinations of two orthogonal projections in the Hilbert space

Ruiyao Xuea, Guolin Houa,*

^aSchool of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, P.R. China

Abstract. Let P and Q be two orthogonal projections in Hilbert space \mathcal{H} . For $\alpha, \beta \in \mathbb{C}\setminus\{0\}$, the lower bound and the upper bound of the pseudospectra of $\alpha P + \beta Q$ are obtained. The bounds are represented by the product PQ which are independent of the choice of scalars α, β . For $\alpha, \beta \in \mathbb{C}\setminus\{0\}$, $\alpha + \beta \neq \xi, \xi \in \mathbb{C}$, the bounds of the pseudospectra of $\alpha P + \beta Q - \xi PQ$ are also obtained in the same way. Finally, two examples are constructed to show the effectiveness of the results.

1. Introduction

Throughout this paper, \mathcal{H} denotes a Hilbert space and $\mathcal{B}(\mathcal{H})$ is the set of all bounded linear operators on \mathcal{H} . An operator $P \in \mathcal{B}(\mathcal{H})$ is said to be an idempotent if $P^2 = P$ and an orthogonal projection if $P^2 = P = P^*$. The spectrum of $T \in \mathcal{B}(\mathcal{H})$ is defined as

$$\sigma(T) = {\lambda \in \mathbb{C} : \lambda - T \text{ is not invertible}}.$$

The ε -pseudospectrum of T with $\varepsilon > 0$ is defined as

$$\sigma_{\varepsilon}(T) = \sigma(T) \cup \sigma_{\rho,\varepsilon}(T)$$
,

where $\sigma_{\rho,\varepsilon}(T) = \{\lambda \in \rho(T) : \|(\lambda - T)^{-1}\| > \frac{1}{\varepsilon}\}$ and $\rho(T) = \mathbb{C} \setminus \sigma(T)$.

For the sake of simplicity, write $m_{|\lambda_1|,|\lambda_2|} := \min\{|\lambda_1|,|\lambda_2|\}$ and $M_{|\lambda_1|,|\lambda_2|} := \max\{|\lambda_1|,|\lambda_2|\}$ for $\lambda_1,\lambda_2 \in \mathbb{C}$. Also, $B(a,\varepsilon) := \{z \in \mathbb{C} : |z-a| < \varepsilon\}$ with $\varepsilon > 0$. The identity operator in Hilbert space is denoted by I, $\forall a \in \mathbb{C}$, aI is denoted by a.

There have been many studies on orthogonal projections, see [1–5] and the references cited therein. In addition, the properties for linear combinations of idempotents or orthogonal projections also have many applications. The spectral properties of the linear combination of idempotents or orthogonal projections are proved in [6–8]. Then, the Fredholmness, equivalence form, and the necessary and sufficient conditions

²⁰²⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47B02.

Keywords. Pseudospectrum, spectrum, orthogonal projection, linear combination.

Received: 01 October 2022; Accepted: 26 July 2025

Communicated by Dragan S. Djordjević

Research supported by the National Natural Science Foundation of China (Grant No. 12261064, 11861048) and the Natural Science Foundation of the Inner Mongolia Autonomous Region (Grant No. 2025MS01026).

^{*} Corresponding author: Guolin Hou

Email addresses: ruiyaoxue@mail.imu.edu.cn (Ruiyao Xue), smshgl@imu.edu.cn (Guolin Hou)

ORCID iDs: https://orcid.org/0009-0001-7577-0136 (Ruiyao Xue), https://orcid.org/0000-0002-3561-9490 (Guolin Hou)

for the invertibility of the linear combination of idempotents are obtained in [9–12]. Last but not least, the literatures [13, 14] show the equivalence of two spectral sets, which is a prerequisite for studying their pseudospectral bounds. But the pseudospectra of linear combinations of idempotents or orthogonal projections have not yet been fully investigated.

The studies of pseudospectra of matrices and linear operators are increasingly improved, see [15–20]. Cui [21] summarized the pseudospectra of some special operator classes like normal operators, nontrivial projections, nilpotents and so on. Then Jia and Feng [22] provided a characterization of those operators T satisfying $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$ for all $\varepsilon > 0$. There are also detailed classifications of pseudospectra, such as essential pseudospectra. The note [23] studied the essential and the structured essential pseudospectra of closed densely defined linear operators acting on a Banach space. The pseudospectra are shown to be so useful in various mathematical applications. For instance, applications to Markov chains, cutoff phenomenon and lasers can be found in [24].

To enrich the properties for linear combinations of orthogonal projections, the bounds of the resolvent norms of $\alpha P + \beta Q$ (resp. $\alpha P + \beta Q - \xi PQ$) are considered, and then the bounds of pseudospectra of $\alpha P + \beta Q$ (resp. $\alpha P + \beta Q - \xi PQ$) are established by the product PQ in the present paper. Finally, two examples show that the pseudospectra of PQ (resp. 1 - PQ) are easier to calculate than $\alpha P + \beta Q$ (resp. $\alpha P + \beta Q - \xi PQ$).

2. Main results and proofs

From [25, Theorem 2.7] and [13, Lemma 3.1], the following lemma is given.

Lemma 2.1. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta\in\mathbb{C}\setminus\{0\}$. If $\lambda\in\mathbb{C}\setminus\{0,\alpha,\beta\}$, then

$$\lambda \in \sigma(\alpha P + \beta Q) \iff (1 - \alpha^{-1}\lambda)(1 - \beta^{-1}\lambda) \in \sigma(PQ). \tag{1}$$

Lemma 2.1 indicates that the spectra of linear combinations $\alpha P + \beta Q$ equal to the spectra of the product PQ. If T is normal, it is well-known that $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$. When P, Q are orthogonal projections and commutative, one can check that $\alpha P + \beta Q$ and PQ are normal operators. Therefore, the following proposition is obvious.

