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Abstract. In this paper, we consider in the product of Banach spaces X1 ® X» ® ... ® X,,, the n x n-block
matrices of linear relations in the form,

A],l ce Al,n

At e Aun

where the entries of the matrix are in general unbounded linear relations and satisfy the following condi-
tions:

A X;—> X, Vi jefl, .., n}
Studying the spectral properties of M, it is natural to take stability of closedness for this matrix. So, we

have to study this problem in the present paper. In addition, we show under some suitable conditions that
M is a Fredholm linear relation.

1. Introduction

The theory of multivalued linear operator (or linear relation ) arises frequently in the analysis of single
valued linear operators motivated by the need to consider the adjoint of non densely defined operators, the
closure, the inverse and the completion of linear operators. One of the works ashieved on the multivalued
linear operators is the study of some Cauchy problems associated with parabolic type equations in Banach
spaces (see [12]).Let X and Y be two Banach spaces. A linear relation T : X — Y is a mapping from a
subspace the domain of T, into the collection of nonempty subsets of Y such that

T(arx1 + anxp) = a1T(x1) + axT(xy), for all nonzero scalars ay, ap and x1,x; € D(T). For x € X, x ¢ D(T) we
define Tx = 0. With this convention, we have

D(T) = {xeX: Tx #0}.
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The class of all linear relations from X to Y is indicated by LR(X,Y). The set of all closed linear relations
from X to Y is indicated by CR(X, Y). If T € LR(X, Y), then the graph of T is the subset G(T) of X X Y defined
by

G(T) = {(x,y) € Xx Y : x € D(T), y € Tx}.

The inverse of T is the relation T~! given by
GT™ = {(y,2) € Y x X : (x,y) € G(T)}.

If T maps the points in its domain to singletons, then T is said to be a single valued or an operator. Let
M cC X be a subset, we write

T(M) := U{T(m) : m € M0 D(T)}

called the image of M, with R(T) := T(X) = T(D(T)) called the range of T. If R(T) = Y, then T is called
surjective. Moreover, from [10, Proposition 2.3.], we have y € Tx &= Tx = y + T(0), where x € D(T). Thus,
we say that T € LR(X, Y) is single valued or operator if and only if T(0) = {0}, if and only if T~! is injective.
Now, let T € LR(X,Y), we define a selection A of T by

T=A+T-Tand D(T) = D(A).
If A is a selection of T, then we have,
ITxl| < |Ax|l, Yx € D(T).

Several problems in mathematical physics are defined by the system of partial or ordinary differential
equations or linearizations thereof. In applications, the time evolution of a physical system is governed
by block operator matrices. Hence, the spectral theory of these matrices plays a very important role. In
the last decades, F. V. Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov (see [15]) studied the Wolf
essential spectrum of a block operator matrix. An account of the research and a large panorama of methods
to investigate the spectrum of block operator matrices were presented by in C. Tretter in [16] and A. Jeribi
[13].

T. Alvarez, A. Ammar and A. Jeribi in their work [3] thought to expand these results for block operator
matrix to block matrices of multivalued operators. In [6] A. Ammar, S. Fakhfakh and A. Jeribi expand
firstly the main results of Tretter in [16] to linear relations and gave a necessary and sufficient condition
for a 2 x 2 block matrices of linear relations L to become closed and closable. Secondly, they studied the
stability of the essential spectrum of this matrix linear relation. In [5] A. Ammar, T. Diagana, and A. Jeribi,
have studied the spectral properties of a 3 X 3 block matrices of linear relations A.

In this work, we consider in the product of Banach spaces X; ® X, ® ... ® X,,, the n X n block matrices of
linear relations defined by

A1,1 . Al,n

where the entries of the matrix are in general unbounded linear relations and satisfy the following condi-
tions:

Ajj: Xj— X, Vi, je{l,..,n}
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M is defined by its graph as follows:

n
U1 € Z Alliui
i=1

GIM) = ; EXI®X,®...®X,)?
n
v, € ZAn,iui
i=1
n

DM) = ([ DA;) x ﬂ@(A,z> x(ﬁ@(Ai,o).
i=1 i=1 i=1

We decompose M as follows:

n—
M=D+ Z B;, (2)
i=1
where
Ain O 0 0
0 Ay O : 0
D=l 0 o 0 :
. . 0 An—l,n—l 0
0 ... 0 0 Ann
and, Vie{l,..,n—1}:
0 e 0 At 1) 0 ... 0
: 0 ... O 0 Az n(iz2) :
. 0 . . 0 0
g=| © 0 0 0 0 A
Ai+1,1 0 0 . : . 0 0
0 Ay O 0 0 : :
: 0 0 ... ... 0 :
0 0 Apni 0 ... 0

