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Abstract. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract
Segal algebra with respect toA. In this paper, we first show thatA is Tauberian if and only ifB is Tauberian.
Then we prove that Â ⊆ C0

BSE(∆(A)) if and only if B̂ ⊆ C0
BSE(∆(B)). Afterwards, we conclude that whenever

A is a BED algebra, then B is a BED algebra if and only if C0
BSE(∆(B)) ⊆ B̂.

1. Introduction and Preliminaries

Takahasi and Hatori introduced and investigated the notion of BSE algebras [17]. Then in 2007, Inoue
and Takahasi introduced and studied the concept of BED algebras [10]. Subsequently, several authors
investigated these concepts for various classes of commutative and semisimple Banach algebras; see for
example [8] and [9], as some valuable survey works, as well as some recent works of the author with others,
such as [1], [2], [3], [4] and [5].

To provide the basic definitions of BSE and BED algebras, we present some preliminaries and frame-
works, as the following; see [13] and [14] for more information.

Let (A, ∥ · ∥A) be a commutative Banach algebra with the dual space A∗. Denote by ∆(A) the Gelfand
(character) space of A, consisting of all nonzero multiplicative elements in A∗. Also ∆(A) is considered
with the weak∗ topology, induced by A∗ and is always a locally compact Hausdorff space [13, Theorem
2.2.3]. Also the linear span of ∆(A) is indicated by span(∆(A)). It should be noted that every element p of
span(∆(A)) is written as p =

∑
φ p̂(φ)φ, such that p̂ : ∆(A)→ C is a function with finite support. Moreover,

the Banach algebra consisting of all continuous and bounded complex valued functions on∆(A), is denoted
by Cb(∆(A)), which is equipped with the pointwise product. Furthermore, the Gelfand mapping of A is
defined as

A→ Cb(∆(A)) a 7→ â,

where â(φ) = φ(a) (φ ∈ ∆(A)). Set Â = {̂a : a ∈ A}. Then A is called semisimple if its Gelfand mapping
is injective. Moreover, A is called Tauberian if A0, which is the set of all x ∈ A such that x̂ has compact
support, is dense inA. Throughout the paper, we assume that (A, ∥ · ∥A) is a commutative and semisimple
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Banach algebra. The function σ ∈ Cb(∆(A)) is called a BSE function if there exists a constant K > 0 such that
the inequality∣∣∣∣∣∣∣∣

n∑
j=1

d jσ(ψ j)

∣∣∣∣∣∣∣∣ ≤ K

∥∥∥∥∥∥∥∥
n∑

j=1

d jψ j

∥∥∥∥∥∥∥∥
A∗

(1)

holds, for every finite number of ψ1, ..., ψn in ∆(A) and also the same number of d1, ..., dn in C [17]. Then
the BSE norm of σ (∥σ∥BSE,A), is the infimum of all such M, satisfying (1). The set of all BSE−functions is
indicated by CBSE(∆(A)). In [17, Lemma 1], Takahasi and Hatori showed that (CBSE(∆(A)), ∥ · ∥BSE,A), is a
commutative and semisimple Banach algebra with pointwise product. We always have Â ⊆ CBSE(∆(A))
and also

∥̂x∥∞ ≤ ∥̂x∥BSE,A ≤ ∥x∥ (x ∈ A).

Moreover,A is called a BSE norm algebra (or has a BSE norm) if there exists M > 0 such that ∥x∥ ≤M∥̂x∥BSE,A
(x ∈ A) [9, 18]. Let

M(A) =
{
σ ∈ Cb(∆(A)) : σÂ ⊆ Â

}
;

see [14], for more information. Now suppose that A is a commutative and semisimple Banach algebra.
Following [17],A is called a BSE algebra if

CBSE(∆(A)) =M(A).

A bounded net {xα}α∈Λ inA is called a bounded ∆−weak approximate identity forA, if limα φ(xxα) = φ(x)
(x ∈ A, φ ∈ ∆(A)) [12]. In [17, Corollary 5], the authors proved thatA has a bounded ∆−weak approximate
identity if and only if

M(A) ⊆ CBSE(∆(A)).

Finally, we introduce the concept of BED algebras. Note that the basic definition of BED algebras, presented
in [10], is based on the notion of quasi-topologies of span(∆(A)). But another introduction is as follows; see
[10]. LetK be the set of all compact subsets of ∆(A) and for each f ∈ CBSE(∆(A)) and any K ∈ K let

∥ f ∥BSE,K = sup


∣∣∣∣∣∣∣∑φ p̂(φ) f (φ)

∣∣∣∣∣∣∣ : p ∈ span(∆(A)), ∥p∥A∗ ≤ 1, p̂(φ) = 0 (φ ∈ K)

 .
Moreover, let ∥ f ∥BSE,∞ = infK∈K ∥ f ∥BSE,K and

C0
BSE(∆(A)) =

{
f ∈ CBSE(∆(A)) : ∥ f ∥BSE,∞ = 0

}
,

which is a closed ideal in CBSE(∆(A)) [10, Corollary 3.9]. ThenA is called a BED algebra if Â = C0
BSE(∆(A)).