Proposition 2.2. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta\in\mathbb{C}\setminus\{0\}$. If P,Q are commutative and $\lambda\in\mathbb{C}\setminus\{0\}$, then

$$\lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q) \iff (1 - \alpha^{-1}\lambda)(1 - \beta^{-1}\lambda) \in \sigma_{\varepsilon}(PQ).$$

Next we consider the bounds of $\sigma_{\varepsilon}(\alpha P + \beta Q)$ without the commutability through the information of the product PQ based on Lemma 2.1.

Theorem 2.3. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta \in \mathbb{C}\setminus\{0\}$. If $\lambda \in \mathbb{C}\setminus\{0,\alpha,\beta\}$ and set $\mu := (1-\alpha^{-1}\lambda)(1-\beta^{-1}\lambda)$, then

$$\mu \in \sigma(PQ) \cup L_1 \Rightarrow \lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q) \Rightarrow \mu \in \sigma(PQ) \cup U_1$$

where

$$\begin{split} L_1 &= \{ \mu \in \rho(PQ) : |\lambda^{-1}| m_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot m_{|\beta^{-1}\lambda|,|1-\beta^{-1}\lambda|} \cdot \|(\mu - PQ)^{-1}\| > \frac{1}{\varepsilon} \}, \\ U_1 &= \{ \mu \in \rho(PQ) : |\lambda^{-1}| M_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot M_{|\beta^{-1}\lambda|,|1-\beta^{-1}\lambda|} \cdot \|(\mu - PQ)^{-1}\| > \frac{1}{\varepsilon} \}. \end{split}$$

Proof. From [13, Equation (3.2)], it can be seen that

$$(\lambda - (\alpha P + \beta Q))^{-1} = \lambda^{-1} (1 - \beta^{-1} \lambda - Q)(\mu - PQ))^{-1} (1 - \alpha^{-1} \lambda - P).$$

Moreover, for all $x \in \mathcal{H}$, we have

$$\begin{aligned} &||(\lambda - (\alpha P + \beta Q))^{-1})x||^2 \\ &= |\lambda^{-1}|^2 ||(1 - \beta^{-1}\lambda - Q)(\mu - PQ)^{-1}(1 - \alpha^{-1}\lambda - P)x||^2 \\ &= |\lambda^{-1}|^2 \langle (c_1Q + c_2)(\mu - PQ)^{-1}(1 - \alpha^{-1}\lambda - P)x, (\mu - PQ)^{-1}(1 - \alpha^{-1}\lambda - P)x \rangle, \end{aligned}$$

where

$$c_1 = \beta^{-1}\lambda + \overline{\beta^{-1}\lambda} - 1, c_2 = |1 - \beta^{-1}\lambda|^2.$$

Since $c_1Q + c_2$ is a positive operator, there exists a positive square root $S = \xi Q + \eta$ such that $S^2 = c_1Q + c_2$, in which $\eta = \sqrt{c_2}$, $\xi = -\sqrt{c_2} + |\beta^{-1}\lambda|$. And then

$$\|((\lambda - (\alpha P + \beta Q))^{-1})x\|^2 = |\lambda^{-1}|^2 \|S(\mu - PQ)^{-1}(1 - \alpha^{-1}\lambda - P)x\|^2.$$
 (2)

Because $(1 - \alpha^{-1}\lambda - P)$ is invertible and combining Equation (2), we have

$$||S(\mu - PQ)^{-1}|| = \sup_{x \neq 0} \frac{||S(\mu - PQ)^{-1}(1 - \alpha^{-1}\lambda - P)x||}{||(1 - \alpha^{-1}\lambda - P)x||}$$
$$= |\lambda| \sup_{x \neq 0} \frac{||((\lambda - (\alpha P + \beta Q))^{-1})x||}{||(1 - \alpha^{-1}\lambda - P)x||}.$$
 (3)

First, for $x \in \mathcal{H} = R(P) \oplus R(P)^{\perp}$, $x = x_1 + x_2$, where $x_1 \in R(P)$, $x_2 \in R(P)^{\perp}$,

$$||(1 - \alpha^{-1}\lambda - P)x||^2 = ||-Px + (1 - \alpha^{-1}\lambda)x||^2 = |\alpha^{-1}\lambda|^2||x_1||^2 + |1 - \alpha^{-1}\lambda|^2||x_2||^2,$$

this concludes that

$$m_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|}||x|| \le ||(1-\alpha^{-1}\lambda - P)x|| \le M_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|}||x||. \tag{4}$$

Next we estimate the bounds of ||S|| and $||S^{-1}||$, here $S^{-1} = (|\beta \lambda^{-1}| - \frac{1}{\sqrt{c_2}})Q + \frac{1}{\sqrt{c_2}}$. For $x \in \mathcal{H} = R(Q) \oplus R(Q)^{\perp}$, $x = x_3 + x_4$, where $x_3 \in R(Q)$, $x_4 \in R(Q)^{\perp}$, it is similar to get

$$||Sx||^2 = ||((|\beta^{-1}\lambda| - \sqrt{c_2})Qx + \sqrt{c_2})x||^2 = |\beta^{-1}\lambda|^2 ||x_3||^2 + c_2||x_4||^2.$$