Our main objective is to use the decomposition of M with two different situations (see the hypothesis (H)
and the hypotheses (H;) and (H>)). First we consider the situation where each $; is D-bounded. Next we
consider the situation where B; is D-bounded and Vi € {1, ..., n — 1}, B;;1 is Bi-bounded. In both situations,
we study two different problems. The first problem is to study the closure of M. The second problem is
to study the Fredholm properties of a perturbed linear relation. Moreover with the help of the previous
decomposition, we study the Fredholm properties of M.

Our paper is organized as follows:

In Section 2, we give some definitions and auxiliary results, sometimes purely algebraic, which are used to
prove the main results. In Section 3, we study the perturbation of linear relation. More precisely, we prove
under some hypotheses that a perturbed linear relation is a Fredholm linear relation. Moreover, we study
the closure of M. More precisely, with the help of the decomposition (2), we prove that M is closed if and
only if D is so (see Theorem . Moreover, we prove in Theorem that M is closed if and only if A;,
.., Ay are closed. Finally, we show under the hypothesis (H) (respectively the hypotheses (H1) and (Hy)),
that M is a Fredholm relation.
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2. Preliminaries and Auxiliary Results
The main aim of this section is to supply some auxiliary results which will be needed in the sequel.

Definition 2.1. Let T € LR(X,Y) and S € LR(Y, Z) where R(T) N D(S) # 0. The composition (or product) ST in
LR(X, Z) is defined as follows:
(ST)(x) := {S(Tx), (x € X)}

where D(ST) = {x € X : Tx N D(S) # 0}.
Hence,
D(ST) = T"X(D(S)).

From the definition of ST it is easily seen that
G(ST) = {(x,2) € XX Z: (x,y) € G(T) and (y,z) € G(S), for some y € Y}.

Definition 2.2. Let T € LR(X,Y) be a linear relation, we denote by Qr is the natural quotient map of Y onto Y/T(0).
It is clear that Qr is single valued.
We define

ITx|| = IQrTxl|, for all x € D(T) and ||T|| = [|QrTI|

called the norm of Tx and T respectively.
Proposition 2.3. [11} Prposition I1.1.7] Let S, T € LR(X, Y) we have
IS+ TI < ISl + 11Tl

and
laT|| = |a|lITIl, where a € K.

Definition 2.4. The minimum modulus of T € LR(X,Y) is the quantity
Y(T) := sup{A : ||Tx|| = Ad(x, N(T)) for x € D(T)}.
We have the formula y(T) = ||~ L.
Definition 2.5. Given T € LR(X,Y), let Xt denote the vector space D(T) normed by
llxllr == lixll + ITxll, ¥x € D(T).
Let Gt € LR(Xr, X) be the identity injection of Xt into X, ie.
D(Gr) = X7, Grx=x VYx € Xr.
Gr is called the graph operator of T.

Remark 2.6. If T is a closed linear relation on a Banach space X. 1t is clear by the closedness of T that (D(T), ||.lIt) is
a Banach space.

Now, we give the definition of Fredholm relation. Several authors studied this theory, see for instance
2,45, [17].

Definition 2.7. Let T € LR(X,Y) be a closed linear relation where X and Y are Banach spaces, then the classes of
Fredholm, upper semi-Fredholm and lower semi-Fredholm linear relations are defined, respectively, by:

DX, Y)={TeCR(X,Y): R(T) is closed, a(T) < oo and (T) < oo},
O.(X,Y)={T € CR(X,Y) : R(T) is closed and a(T) < oo}
and
P_(X,Y)={T e CR(X,Y) : R(T) is closed and B(T) < oo}.
Moreover, a(T) := dimT~1(0) := dim N(T) and B(T) := dim Y/R(T), called the nullity and deficiency of T,
respectively. The index ind(T) of T is defined as ind(T) := a(T) — B(T).
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Lemma 2.8. Let G,S € LR(X,Y) be two linear relations.

