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The pseudospectra of linear combinations of two orthogonal
projections in the Hilbert space

Ruiyao Xue?, Guolin Hou*"

?School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, P.R. China

Abstract. Let P and Q be two orthogonal projections in Hilbert space H. For a, € C\{0}, the lower
bound and the upper bound of the pseudospectra of aP + Q are obtained. The bounds are represented by
the product PQ which are independent of the choice of scalars «, . For a,f € C\{0},a +  # &, & € C, the

bounds of the pseudospectra of aP + BQ — £PQ are also obtained in the same way. Finally, two examples
are constructed to show the effectiveness of the results.

1. Introduction

Throughout this paper, H denotes a Hilbert space and B(H) is the set of all bounded linear operators on

H. An operator P € B(HH) is said to be an idempotent if P? = P and an orthogonal projection if P> = P = P".
The spectrum of T € B(H) is defined as

o(T) = {A € C: A — Tis not invertible}.

The e-pseudospectrum of T with ¢ > 0 is defined as

o.(T)=0o(T)U Up,s(T)/

where g, .(T) = {A € p(T) : [|(A = 7Y > %} and p(T) = C\ o(T).

For the sake of simplicity, write my,|),) := min{|A1], |A2]} and My, 0, = max{|Aq], |A2]} for A4, A, € C.
Also, B(a, €) :=={z € C : |z — a| < €} with € > 0. The identity operator in Hilbert space is denoted by I, Va € C,
al is denoted by a.

There have been many studies on orthogonal projections, see [1H5] and the references cited therein. In
addition, the properties for linear combinations of idempotents or orthogonal projections also have many
applications. The spectral properties of the linear combination of idempotents or orthogonal projections
are proved in [6H8]. Then, the Fredholmness, equivalence form, and the necessary and sufficient conditions
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for the invertibility of the linear combination of idempotents are obtained in [9-12]. Last but not least,
the literatures [13| [14] show the equivalence of two spectral sets, which is a prerequisite for studying
their pseudospectral bounds. But the pseudospectra of linear combinations of idempotents or orthogonal
projections have not yet been fully investigated.

The studies of pseudospectra of matrices and linear operators are increasingly improved, see [15H20].
Cui [21] summarized the pseudospectra of some special operator classes like normal operators, nontrivial
projections, nilpotents and so on. Then Jia and Feng [22] provided a characterization of those operators T
satisfying 0.(T) = o(T) + B(0, ¢) for all ¢ > 0. There are also detailed classifications of pseudospectra, such
as essential pseudospectra. The note [23] studied the essential and the structured essential pseudospectra
of closed densely defined linear operators acting on a Banach space. The pseudospectra are shown to
be so useful in various mathematical applications. For instance, applications to Markov chains, cutoff
phenomenon and lasers can be found in [24].

To enrich the properties for linear combinations of orthogonal projections, the bounds of the resolvent
norms of aP + pQ (resp. aP + fQ — EPQ) are considered, and then the bounds of pseudospectra of aP + Q
(resp. aP + pQ — EPQ) are established by the product PQ in the present paper. Finally, two examples show
that the pseudospectra of PQ (resp. 1 — PQ) are easier to calculate than aP + pQ (resp. aP + fQ — £PQ).

2. Main results and proofs
From [25] Theorem 2.7] and [13| Lemma 3.1], the following lemma is given.
Lemma 2.1. Let P, Q be orthogonal projections in B(H) and o, p € C\{0}. If A € C\{0, a, B}, then
A €o(aP + Q) & (1 -a 'A)(1 - p7A) € o(PQ). (1)

Lemma[2.T]indicates that the spectra of linear combinations aP + fQ equal to the spectra of the product
PQ. If T is normal, it is well-known that ¢.(T) = o(T) + B(0, ¢). When P, Q are orthogonal projections and
commutative, one can check that «P+pQ and PQ are normal operators. Therefore, the following proposition
is obvious.

Proposition 2.2. Let P,Q be orthogonal projections in B(H) and o, € C\{0}. If P,Q are commutative and
A € C\{0}, then

Aeo(aP+BQ) = (1-a )1 -p'A) € 0.(PQ).