Hence

$$m_{\sqrt{C_2},|\beta^{-1}\lambda|}||x|| \le ||Sx|| \le M_{\sqrt{C_2},|\beta^{-1}\lambda|}||x||$$

and

$$\frac{1}{M_{\sqrt{c_2},|\beta^{-1}\lambda|}}||x||\leq ||S^{-1}x||\leq \frac{1}{m_{\sqrt{c_2},|\beta^{-1}\lambda|}}||x||.$$

Noting that $||S|| = \sup_{x \neq 0} \frac{||Sx||}{||x||}$, $||S^{-1}|| = \sup_{x \neq 0} \frac{||S^{-1}x||}{||x||}$, then the following estimates are obtained

$$m_{\sqrt{c_2},|\beta^{-1}\lambda|} \le ||S|| \le M_{\sqrt{c_2},|\beta^{-1}\lambda|},\tag{5}$$

$$\frac{1}{M_{\sqrt{c_2},|\beta^{-1}\lambda|}} \le \|S^{-1}\| \le \frac{1}{m_{\sqrt{c_2},|\beta^{-1}\lambda|}}.$$

Setting $T = S(\mu - PQ)^{-1}$ and by (2)-(5), we have

$$\frac{|\lambda|||(\lambda - (\alpha P + \beta Q))^{-1}||}{M_{|\alpha^{-1}\lambda||1 - \alpha^{-1}\lambda|}} \le ||T|| \le \frac{|\lambda|||(\lambda - (\alpha P + \beta Q))^{-1}||}{m_{|\alpha^{-1}\lambda||1 - \alpha^{-1}\lambda|}}.$$
(6)

The inequalities (5) and (6) show that

$$\|(\mu - PQ)^{-1}\| \ge \frac{\|T\|}{\|S\|} \ge \frac{|\lambda| \|(\lambda - (\alpha P + \beta Q))^{-1}\|}{M_{|\alpha^{-1}\lambda|, |1 - \alpha^{-1}\lambda|} \cdot M_{\sqrt{c_2}, |\beta^{-1}\lambda|}},$$

 $(\mu - PQ)^{-1} = S^{-1}T$ indicates that

$$\|(\mu - PQ)^{-1}\| \le \|S^{-1}\| \cdot \|T\| \le \frac{|\lambda| \|(\lambda - (\alpha P + \beta Q))^{-1}\|}{m_{|\alpha^{-1}\lambda|, |1-\alpha^{-1}\lambda|} \cdot m_{\sqrt{c_0}, |\beta^{-1}\lambda|}}.$$

Afterwards,

$$\begin{split} &\frac{1}{\varepsilon} < |\lambda^{-1}| m_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot m_{\sqrt{c_2},|\beta^{-1}\lambda|} \cdot \|(\mu-PQ)^{-1}\| \leq \|(\lambda-(\alpha P+\beta Q))^{-1}\| \\ &\leq |\lambda^{-1}| M_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot M_{\sqrt{c_2},|\beta^{-1}\lambda|} \cdot \|(\mu-PQ)^{-1}\| \end{split}$$

implies that

$$\begin{split} \{\mu \in \rho(PQ): |\lambda^{-1}| m_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot m_{\sqrt{c_2}|\beta^{-1}\lambda|} \cdot ||\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \} \\ \Rightarrow &\{\lambda \in \rho(\alpha P + \beta Q): ||(\lambda - (\alpha P + \beta Q))^{-1}|| > \frac{1}{\varepsilon} \} \\ \Rightarrow &\{\mu \in \rho(PQ): |\lambda^{-1}| M_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot M_{\sqrt{c_2}|\beta^{-1}\lambda|} \cdot ||(\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \} \}. \end{split}$$

Then the lower bound and upper bound of $\sigma_{\rho,\varepsilon}(\alpha P + \beta Q)$ are obtained and written as

$$L_1 := \{ \mu \in \rho(PQ) : |\lambda^{-1}| m_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot m_{|\beta^{-1}\lambda|,|1-\beta^{-1}\lambda|} \cdot ||(\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \},$$

and

$$U_1 := \{ \mu \in \rho(PQ) : |\lambda^{-1}| M_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot M_{|\beta^{-1}\lambda|,|1-\beta^{-1}\lambda|} \cdot ||(\mu - PQ)^{-1}|| > \frac{1}{\epsilon} \},$$

where $\mu = (1 - \alpha^{-1}\lambda)(1 - \beta^{-1}\lambda)$ in L_1 and U_1 . Combining the relation (1), it can be seen that

$$\mu \in \sigma(PQ) \cup L_1 \Rightarrow \lambda \in \sigma(\alpha P + \beta Q) \cup \sigma_{\rho,\varepsilon}(\alpha P + \beta Q) \Rightarrow \mu \in \sigma(PQ) \cup U_1.$$

Example 2.4. Define operators P and Q in $\mathcal{B}(\mathcal{H})$ by

$$P = \begin{pmatrix} \frac{1}{2}I & \frac{1}{2}I\\ \frac{1}{2}I & \frac{1}{2}I \end{pmatrix}, \quad Q = \begin{pmatrix} I & 0\\ 0 & 0 \end{pmatrix}.$$