(i) [11), Exercise 1.2.14(b)] If D(G) = D(S) and G(0) = S(0), then G = S or the graphs of G and S are incomparable.
(ii) [17, Proposition 2.7] If G € O(X,Y), D(S) > D(G), 5(0) € G(0) and ||S|| < y(G), then ind(S + G) = ind(G).
(ii1) [[11, Proposition 11.5.3] G is closed if, and only if, QcG is closed closed and G(0) is closed.

(iv) [5), Lemma 2.3] G = S + S = G if, and only if, Qc(S) is a single valued operator and ||Qc(S)I| < |Qs(S)II-

Proposition 2.9. Let S and T be two n X n block matrices of linear relations defined by
Si1 e Sin T e Tin
s=| ¢ i fedT=| o
Su e Sun T e T
where the entries of the two matrices are in general unbounded linear relations and satisfies the following conditions:

Si,]‘ : X]' - X; and Ti,]‘ : X]‘ - X, Vi,j S {1,..., I’l}.

Then,
51,1 + T1,1 e Sl,n + Tl,n
@OS+T=
Sn,l + Tn,1 Ce Sn,n + Tn,n
Si1 ... Sin T .. Tipn Y1 S1iTin ... Y151 Tin
() C
Sn1 ... Sun Th1 ... Tun Y1 SniTin . Y SniTin
Proof. (i) We have
0 51,1 . sl,n T1,1 Ce Tl,n 0
0 0
S+1)| = : o+
0 0
0 Sn,l Sn n Tn,l Tn n 0
Si1 Sin 0 Tia Tipn 0
0 0
0 0
Sni ... Sun 0 Ty ... Tiun 0
51,1(0) + T1,1(0) .. S1,4(0) + T1,,(0
S511(0) + Ty, 1(0) ... Snn(0) + T, 1(0)



A. Ammar et al. / Filomat 39:28 (2025), 9957-9972 9962

(51,1 + T1,1)(0) e (S1,n + T1,,)(0)
(Sn,l + Tn,l)(o) s (Sn,n + Tn,n)(o)
Hence,
0 51,1 + Tl,l . Sl,n + Tl,n 0
0 0
s+ : |=

0 0
0 Sn,l + Thn - Sn/,, + Ty 0

Moreover, we have

DS+T) = D(S) ﬂ D(T)

ﬂ D(Si1)) x ﬂ D(Si2)) X ... X ﬂ D(Sin)

Al ﬂ D(T;1)) x ﬂ D(T;2)) X ... X ( ﬂ D(T;,))

Q D(si() Q D(T;1)) x Q D) ) O D(T;2))
x ﬂ DS [ ) ﬂ D(T;,))

ﬂD(S,1+T11) ﬂD(smLle) X oo X ﬂD(S,n+Tm))

51,1 + T1/1 - Sl,n + Tl,n
= D
Sn,1 + Tn,l . Sn,n + Tn,n
On the other hand, let
X1 n
X2 Y2
: eG(S+T).
Xn-1 Yn-1
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251 (%1 n
Uz 02 2
Then there exist and : , such that :
Up-1 Un-1 yn—l
Uy U }/n
1y S11
Uz
: €
Up-1
Up Sn,l
and
1 Tia
02
€
Un-1
Un Tn,l
Hence,
1 Uy +01
2 Uy + 02
B E1 R
Yn- Up-1 + Up—1
Yn Uy + Uy
We obtain,
1 U + 0 Si1+ T
Y2 Uy + 02
. = . E
Yn-1 Up-1 + Up—1
]/n Uy + 0y Sn,l + Tn,l
Consequently,
S11+Tia
GS+T)cG
Sn,l + Tn,l

In the end, the result follows from Lemma 2.8 (i).
(ii) Let

x1 " S11
X2 2
P €eG
Xn—-1 Yna

Xn ]/n Sn,l

251 01
25 02
: + - |, with
Up—1 Up-1
Uy Un
Sin X1
X2
Xn-1
Sn,n Xn
T X1
X2
Xn-1
Tn,n Xn

(S1,1+Ti)x1 +(S12+Ti)xo + .o+ (S1p + Tiu)xn
(52,1 + To1)x1 + (So2 + Top)x2 + .. + (S + Tou)xn