Next we consider the bounds of o.(aP + fQ) without the commutability through the information of the
product PQ based on Lemma

Theorem 2.3. Let P,Q be orthogonal projections in B(H) and a,p € C\{0}. If A € C\{0,a,p} and set u :=
(1—a A1 = B1A), then

HeoPQYUL = A €o.(aP +pQ) = p € o(PQ)U Uy,
where

_ _ 1
Ly = {u € p(PQ) : A myg-1 0y 1—a1a) - Mg a1—pa - 11 — PQ) I > Z}'

- _ 1
Uy = {p € p(PQ) : A Mig1ap1-a12 - Migaai—pa - (e = PQ I > E}'
Proof. From [13] Equation (3.2)], it can be seen that

(A=(@P+pQ) ' =271 - A= Q)u-PQ) (1 -a"'A-P).
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Moreover, for all x € H, we have
(A = (@P + pQ)) x|
= AT PN - BT'A - Q)(u - PQ) (1 — A - PP
=A@ Q+ ) —PQ) 1 —a'A = P)x,(u - PQ)'(1 —a'A - P)x),

where
a=pA+pIA-1,c=1-p AP

9949

Since ¢1Q + c; is a positive operator, there exists a positive square root S = £Q + 1 such that S2=c1Q+0c,

in which 1 = /c3, & = —+/cz + [87!A]. And then
(A = (@P +BQ) P = AP 1 S(u — PQ) A —a™' A= P)x |

Because (1 — a”'A — P) is invertible and combining Equation (2), we have

B 1y IS(u = PQ)™1(1 —a™'A — P)x||
154 = PRI = sup == = S P
~ \[su I((A = (aP + BQ)) x|
P Ta—a A =P

First, for x € H = R(P) ® R(P)*, x = x1 + xp, where x; € R(P), x, € R(P)*,
I(1—a A =P)xl? =1l - Px+ (1 —a ' D)xl* = la APl P + (1 — a ' AP,
this concludes that

-1
M1 71—~ X < (X = ™A = P)xl| < M1 1-a-1211%Il-

()

(4)

Next we estimate the bounds of ||S|| and ||S7}||, here S~ = (IBA7Y] - %)Q + \%Fz For x € H = R(Q) ® R(Q)*,

x = x3 + x4, where x3 € R(Q), x4 € R(Q)™, it is similar to get

1531 = (1B~ Al = Ve2)Qx + vea)xll? = 187 APllxaI? + eallxal .

Hence

Mg -l < NISxll < Mg g1l

and
4 1
i llxll < 157 x| £ ———Ix]I.
Vez Bl M ey |14l

ISl
llxll 7

T then the following estimates are obtained

Noting that [|S]| = sup B2 |51 = sup
x£0 x#0

m\/a/wil/u < ”S” < M‘/a/w—l}u,

YT <Y s ——.
Vez Bl M e Jp1Al

Setting T = S(u — PQ)™" and by (2)-(5), we have
ANIA = (@P + pQ))~"I <IITll < IMII(A = (aP +.BQ))_1||'

M1 a1 1-a-12) Mg A 1= |

(6)
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The inequalities (5) and (6) show that

I A — (P + Bl

I — PQ)!I > > ,
(= P2 51 2 My Mo
(t — PQ)™! = S7IT indicates that

ANIA = (@P + pQ)~

Ma-17]J1-a 171 * T ey g1

(= PQHI < ISTHI- Tl <
Afterwards,

1 _ _ _
P [ Yy Mg I = PQ) "< NIA = (@P + )~
< IATHMigtap -y M i (= PQ)|

implies that

{u € p(PQ) : A myg-12 1011 Mg llu = PQ)|| > %}
(1 € plaP + Q)< A - @P + Q) > 7}
1
={p € p(PQ) : N M 111011 "M g I — PQ)!|I > g)}-

Then the lower bound and upper bound of o, (aP + Q) are obtained and written as

_ _ 1
Ly = {p € p(PQ) : A g0 101 Mg - 1 — PQ) Y > E}’

and
1
U = {u € p(PQ) : N~ Mg 1012y - Migaypnga - I = PQTHI> =,

where u = (1-a*A)(1 —p7!A)in L; and U;.
Combining the relation (I), it can be seen that

p€a(PQ UL = Aea(aP +pQ)Uope(aP + Q) = u € a(PQ)U U.
O

Example 2.4. Define operators P and Q in B(H) by

ir i I
— 2 2 —
P_(ll 51)7 2={o

o)

9950

One can check that P, Q are orthogonal projections and c(2P+ Q) = {% + ‘/75}. Leta=2,=1,A€C\{0,1,2, % + %}

and p=(1- %/\)(1 — A). Then

o 1 A-DI I
(A_(ZPJFQ))1_(A—2)(A—1)—1( I (A—Z)I)’

B o 2 ul 0
(1 =PQ) ‘(Zu—nu(%l (u—%ﬂ)'
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For different values of A, My y -1, and M- can be divided into three cases. First suppose that My 1)) = 13l
and M|/\|/|1_/\| = M| Then,

A-1(A-2) 1
| 2u—-1 2u-1

1
1= SAl 1= AL i - PQ)7!|| = max{

M- A A=)