One can check that P,Q are orthogonal projections and $\sigma(2P+Q)=\{\frac{3}{2}\pm\frac{\sqrt{5}}{2}\}$. Let $\alpha=2,\beta=1,\lambda\in\mathbb{C}\setminus\{0,1,2,\frac{3}{2}\pm\frac{\sqrt{5}}{2}\}$ and $\mu=(1-\frac{1}{2}\lambda)(1-\lambda)$. Then

$$(\lambda - (2P + Q))^{-1} = \frac{1}{(\lambda - 2)(\lambda - 1) - 1} \begin{pmatrix} (\lambda - 1)I & I \\ I & (\lambda - 2)I \end{pmatrix},$$
$$(\mu - PQ)^{-1} = \frac{2}{(2\mu - 1)\mu} \begin{pmatrix} \mu I & 0 \\ \frac{1}{2}I & (\mu - \frac{1}{2})I \end{pmatrix}.$$

For different values of λ , $M_{|\frac{1}{2}\lambda|,|1-\frac{1}{2}\lambda|}$ and $M_{|\lambda|,|1-\lambda|}$ can be divided into three cases. First suppose that $M_{|\frac{1}{2}\lambda|,|1-\frac{1}{2}\lambda|} = |\frac{1}{2}\lambda|$ and $M_{|\lambda|,|1-\lambda|} = |\lambda|$. Then,

$$|1 - \frac{1}{2}\lambda| \cdot |1 - \lambda| \cdot ||(\mu - PQ)^{-1}|| = \max\{|\frac{(\lambda - 1)(\lambda - 2)}{2\mu - 1}|, |\frac{1}{2\mu - 1}|, 1\},$$

$$|\lambda| \cdot ||(\lambda - (2P + Q))^{-1}|| = \max\{|\frac{\lambda(\lambda - 1)}{2\mu - 1}|, |\frac{\lambda}{2\mu - 1}|, |\frac{\lambda(\lambda - 2)}{2\mu - 1}|\},$$

$$|\frac{1}{2}\lambda| \cdot |\lambda| \cdot ||(\mu - PQ)^{-1}|| = \max\{|\frac{\lambda^2}{2\mu - 1}|, |\frac{\lambda^2}{2\mu(2\mu - 1)}|, |\frac{\lambda^2}{2\mu}|\}.$$

From the assumption, we get

$$\begin{split} |\frac{1}{2\mu-1}| & \leq |\frac{\lambda}{2\mu-1}| \leq |\frac{\lambda^2}{2\mu-1}|, \quad |\frac{\lambda(\lambda-2)}{2\mu-1}| \leq |\frac{\lambda^2}{2\mu-1}|, \\ 1 & \leq |\frac{(\lambda-1)(\lambda-2)}{2\mu-1}| \leq |\frac{\lambda(\lambda-1)}{2\mu-1}| \leq |\frac{\lambda^2}{2\mu-1}|. \end{split}$$

For all $\varepsilon > 0$,

$$\begin{split} \frac{1}{\varepsilon} < |\lambda^{-1}| \cdot |1 - \frac{1}{2}\lambda| \cdot |1 - \lambda| \cdot ||(\mu - PQ)^{-1}|| &\leq ||(\lambda - (2P + Q))^{-1}|| \\ &\leq |\lambda^{-1}| \cdot |\frac{1}{2}\lambda| \cdot |\lambda| \cdot ||(\mu - PQ)^{-1}||. \end{split}$$

In the other two cases, the verification method is similar and omitted here. Hence,

$$\begin{split} \{\mu \in \rho(PQ) : |\lambda^{-1}| m_{|\frac{1}{2}\lambda|,|1-\frac{1}{2}\lambda|} \cdot m_{|\lambda|,|1-\lambda|} \cdot ||\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \} \\ \Rightarrow & \{\lambda \in \rho(2P+Q) : ||(\lambda - (2P+Q))^{-1}|| > \frac{1}{\varepsilon} \} \\ \Rightarrow & \{\mu \in \rho(PQ) : |\lambda^{-1}| M_{|\frac{1}{2}\lambda|,|1-\frac{1}{2}\lambda|} \cdot M_{|\lambda|,|1-\lambda|} \cdot ||(\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \} \}. \end{split}$$

Combining the relation (1), it can be seen that

$$\begin{split} \mu &\in \sigma(PQ) \cup \{\mu \in \rho(PQ): |\lambda^{-1}| m_{|\frac{1}{2}\lambda|,|1-\frac{1}{2}\lambda|} \cdot m_{|\lambda|,|1-\lambda|} \cdot ||\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \} \\ \Rightarrow &\lambda \in \sigma_{\varepsilon}(2P+Q) = \sigma(2P+Q) \cup \sigma_{\rho,\varepsilon}(2P+Q) \\ \Rightarrow &\mu \in \sigma(PQ) \cup \{\mu \in \rho(PQ): |\lambda^{-1}| M_{|\frac{1}{2}\lambda|,|1-\frac{1}{2}\lambda|} \cdot M_{|\lambda|,|1-\lambda|} \cdot ||(\mu - PQ)^{-1}|| > \frac{1}{\varepsilon} \} \}. \end{split}$$

This justifies Theorem 2.3.

Corollary 2.5. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta\in\mathbb{C}\setminus\{0\}$. If $\lambda\in\mathbb{C}\setminus\{0\}$ and $Re(\alpha^{-1}\lambda)=Re(\beta^{-1}\lambda)=\frac{1}{2}$, $|\lambda|=|\alpha\beta|$, then

$$\lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q) \iff \mu \in \sigma_{\varepsilon}(PQ),$$

where
$$\mu = (1 - \alpha^{-1}\lambda)(1 - \beta^{-1}\lambda)$$
.