(Snfl,l + Tnfl,l)xl +...+ (Sn—l,n + Tn—l,n)xn
(Sn,l + Tn,l)xl + (Sn,2 + TH,Q)XQ +...+ (Sn,n + Tn,n)xn

Sl,n + Tl,n X1
X2
Xn-1
Sn nt Tn,n Xn
Sl,n + Tl,n
Sn,n + Tn,n
Sin T T1n
Sn,n Tn,l Tﬂ,ﬂ
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21
22

Then there exists

Zp-1
Zn

X1
X2

Xn-1
Xn

and
21
4)

Zn-1
Zn

We get
21
23

Zp-1
Zn

and
Al
Y2
Yn-
Yn
Hence, Yk € {1, ..., n}

eEXi XXy X..

. X X, such that

71 T
22

eG

Zp-1

" S1,1
Y2
: eG
Yn-1
Yn Sn,l

Sn,l Sn,n

9964

Tl,n

n n
Zk € Z Tk,jx]- and Yk € Z Sk,l‘Z[.
=1 i=1

Thus, Yk € {1, ..., n}

n n
Yk € Z‘ Z Sk,iT,‘,]'x]‘.
=1 i=1
Consequently,
N Y1 51iTia
2
€
yn—l
Yn Yt SniTin

n
Yic151iTin x1

X2

Xn—-1

n
Zi:l Su,iTin Xn
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3. Main results

The aim of this section is to study the perturbation of linear relations

Definition 3.1. [11} Definition VII.2.1] Let G, S be two linear relations on some Banach space. We say that S is
relatively bounded with respect to G, or simply G-bounded, if D(G) € D(S) and there exist a > 0 and b > 0 such that

IS¢l < allll + bliGll, Yo € D(G). 3)
In this case the minimal constant b such that (3) holds, is called the G-bound of S.
Remark 3.2. The inequality (3) is equivalent to,

ISell* < ﬂ%“({)”2 + bfllG(PHz/ Yo € D(G),
where a; = Va? + ab and by = Vb2 + ab.

Proposition 3.3. Let Ay, ...,A,, and B be m + 1 linear relations defined on a Banach space X. Then, the following
assertions holds true:

m
() If, Vi e {1, ...,m}, A; is B-bounded with relative bound b; < %, then Z A; is B-bounded with relative bound < 1.
i=1

m
(i) If, Vi € {1,...,m — 1}, Ajs1 is Ai-bounded and A, is B-bounded, then Z A; is B-bounded with relative bound < 1.
i=1

Proof. (i) Since Vi € {1, ...,m}, A; is B-bounded, then we have
lAipll < aillpll + billBoll, Yo € D(B).

Now, using triangle inequality, we obtain: Y¢ € D(B),

1" Aigll < allell + BliBell
i=1

m m

Moreover, since b; < %, then g = Z b; < 1. Thus, Z A; is B-bounded with relative bound g < 1.
i=1 i=1

(i) By hypothesis, Vi € {1, ...,m — 1}, we have

A1l < aiall@ll + biallAipll, Yo € D(A),

and
lA1ll < a1ll@ll + b1||Boll, Yo € D(B).

Hence, it is clear that, Vi € {1, ..., m}, Vo € D(B),

i i

Al < (Y (0 T o6))lioll + ]i[banq)n.

=1 k=j+1 =1
Thus,
1}, Al < allgll + BlBell, Ve € D(B)

i=1
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m i i m i
where a = aj byand g = anj.
i=1 j=1  k=j+1 i=1 j=1
m i
On the other hand, It is not difficult to see that = Z bi <1 |
i=1 j=1

Now, we study the perturbation of Fredholm linear relation

Theorem 3.4. Let S, G € LR(X,Y) such that S(0) € G(0) and let G be the bijection associated with it G. Assume
that there exists a constant ¢ < y(G) such that

IS@ll < c(llpll + 1Gell), Yo € D(G).
IfG e D(X,Y), then S + G € (X, Y). Moreover, ind(S + G) = ind(G), a(S + G) < a(G) and B(T + S) < B(T).