. —_ -1 =
I = @P + Q)7 = max| 5 P I L 15—

1},

A2 A? A2

o e At

31 s = PQ) " = max

From the assumption, we get

1 A A2 AL =2) A?
15 <] < Lo <] l
u—1""72u-1 2u-1 2u—-1 2u-1

A-1)(A -2 AA -1 A?
1<t 2)( < 222D < l
u—1 2u-1 2u-1

Forall ¢ >0,
1 1
z < AT - E/\I L= Al (e = PO < II(A = 2P+ Q)7
1
< AT ISAL AL DG = PQ)

In the other two cases, the verification method is similar and omitted here.
Hence,

(€ p(PQ) + 1A mys ya -y - -l = PQ)HI > %}
={AepP+Q): (A - 2P +Q)'|l > %}
=1 € pPQ) : W Mgy My I = PO > D).
Combining the relation @), it can be seen that
1€ a(PQ) U € p(PQ) : Iy a1y myanoay - It = PQ) I > %}
=>A1€0:2P+Q)=0(2P+Q)VU0,2P+ Q)
=1t € 0(PQ) U {1 € p(PQ) - I\ Wy - My I = PQ)I> D))
This justifies Theorem

Corollary 2.5. Let P,Q be orthogonal projections in B(H) and a,p € C\{0}. If A € C\{0} and Re(a"')) =
Re(B7'A) = 1,1A| = |ap|, then

A€o (aP +pQ) = u € a.(PQ),

where = (1 —a”1A)(1 = B1A).
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Proof. Under the conditions and combining the inequality (), it is clearly that

A M- A p—ama NS IATHM g 2101 "M g =1
thus

1A = (@P + BQ) "Il = Il — PQ)'Il
and

A €ope(aP + Q) & u € 0,.(PQ).
Combining the relation (), it is easy to get

A€ o.(aP + pQ) & p € 0.(PQ).

|
By analogous argument, we obtain the results about another linear combination aP + Q — PQ.

Lemma 2.6. Let P, Q be orthogonal projections in B(H) and a, p € C\{0},a + B # £, £ € C. If A € C\{0, 0, B} and
EA # apf, then

AMA+E—a—-p)

A€o(aP + Q- EPQ) = EA—ap

€ o(1 - PQ). @)

Proof. Let A € C\{0, o, B}, EA # aB. If 0 < |A| < min{la, |B], |.‘50|tf|1 }, following [14} Theorem 2.2], we note that

AHA = a1 = P))(A — (@P + BQ ~ EPQ)(A - p(1 - Q))

B AA+E—a—p)
=(éA - “ﬁ)(w - (1-PQ)), 8)

where A —a(1 — P) and A — (1 — Q) are invertible, this implies the relation @) O

Besides, it is easy to know that aP + fQ — £EPQ and 1 — PQ are normal operators when P, Q are orthogonal
projections and commutative. So the following conclusion is evident.

Proposition 2.7. Let P,Q be orthogonal projections in B(H) and o, € C\[0},a + B # &,E € C. If P,Q are
commutative and A € C\{0,a, B} , EA # af, then

AA+E—a—-P)
EA—ap

Next we investigate the general properties without the commutability of o.(aP + BQ — EPQ).

A€o (aP +BQ - EPQ) = € 0.(1 = PQ).

Theorem 2.8. Let P, Q be orthogonal projections in B(H) and o, f € C\{0}, a+p # £, £ € C. IfA e C\[0,a, B}, EA #

ap and set v := =5

veo(1-PQYUL, = Aeco(aP+pQ—-EPQ)=>vec(l-PQ)U L,

where ,
Ly = {v € p(1 = PQ) : |AI™" - |EA = Bl mpapacal - mypa—p - I(v = (L = PQ)) Y| > g},

Uy = v € p(1 = PQ) I+ A = afl™ Misa-at - Mygacpr - 167 = (1= POY > 2.
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Proof. From the Equation (§), it is observed that
(A= (aP+pQ - EPQ)™!
=ATH(EA = ap) (A = B(1 - Q)(v = (1 - PQ)) (A — a(l - P)).

Moreover,

(A = (aP + BQ — EPQ)) "I
=NTTPIEA = ap) T H(e3Q + e)(v = (1= PQ) (A — a(l = P))x, (v = (1 = PQ)) (A — a(1 - P))x) ©)

where ¢; = AB + AB — |B%, ¢4 = |A? — c3. Since ¢3Q + ¢4 is a positive operator, there exists a positive square
root B = £Q + n such that B? = ¢3Q + ¢4, in which 1 = /e, & = |A| — v/cs. And then

(A = (aP + BQ — EPQ)) "I
=NTPIEA = ap) T PIB(r ~ (1= PQ) ™M (A — a(1 — P))xIP.