Proof. Under the conditions and combining the inequality (6), it is clearly that

$$|\lambda^{-1}| m_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot m_{\sqrt{c_2},|\beta^{-1}\lambda|} = |\lambda^{-1}| M_{|\alpha^{-1}\lambda|,|1-\alpha^{-1}\lambda|} \cdot M_{\sqrt{c_2},|\beta^{-1}\lambda|} = 1,$$

thus

$$\|(\lambda - (\alpha P + \beta Q))^{-1}\| = \|(\mu - PQ)^{-1}\|,$$

and

$$\lambda \in \sigma_{\rho,\varepsilon}(\alpha P + \beta Q) \iff \mu \in \sigma_{\rho,\varepsilon}(PQ).$$

Combining the relation (1), it is easy to get

$$\lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q) \iff \mu \in \sigma_{\varepsilon}(PQ).$$

By analogous argument, we obtain the results about another linear combination $\alpha P + \beta Q - \xi PQ$.

Lemma 2.6. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta \in \mathbb{C}\setminus\{0\}$, $\alpha+\beta\neq\xi$, $\xi\in\mathbb{C}$. If $\lambda\in\mathbb{C}\setminus\{0,\alpha,\beta\}$ and $\xi\lambda\neq\alpha\beta$, then

$$\lambda \in \sigma(\alpha P + \beta Q - \xi PQ) \Longleftrightarrow \frac{\lambda(\lambda + \xi - \alpha - \beta)}{\xi \lambda - \alpha \beta} \in \sigma(1 - PQ). \tag{7}$$

Proof. Let $\lambda \in \mathbb{C}\setminus\{0,\alpha,\beta\}$, $\xi\lambda \neq \alpha\beta$. If $0<|\lambda|<\min\{|\alpha|,|\beta|,\frac{|\alpha\beta|}{|\xi|+1}\}$, following [14, Theorem 2.2], we note that

$$\lambda^{-1}(\lambda - \alpha(1 - P))(\lambda - (\alpha P + \beta Q - \xi PQ))(\lambda - \beta(1 - Q))$$

$$= (\xi \lambda - \alpha \beta)(\frac{\lambda(\lambda + \xi - \alpha - \beta)}{\xi \lambda - \alpha \beta} - (1 - PQ)),$$
(8)

where $\lambda - \alpha(1 - P)$ and $\lambda - \beta(1 - Q)$ are invertible, this implies the relation (7). \Box

Besides, it is easy to know that $\alpha P + \beta Q - \xi PQ$ and 1 - PQ are normal operators when P,Q are orthogonal projections and commutative. So the following conclusion is evident.

Proposition 2.7. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta \in \mathbb{C}\setminus\{0\},\alpha+\beta\neq\xi,\xi\in\mathbb{C}$. If P,Q are commutative and $\lambda \in \mathbb{C}\setminus\{0,\alpha,\beta\}$, $\xi\lambda \neq \alpha\beta$, then

$$\lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q - \xi PQ) \Longleftrightarrow \frac{\lambda(\lambda + \xi - \alpha - \beta)}{\xi \lambda - \alpha \beta} \in \sigma_{\varepsilon}(1 - PQ).$$

Next we investigate the general properties without the commutability of $\sigma_{\varepsilon}(\alpha P + \beta Q - \xi PQ)$.

Theorem 2.8. Let P,Q be orthogonal projections in $\mathcal{B}(\mathcal{H})$ and $\alpha,\beta\in\mathbb{C}\setminus\{0\}$, $\alpha+\beta\neq\xi$, $\xi\in\mathbb{C}$. If $\lambda\in\mathbb{C}\setminus\{0,\alpha,\beta\}$, $\xi\lambda\neq\alpha\beta$ and set $\nu:=\frac{\lambda(\lambda+\xi-\alpha-\beta)}{\xi\lambda-\alpha\beta}$, then

$$\nu \in \sigma(1 - PQ) \cup L_2 \Rightarrow \lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q - \xi PQ) \Rightarrow \nu \in \sigma(1 - PQ) \cup U_2$$

where

$$\begin{split} L_2 &= \{ \nu \in \rho(1-PQ) : |\lambda|^{-1} \cdot |\xi\lambda - \alpha\beta|^{-1} m_{|\lambda|,|\lambda-\alpha|} \cdot m_{|\lambda|,|\lambda-\beta|} \cdot ||(\nu - (1-PQ))^{-1}|| > \frac{1}{\varepsilon} \}, \\ U_2 &= \{ \nu \in \rho(1-PQ) : |\lambda|^{-1} \cdot |\xi\lambda - \alpha\beta|^{-1} M_{|\lambda|,|\lambda-\alpha|} \cdot M_{|\lambda|,|\lambda-\beta|} \cdot ||(\nu - (1-PQ))^{-1}|| > \frac{1}{\varepsilon} \}. \end{split}$$

Proof. From the Equation (8), it is observed that

$$(\lambda - (\alpha P + \beta Q - \xi PQ))^{-1}$$

= $\lambda^{-1} (\xi \lambda - \alpha \beta)^{-1} (\lambda - \beta (1 - Q)) (\nu - (1 - PQ))^{-1} (\lambda - \alpha (1 - P)).$

Moreover,

$$||(\lambda - (\alpha P + \beta Q - \xi PQ))^{-1}x||^{2}$$

$$= |\lambda^{-1}|^{2}|(\xi \lambda - \alpha \beta)^{-1}|^{2}\langle(c_{3}Q + c_{4})(\nu - (1 - PQ))^{-1}(\lambda - \alpha(1 - P))x, (\nu - (1 - PQ))^{-1}(\lambda - \alpha(1 - P))x\rangle$$
(9)

where $c_3 = \overline{\lambda}\beta + \lambda\overline{\beta} - |\beta|^2$, $c_4 = |\lambda|^2 - c_3$. Since $c_3Q + c_4$ is a positive operator, there exists a positive square root $B = \xi Q + \eta$ such that $B^2 = c_3Q + c_4$, in which $\eta = \sqrt{c_4}$, $\xi = |\lambda| - \sqrt{c_4}$. And then

$$||(\lambda - (\alpha P + \beta Q - \xi PQ))^{-1}x||^2$$

=|\lambda^{-1}|^2|(\xi\lambda \lambda - \alpha\beta)^{-1}|^2||B(\nu - (1 - PQ))^{-1}(\lambda - \alpha(1 - P))x||^2.