Proof. According to [5, Theorem 3.1], it is clear that S + G is a closed linear relation. Let G, S1 be the
restrictions of the relations G, S to X;. Evidently, G is a Fredholm linear relation and S is a bounded linear
relation. Furthermore, it is clear to prove that (see, [[11, Theorem IIL.5.3]),

IS1ll < ¥(G) = ¥(G).
Thus, by [11, Theorem V.5.12] and [11} Theorem V.3.2], we get S1 + G1 € ®(X,Y) and hence, S + G € (X, Y).

Now, the use of Lemma [2.8|(ii) and [11}, Theorem II1.7.4] leads to ind(S + G) = ind(G), a(S + G) < a(G) and
B(S + G) < B(G) and the Theorem is proved. O

Now, we use the decomposition (2) to study some spectral properties of M in two different situations.
Firstly, we assume the following hypothesis:

(H) Forall1 <i#j<n: A;jis Aj-bounded with relative bound < % and A; ;(0) C A;(0).
Proposition 3.5. Under the hypothesis (H), Yk € {1, ...,n — 1}, By is D-bounded with relative bound < %

Proof. According to hypothesis (H) and by taking into account the Remark we obtain, YU =
(ul/ U, ..., un) € D(Al,l) X D(A2,2) X ... X D(An,n)/

2 2 2 2 2
lArsmall® < ajlluall™ + byllAguql
2 2 2 2 2
”An,n—kun—k” < an_k”un—k” + bn_k”An—k,n—kun—k”
2 2 2 2 2
”Al,n—(k—l)un—(k—l)” < an_(k_l)”un—(k—l)” + bn_(k_l)||An—(k—1),n—(k—l)un—(k—l)”

2 2 2 2 2

lAgauall™ < agllunll™ + Oy ll Ay punll”

Hence, YU € D(Al,l) X D(AQ,Z) X ... X D(An,n),

2 2 2 2 2
1B Ul = Aksritall” + oo + A ptcthn—kll” + 1AL n—e—1) i) I” + .. + | Ak n1tnll
n
20112 4 12 2
< Y @l + BIA;
im1
< Iuj? + gilouli?
> a7 ﬁl 7
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where, a1 = {nax 1112 and 1 = {nax b?. Thus, By is D-bounded with relative bound < % and the proposition
<i<n <i<n

is proved. o

Now, we give another hypotheses. For this we suppose that the entries of M satisfy the following
conditions:
(Hy)Vie{l,..,n—1}and ¥j € {1, ..., n} wherei+ 1 # j, Aj1 ) is A; j-bounded and A;;1,(0) C A; ;(0).
(H2) Yj€fl,..,n}, Ay jis A, j-bounded and A1 j(0) C A, j(0).

Proposition 3.6. Under the hypotheses (Hy) and (Hz), we have
(1) By is D-bounded.
(@) Vie{l,..,n—1}, By is Bi-bounded.

Proof. (i) According to hypotheses (H;) and (H;) and by taking into account the Remark we obtain
YU = (u1,u2, ey Mn) € D(Al,l) X D(AZ,Z) X ... X D(An/n)i

lAz1uill* < adllugll* + B3llAL s 1P

lAs 2101

A

IA

@ llual* + b3l Az o1l

a,21_1 ”un—lllz + bf,_l ”An—l,n—l un—lllz

aﬁ””nllz + bfl”An,nunHZ-

“An,n—lun—lnz

“Al,nun”2

IA

IA

Hence, YU € D(Al,l) X D(AZ,Z) X ... X D(An,n)

2 2 2 2 2
IBIUIP = Azl + Azt + . Al + 1Ayl
n
<) P + bIA P
i=1
< alulf +gloul?
< B ,

where, @ = max aiz and = max bl.2. Thus, B; is D-bounded.
1<i<n

1<i<n

(ii) Using the same reasoning as (i), we obtain (ii) and the proposition is proved. O

n—1
Remark 3.7. From the Propositionsand( respectively Propositionsand , we have Z B, is D-bounded

i=1
with relative bound < 1. Hence there exist a and b such that

n—1

l Z Bipll < allpll + bllDell, Y € D(D).

i=1

Example 3.8. Let us consider in Ly(IR?) ® Ly(R%) ® ... ® Lo(R®), the n X n block matrices of Schrodinger relations
defined as follows:

A Ap ... Al -1 At n
A1 A FAys : Ao
M= As1 Vio Ap-21-1 : ’
: Vi-1n-2 A An-1n
Ani oo Apn—a Appo A



A. Ammar et al. / Filomat 39:28 (2025), 9957-9972 9968

where A = Z&Z/Qxf is the Laplacian and Vi, j € {1,..,n}, A;; € Ly 10c(R®) are linear relations defined by
i=1
Vi, jell,.., n},
ﬂi,]' = Vi,]' + fﬂi,]‘ - ﬂi,j,

with Vi,j € {1,..,n}, Vi; € Ly joc(R%) is a positive potential given by V;i(x) = —% for some constant a;; > 0

(hydrogen atom with Coulomb interaction).