Because (A — a(1 — P) is invertible and combining Equation @), we have

— _ -1 _ _
1B(v = (1 — PQ))| = sup B0 = = PO)T(A = a1 = D))

ot 1A — a(1 = P)q]
WI-1EA — afl- (A = (P + B - £PQ)) i
—o 1A — (1 = P)x] '

First, for x € H = R(P) & R(P)*, it is similar to conclude that
mp-alllxll < (A = a(l = P)xll < My ja-allxl.

Then we gauge the bounds of ||B|| and ||[B~!||, here B! = (ﬁ - ‘/LE)Q + \/%I For x € H = R(Q) ® R(Q)*, it is
similar to get

m Il < 1Bl < Myl

and

1

-1

llxll < IB™ x| <

Vez Il M ez Al

llx]l.

Setting A = B(v — (1 — PQ))~! and combining with the proof above, we obtain that

AL 1EA = apl - lI(A = (aP + pQ — EPQ))' <Al < AL 1EA = apl - I(A = (aP + pQ — EPQ)) Il

M a=af M| JA=al
A = B(v — (1 - PQ))~! shows that

Al IAL-1eA — apl - [I(A — (aP + pQ — EPQ)”lI

v—(1-PQ) 2 =
(v = (1= PQ)~Il Bl M ja-ai - Mg

(v—=(1-=PQ))™"' = B'A indicates that

AL 1EA = apl - (A = (aP + BQ — EPQ)) Il

MALA=al = T ez A|

(v = (1= PQ)'ll < 1B~ - [|All <
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v € p(1 = PQ) -GN ~ af) - mnag -yl = (1= PQ) > )
(A € p(aP + Q- EPQ): (A~ (@P + QO - PQ) I > =)
={v e p1—=PQ): AT 1(EA = aB) ' Mol - M ygull(v = (1 = PQ) || > %}_
Then the lower bound and upper bound of o, (aP + fQ — £PQ) are obtained and written as

v € p(1 = PQ): A+ IEA ~ af) - - m gl = (1 = PQY I > ) = Lo

and
_ _ _ 1
{vep=PQ): AT I(EA = af) - Miyja—al ‘M Gnll(v = (1-PQ)) > g} =,
where v =: mﬁ;‘%ﬁ in L, and U,.

Combining the relation (7), it is known that
vea(l-PQ)UL, = A€o (aP +pQ—-EPQ) = vea(l—PQ)U Uy.

0
Example 2.9. Consider P, Q are the orthogonal projections given in the Example Leta=2,=1,& =2, 0ne
can check that 6(2P + Q — 2PQ) = {1}. If A € C\{0, 1,2}, then EA # afand v = %ﬁ;—m = % Moreover
] 2l
A-@P+Q-2PQ)~ = “ P 5 ),
0 !

2 7 0
(v-(1-PQ)" = ( SR ) :
v-1)(u-1) (u=1)
For different values of A, M1 5,y _1 and My 1-x also can be divided into three cases. First suppose that Miyja-1 = |A|
and M|/\|,|A_2| = |A| Th@?’l,

A =11 1A =2/ I(v = (1 = PQ)) "Il = max{2|A — 2|, |A - 1|, 1},

AEA = ap)l-[I(A = 2P+ Q = 2PQ)) | = max{2Al, ‘M—z'_Mu )

20P AP AP

-2 e ha=

AL 1AL lI(v = (1 = PQ))™H| = max{] I}

From the assumption and for all € > 0,
1
- <WEA—ap) I =14 =20 i = (1= PQ)
<NA = @P+Q —2PQ) I < IATHEA = aB) |- 1AL AL - [I(v = (1 = PQ)) Il

In the other two cases, the verification method is similar and omitted here.
Hence,

v € p(1 = PQ): 7 (EA — af) maaca - miacn Iy = (1= PQ) > )
(1 € p@P+Q~2PQ): (A - 2P+ Q ~2PQ) I >

={v e p(l - PQ): INHEA = af) M2y - Miyac - II(v = (1 = PQ) Y| > %}-
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Combining the relation @), it can be seen that

1
&

veo(l-PQ)U{vep(l—PQ): A EA—ap) ™ - myua - mya-1 - I(v — 1 = PQ) I > =}

=M €0.2P + Q- 2PQ)
=veo(l-PQ)U{vep(l-PQ): N EA-ap)™ |- M-z - Mpya-t - II(v = (1 = PQ) Y| > %}-

This verifies Theorem

3. Summary and discussion

In Hilbert space, we recall the equivalence relation of the spectrum between linear combinations of two
orthogonal projections and the product of that. What is more, the bounds of the pseudospectra of aP + Q
and aP + pQ — EPQ are established. Therefore, the results and the examples of this paper are the abundance
of the linear combinations of projections. They can be used as a reference for future research.

The pseudospectra of bounded operators have many good properties, how to study the pseudospectra
of linear combinations of other bounded operators is worth considering in the future.
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