Because $(\lambda - \alpha(1 - P))$ is invertible and combining Equation (9), we have

$$||B(\nu - (1 - PQ))^{-1}|| = \sup_{x \neq 0} \frac{||B(\nu - (1 - PQ))^{-1}(\lambda - \alpha(1 - P))x||}{||(\lambda - \alpha(1 - P))x||}$$
$$= \sup_{x \neq 0} \frac{|\lambda| \cdot |\xi\lambda - \alpha\beta| \cdot ||(\lambda - (\alpha P + \beta Q - \xi PQ))^{-1}x||}{||(\lambda - \alpha(1 - P))x||}.$$

First, for $x \in \mathcal{H} = R(P) \oplus R(P)^{\perp}$, it is similar to conclude that

$$m_{|\lambda|,|\lambda-\alpha|}||x|| \le ||(\lambda-\alpha(1-P))x|| \le M_{|\lambda|,|\lambda-\alpha|}||x||.$$

Then we gauge the bounds of ||B|| and $||B^{-1}||$, here $B^{-1} = (\frac{1}{|\lambda|} - \frac{1}{\sqrt{c_4}})Q + \frac{1}{\sqrt{c_4}}$. For $x \in \mathcal{H} = R(Q) \oplus R(Q)^{\perp}$, it is similar to get

$$m_{\sqrt{c_4},|\lambda|}||x|| \le ||Bx|| \le M_{\sqrt{c_4},|\lambda|}||x||$$

and

$$\frac{1}{M_{\sqrt{c_4},|\lambda|}}\|x\|\leq \|B^{-1}x\|\leq \frac{1}{m_{\sqrt{c_4},|\lambda|}}\|x\|.$$

Setting $A = B(v - (1 - PQ))^{-1}$ and combining with the proof above, we obtain that

$$\frac{|\lambda|\cdot|\xi\lambda-\alpha\beta|\cdot||(\lambda-(\alpha P+\beta Q-\xi PQ))^{-1}||}{M_{|\lambda|,|\lambda-\alpha|}}\leq ||A||\leq \frac{|\lambda|\cdot|\xi\lambda-\alpha\beta|\cdot||(\lambda-(\alpha P+\beta Q-\xi PQ))^{-1}||}{m_{|\lambda|,|\lambda-\alpha|}}.$$

 $A = B(\nu - (1 - PQ))^{-1}$ shows that

$$\|(\nu-(1-PQ))^{-1}\|\geq \frac{\|A\|}{\|B\|}\geq \frac{|\lambda|\cdot|\xi\lambda-\alpha\beta|\cdot\|(\lambda-(\alpha P+\beta Q-\xi PQ))^{-1}\|}{M_{|\lambda|,|\lambda-\alpha|}\cdot M_{\sqrt{c_4},|\lambda|}},$$

 $(\nu - (1 - PQ))^{-1} = B^{-1}A$ indicates that

$$\|(\nu - (1 - PQ))^{-1}\| \le \|B^{-1}\| \cdot \|A\| \le \frac{|\lambda| \cdot |\xi\lambda - \alpha\beta| \cdot \|(\lambda - (\alpha P + \beta Q - \xi PQ))^{-1}\|}{m_{|\lambda|, |\lambda - \alpha|} \cdot m_{\sqrt{c_a}, |\lambda|}}.$$

$$\begin{split} &\{ \nu \in \rho(1-PQ) : |\lambda^{-1}| \cdot |(\xi\lambda - \alpha\beta)^{-1}| \cdot m_{|\lambda|, |\lambda - \alpha|} \cdot m_{\sqrt{c_4}, |\lambda|} \| (\nu - (1-PQ))^{-1} \| > \frac{1}{\varepsilon} \} \\ \Rightarrow &\{ \lambda \in \rho(\alpha P + \beta Q - \xi PQ) : \| (\lambda - (\alpha P + \beta Q - \xi PQ))^{-1} \| > \frac{1}{\varepsilon} \} \\ \Rightarrow &\{ \nu \in \rho(1-PQ) : |\lambda^{-1}| \cdot |(\xi\lambda - \alpha\beta)^{-1}| \cdot M_{|\lambda|, |\lambda - \alpha|} \cdot M_{\sqrt{c_4}, |\lambda|} \| (\nu - (1-PQ))^{-1} \| > \frac{1}{\varepsilon} \}. \end{split}$$