From [14, Theorem X.15 p 165] we have Vi, j € {1,...,n}, V; j is A-bounded.

Since ¥i,j € {1,...,n}, V; j is a selection of A; j, then Vi, j € {1, ..., n}, A; j is A-bounded.

Now, it is clear that A; ; satisfied the condition of (H), hence, using Proposition we obtain Yk € {1, ...,n — 1}, By
n—1

is D-bounded. Moreover, from Remark we get Z B; is D-bounded.
i=1

The main results of this subsection are given as follows

Theorem 3.9. Under the hypothesis (H) (respectively the hypotheses (H1) and (Ha)), suppose, moreover, that the
relative bounds are sufficiently small. Then

M is closed if and only if D is so.

n—1

Proof. It follows from Remark that Z B; is D-bounded with relative bound b < 1.
i=1

On the other hand, Since, V1 <i # j <n, A; j(0) C A;;(0), it is clear, YU € D(D),

A

n—1
Ioul < [IMull+ II(Z Bl
i=1

IN

MUl + all]] + bIIOUL|

Since, b < 1, then 1 — b > 0 and hence, we obtain:
1ouUll < LIIMUII + LIIUII (4)
“1-b 1-6"

Moreover, we have
MUl < allU]l + (b + D|DU]. ()

Now, we suppose that D is closed. Let us consider two cases:

Case 1: For alli, j €{1,...,n}, A;; is single valued.
Let (U,), be a sequence in D(D) such that U, — U and MU, — V as n — oco. The use of Eq. @), leads
to:

1 a
1DWU, — Ul < m”M(Un = Ul + mIIUn = Ull.

Thus, the sequence (DU,), is a Cauchy sequence in the product of Banach spaces and so, is convergent.
Since, D is closed, then U € D(D) and DU,, — DU as n — oo. Hence, the Eq. enables us to conclude
that, MU, — MU as n — oo and V = MU. Consequently, M is closed.

Case 2: For alli, j € {1,...,n}, A;; is linear relation.
n—1

Since, V1 <i# j<mn, A;j(0) CA;j(0) = A;;(0), thenz B(0) € D(0). Hence, itis clear that Qp = er]:—ll B4 =
i=1
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n-1 n—-1

Om- Then QM) = Qp(D)+ QD(Z B;). Moreover, by Lemma(iv), we have QD(Z ;) is single valued
i=1 i=1

and Yo € D(D), l l

n-1 n-1
100} B)gll < I1Qpriy (ZB)<p|| = ”ZB(P”
i=1
< all(pll+bIID(P||-
Thus,
n—1

100}, Bl < allgll + HIQo(D)gll, Y € D(D).
i=1
n-=1
On the other hand, Qp (D) is closed, then Qp (D) + QD(Z B;) is closed single valued. This means, since

i=1
n-1

n-1
(Z Bi + D)(0) = D(0) is closed, that M = Z Bi + Dis closed. Conversely, assume that M is closed. Since,
wt -
B; is D-bounded with relative bound b < 1. It is clear that V¢ € D(D):
i=1

n—-1
1Y Bl < algll + Dyl
) n—1 n—1
< allgl+bID+ ) 8- Y Bl
i=1 i=1
n—1 n—1
< allgl +HID+ Y Bgll+ bl Y, Bigll.
i=1 i=1

Hence, since b < 1, we have Yo € D(D):

n-1

“-ZB@”—“ZB@“—l ligl + 7 ||<D+Z$><p||

n—1 n—1

In the light of the above, D + 2 B; — 2 B; is closed. Now, according to Lemma iv), we obtain D is
i=1 i=1

closed. O

Now, we give a proposition that we will need in the sequel.