Then the lower bound and upper bound of $\sigma_{\rho,\varepsilon}(\alpha P + \beta Q - \xi PQ)$ are obtained and written as

$$\{\nu \in \rho(1 - PQ) : |\lambda^{-1}| \cdot |(\xi \lambda - \alpha \beta)^{-1}| \cdot m_{|\lambda|, |\lambda - \alpha|} \cdot m_{\sqrt{c_4}, |\lambda|} ||(\nu - (1 - PQ))^{-1}|| > \frac{1}{\varepsilon}\} = L_2$$

and

$$\{\nu \in \rho(1-PQ): |\lambda^{-1}| \cdot |(\xi\lambda - \alpha\beta)^{-1}| \cdot M_{|\lambda|, |\lambda - \alpha|} \cdot M_{\sqrt{c_4}, |\lambda|} ||(\nu - (1-PQ))^{-1}|| > \frac{1}{\varepsilon}\} = U_2,$$

where $\nu =: \frac{\lambda(\lambda + \xi - \alpha - \beta)}{\xi \lambda - \alpha \beta}$ in L_2 and U_2 . Combining the relation (7), it is known that

$$\nu \in \sigma(1 - PQ) \cup L_2 \Rightarrow \lambda \in \sigma_{\varepsilon}(\alpha P + \beta Q - \xi PQ) \Rightarrow \nu \in \sigma(1 - PQ) \cup U_2.$$

Example 2.9. Consider P,Q are the orthogonal projections given in the Example 2.4. Let $\alpha=2,\beta=1,\xi=2$, one can check that $\sigma(2P+Q-2PQ)=\{1\}$. If $\lambda\in\mathbb{C}\setminus\{0,1,2\}$, then $\xi\lambda\neq\alpha\beta$ and $\nu=\frac{\lambda(\lambda+\xi-\alpha-\beta)}{\xi\lambda-\alpha\beta}=\frac{\lambda}{2}$. Moreover

$$(\lambda - (2P + Q - 2PQ))^{-1} = \begin{pmatrix} \frac{1}{(\lambda - 1)}I & \frac{1}{(\lambda - 1)^2}I\\ 0 & \frac{1}{(\lambda - 1)}I \end{pmatrix},$$
$$(\nu - (1 - PQ))^{-1} = \begin{pmatrix} \frac{2}{(2\nu - 1)}I & 0\\ \frac{-1}{(2\nu - 1)(\mu - 1)}I & \frac{1}{(\mu - 1)}I \end{pmatrix}.$$

For different values of λ , $M_{\lfloor \frac{1}{2}\lambda \rfloor, \lfloor 1 - \frac{1}{2}\lambda \rfloor}$ and $M_{|\lambda|, |1 - \lambda|}$ also can be divided into three cases. First suppose that $M_{|\lambda|, |\lambda - 1|} = |\lambda|$ and $M_{|\lambda|,|\lambda-2|} = |\lambda|$. Then,

$$\begin{split} |\lambda - 1| \cdot |\lambda - 2| \cdot ||(\nu - (1 - PQ))^{-1}|| &= \max\{2|\lambda - 2|, |\lambda - 1|, 1\}, \\ |\lambda(\xi \lambda - \alpha \beta)| \cdot ||(\lambda - (2P + Q - 2PQ))^{-1}|| &= \max\{2|\lambda|, \frac{2|\lambda|}{|\lambda - 1|}\}, \\ |\lambda| \cdot |\lambda| \cdot ||(\nu - (1 - PQ))^{-1}|| &= \max\{|\frac{2|\lambda|^2}{|\lambda - 1|}|, |\frac{|\lambda|^2}{|\lambda - 2|}|, |\frac{|\lambda|^2}{|(\lambda - 1)(\lambda - 2)}|\}. \end{split}$$

From the assumption and for all $\varepsilon > 0$ *,*

$$\begin{split} &\frac{1}{\varepsilon} < |\lambda^{-1}(\xi\lambda - \alpha\beta)^{-1}| \cdot |\lambda - 1| \cdot |\lambda - 2| \cdot \|(\nu - (1 - PQ))^{-1}\| \\ &\leq \|(\lambda - (2P + Q - 2PQ))^{-1}\| \leq |\lambda^{-1}(\xi\lambda - \alpha\beta)^{-1}| \cdot |\lambda| \cdot |\lambda| \cdot \|(\nu - (1 - PQ))^{-1}\|. \end{split}$$

In the other two cases, the verification method is similar and omitted here. Hence,

$$\begin{aligned} &\{\nu \in \rho(1-PQ): |\lambda^{-1}(\xi\lambda - \alpha\beta)^{-1}|m_{|\lambda|,|\lambda-2|} \cdot m_{|\lambda|,|\lambda-1|} \cdot ||(\nu - (1-PQ))^{-1}|| > \frac{1}{\varepsilon}\} \\ \Rightarrow &\{\lambda \in \rho(2P+Q-2PQ): ||(\lambda - (2P+Q-2PQ))^{-1}|| > \frac{1}{\varepsilon}\} \\ \Rightarrow &\{\nu \in \rho(1-PQ): |\lambda^{-1}(\xi\lambda - \alpha\beta)^{-1}|M_{|\lambda|,|\lambda-2|} \cdot M_{|\lambda|,|\lambda-1|} \cdot ||(\nu - (1-PQ))^{-1}|| > \frac{1}{\varepsilon}\}. \end{aligned}$$

Combining the relation (7), it can be seen that

$$\begin{aligned} \nu &\in \sigma(1 - PQ) \cup \{ \nu \in \rho(1 - PQ) : |\lambda^{-1}(\xi\lambda - \alpha\beta)^{-1}| \cdot m_{|\lambda|, |\lambda - 2|} \cdot m_{|\lambda|, |\lambda - 1|} \cdot ||(\nu - (1 - PQ))^{-1}|| > \frac{1}{\varepsilon} \} \\ &\Rightarrow \lambda \in \sigma_{\varepsilon}(2P + Q - 2PQ) \\ &\Rightarrow \nu \in \sigma(1 - PQ) \cup \{ \nu \in \rho(1 - PQ) : |\lambda^{-1}(\xi\lambda - \alpha\beta)^{-1}| \cdot M_{|\lambda|, |\lambda - 2|} \cdot M_{|\lambda|, |\lambda - 1|} \cdot ||(\nu - (1 - PQ))^{-1}|| > \frac{1}{\varepsilon} \}. \end{aligned}$$

This verifies Theorem 2.8.

3. Summary and discussion

In Hilbert space, we recall the equivalence relation of the spectrum between linear combinations of two orthogonal projections and the product of that. What is more, the bounds of the pseudospectra of $\alpha P + \beta Q$ and $\alpha P + \beta Q - \xi PQ$ are established. Therefore, the results and the examples of this paper are the abundance of the linear combinations of projections. They can be used as a reference for future research.

The pseudospectra of bounded operators have many good properties, how to study the pseudospectra of linear combinations of other bounded operators is worth considering in the future.

References

- [1] C. Conde, A note about the norm of the sum and the anticommutator of two orthogonal projections, J. Math. Anal. Appl. 505(2) (2022), 125650.
- [2] H. Klaja, The numerical range and the spectrum of a product of two orthogonal projections, J. Math. Anal. Appl. 411(1) (2014), 177–195.
- [3] D. Vujadinović, Boundedness of the orthogonal projection on Harmonic Fock spaces, Complex Anal. Oper. Theory 16 (2022), 13.
- [4] K. Nouri, M. Fahimi, L. Torkzadeh, D. Baleanu, Numerical method for pricing discretely monitored double barrier option by orthogonal projection method, AIMS Mathematics 6(6) (2021), 5750–5761.
- [5] W. López, A new way of computing the orthogonal projection onto the intersection of two hyperplanes in a finite-dimensional Hilbert space, Applied Mathematics E-Notes 18 (2018), 116–123.
- [6] J. Benítez, V. Rakocěvić, On the spectrum of linear combinations of two projections in C*-algebras, Linear Multilinear Algebra 58(6) (2010), 673–679.
- [7] T. F. Li, C. Y. Deng, On the invertibility and range closedness of the linear combinations of a pair of projections, Linear Multilinear Algebra 65(3) (2017), 613–622.
- [8] C. Y. Deng, M. Mbekhta, V. Müller, On spectral properties of linear combinations of idempotent, Studio Mathematica 180(3) (2007), 211–217
- [9] H. L. Gau, P. Y. Wu, Fredholmness of linear combinations of two idempotent, Integral Equ. Oper. Theory 59 (2007), 579-583.
- [10] M. Barraa, El. H. Benabdi, On equivalence of linear combinations of idempotents, Linear Multilinear Algebra 68(5) (2020), 983–990.
- [11] D. S. Cvetković-Ilić, M. Kostadinov, Invertibility of linear combination in $\mathcal{B}(\mathcal{H})$, Linear Multilinear Algebra 66(11) (2018), 2139–2150.
- [12] H. K. Du, X. Y. Yao, C. Y. Deng, Invertibility of linear combinations of two idempotents, Proc. Am. Math. Soc. 134 (5) (2005), 1451–1457.
 [13] J. J. Koliha, D. S. Cvetković-Ilić, C. Y. Deng, Generalized Drazin invertibility of combinations of idempotents, Linear Algebra Appl.
- 437(9) (2012), 2317–2324.
 [14] El. H. Benabdi, M. Barraa, The Drazin and generalized Drazin invertibility of linear combinations of idempotents, J. Math. Anal. Appl.
- 478 (2019), 1163–1171. [15] T. Kato, *Perturbation Theory for Linear Operators*, Spring-Verlag, Berlin, 1995.
- [16] S. M. Rump, Eigenvalues, Pseudospectrum and structured perturbations, Linear Algebra Appl. 413 (2) (2006), 567–593.
- [17] S. Raouafi, Operators with minimal pseudospectra and connections to normality, Oper. Matrices 14 (1) (2020), 91-103.
- [18] A. Ammar, A. Bouchekoua, A. Jeribi, *The ε-pseudospectra and the essential ε-pseudospectra of linear relations*, J. Pseudo-Differ. Oper. Appl. **11**(2) (2020), 879–915.
- [19] V. R. Kostić, Lj. Cvetković, E. Šanca, From pseudospectra of diagonal blocks to pseudospectrum of a full matrix, J. Comput. Appl. Math. 386 (2021), 113265.
- [20] N. Roy, M. Karow, S. Bora, G. Armentia, Approximation of pseudospectra of block triangular matrices, Linear Algebra Appl. 623(15) (2021), 398–419.
- [21] J. L. Cui, C. K. Li, Y. T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419(2) (2014), 1261–1273.
- [22] B. T. Jia, Y. L. Feng, An observation about pseudospectra, Filomat 35(3) (2021), 995–1000.
- [23] F. B. Brahim, A. Jeribi, B. Krichen, Essential pseudospectra involving demicompact and pseudo demicompact operators and some perturbation results, Filomat 33(8) (2019), 2519–2528.
- [24] L. N. Trefethen, M. Embree, Spectra and Pseudospectra: The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.
- [25] D. S. Cvetović-Ilić, C. Y. Deng, Some result on the Drazin invertibility and idempotents, J. Math. Anal. Appl. 359 (2009), 731–738.