Proposition 3.10. We have,

Qay, (A1) 0 ... 0 0
0 Qayn(A22) 0 : 0
E : 0 QAn—l,n—l (An_l,n_l) 0
0 e 0 0 QAn,n (A”,n)
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and, ¥Yie€{l,..,n—1}:

0 ... 0 QapyioyA1n-g-1) 0 ... 0
: 0 : 0 0
: : ' 0 0 Qa,(Ain
QB =| Qu.,(Au11) 0 : : C0 0
0 : 0 0 :
: i 0 ... ... 0 :
0 0 QAn,n—i(ATl,n—i) 0 e e 0
X1 n X1
Proof. Let| : |€D(A11)X..XD(A,,)and| : [€D]| : | theny; € Ai1xy, ..., Yn € AppXn.
Xn Yn Xn
This yields,
X1 n
QpD| : [=0p
Xn Yn
n
Now, let us find the expression of Qp
Yn
Notice that
2 il
© |€Qo|
Zp Yn
if, and only if,
71 n A11(0)
S il B = :
Zn Yn An,n(o)
Then,
z1 — y1 € A1,1(0),
Zn — yn € An,n(o)'
This is equivalent to
z1 € Qa,, (v1),
Zn € QAn,n (yn)'
This shows that

" Qa: (1) Qa1 (A11x1)
Qo| @ |= : = :

i) L oa ) | Qa (A
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X1
Thus, VY € D(Al,l) X .. X D(An,n)
Xn
N Qi (A1) 0 . 0 -
0 Qa,,(A22) O : 0
QoD| : |= 0 0 0 :
X, : . 0 QAn—l,n—l (An—l,n—l) 0 X,
0 ... 0 0 Qa,,(Ann)
By the same reasoning as before, we get the result to Qg B;, withi € {1,...,n — 1}. O

Theorem 3.11. Under the hypothesis (H) (respectively the hypotheses (H1) and (H,)), suppose, moreover, that the
relative bounds are sufficiently small. Then

Mis closed if and only if A1, ..., Any are closed.

Proof. Suppose that M is closed. Then by Theorem [3.9] D is closed. According to Lemma [2.8] (iii) and
Proposition it follows that

Qa,, (A1) 0 ... 0 0
0 QAz,z (AZ,Z) 0 0
0 0 - 0 :
: : O QAnfl,nfl (An—l,n—l) 0
0 . 0 0 Qa,,(Ann)
A1,1(0) A1,1(0)
is a closed linear operator and that : = : .Hence, Qa,,(A11), Qa,,(A22), -.., Qa,,(Any) are
Apn(0) Ann(0)

closed and A1,1(0) = A1,1(0), A22(0) = A22(0), ..., Ay n(0) = A, 4(0). Consequently, A11, A, ..., Apy are closed
linear relations. Conversely, if we assume that Aq1, A2, ..., Ay, are closed linear relations, then by Lemma

(iif), we have Qu,,(A11), Qar,(A22), .., Qa,,(Any) are closed and A71(0) = A11(0), Az2(0) = Azs(0), ..,

Apyn(0) = Apy(0). Hence Qp®D is a closed linear operator and 9(0) is closed. Thus applying Lemma [2.8|(iii)
we deduce that D is closed. According to Theorem 3.9, we obtain that M is closed. |

Remark 3.12. By the same reasoning as before, we can study the closure of M for generalized subordinate perturba-
tions (see [[1, Definition 2.1]).

Now, we show under the hypothesis (H) (respectively the hypotheses (H;) and (H)), that M is a
Fredholm relation.

Theorem 3.13. Let D be the bijection associated with D. Under the hypothesis (H) (respectively the hypotheses

(H1) and (H>)), suppose moreover that the relative bounds is sufficiently small and max(a, b) < y(Z)). Then, if
Vi € {1,..,n}, A;; is Fredholm linear relation then M is Fredholm linear relation. Moreover, ind(M) = ind(D),
a(M) < a(D) and BM) < B(D).

Proof. Since, Vi € {1,...,n}, A;; is Fredholm linear relation then, it is clear by Cross that Vi € {1, ..., n},
Qa,;(Ai;) is Fredholm linear operator. Hence Qp® is a Fredholm operator. Thus O is a Fredholm linear
relation.

Finally the results follow from Theorem i
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