It is noticeable that since C0
BSE(∆(A)) is closed under the norm ∥ · ∥BSE,A, all BED algebras have BSE norm.

Our aim of this paper is investigating the BED property for the abstract Segal algebras of any BED algebra
A. We first show that A is Tauberian if and only if B is Tauberian. Then we prove that Â ⊆ C0

BSE(∆(A))

if and only if B̂ ⊆ C0
BSE(∆(B)). Moreover, we provide an example to show that C0

BSE(∆(A)) ⊆ Â does not

necessarily imply the inclusion C0
BSE(∆(B)) ⊆ B̂. Thus we conclude that B is a BED algebra if and only if

C0
BSE(∆(B)) ⊆ B̂. Finally, we provide some examples for clarification.

2. main results

Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra. Then the Banach algebra (B, ∥ · ∥B) is
called an abstract Segal algebra with respect toA if the following conditions are satisfied.
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(i) B is a dense ideal inA, which is essential; i.e.

B = A · B = {ab : a ∈ A, b ∈ B} .

(ii) For any b ∈ B, ∥b∥A ≤ ∥b∥B.
(iii) For all a, b ∈ B, ∥ab∥B ≤ ∥a∥A∥b∥B,

Since in the definition of abstract Segal algebras, the essentiality ofB is assumed, it follows form [7, Theorem
2.1] that B is semisimple. Moreover, ∆(A) and ∆(B) are homeomorphic; see [7, Theorem 2.1]. Indeed, by
[6, Lemma 2.2] the function φ̃ = φ|B belongs to ∆(B), for each φ ∈ ∆(A) and

∆(B) =
{
φ̃ : φ ∈ ∆(A)

}
;

Note that abstract Segal algebras were presented as a generalization of Segal algebras, introduced in [16].
In fact, all Segal algebras are abstract Segal algebras with respect to L1(G), where G is an abelian locally
compact Hausdorff group.

We commence our results with the following proposition, which is interesting in its own right.

Proposition 2.1. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract Segal
algebra with respect toA. ThenA is Tauberian if and only if B is Tauberian.

Proof. First let B be Tauberian and take a ∈ A. For any ε > 0, there exists b ∈ B such that ∥a− b∥A < ε/2. By
the hypothesis, there exists b0 ∈ B0 such that ∥b − b0∥B < ε/2. Note that supp b̂0 is compact in ∆(B) and so
in ∆(A). Consequently, b0 ∈ A0 and so

∥a − b0∥A ≤ ∥a − b∥A + ∥b − b0∥A < ε/2 + ε/2 = ε.

It follows thatA0 is dense inA and thusA is Tauberian.
Conversely, suppose thatA be Tauberian and take b ∈ B to be arbitrary. By the essentiality of B, there

are a ∈ A and c ∈ B such that b = ac. By the hypothesis, there exists a0 ∈ A0 such that

∥a − a0∥A <
ε
∥c∥B

.

Now we have a0c ∈ B and since
supp â0c ⊆ supp â0,

thus supp â0c is compact in ∆(B). Moreover,

∥b − a0c∥B = ∥ac − a0c∥B =≤ ∥a − a0∥A∥c∥B ≤
ε
∥c∥B
∥c∥B = ε.

Therefore B0 is dense in B and so B is Tauberian.

To present the main results, we state some basic propositions. Note that for any p ∈ span(∆(A)) we have
∥p∥B∗ ≤ ∥p∥A∗ , immediately.

Proposition 2.2. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra, (B, ∥ · ∥B) be an abstract Segal
algebra with respect toA and σ ∈ C0

BSE(∆(B)). Then σ, defined as σ(φ) = σ(φ̃), (φ ∈ ∆(A)) belongs to C0
BSE(∆(A)).

Proof. It is obvious that σ ∈ Cb(∆(A)) and ∥σ∥∞ = ∥σ∥∞. Moreover, by [17, Theorem 4] there exists the
bounded net {bλ}λ in B such that b̂λ(φ̃) → σ(φ̃) (φ̃ ∈ ∆(B)). Thus {bλ}λ is bounded in A and b̂λ(φ) → σ(φ)
(φ ∈ ∆(A)). It follows that σ ∈ CBSE(∆(A)). Furthermore, for any ε > 0 there exists the compact subset K of
∆(B) such that for all p ∈ span(∆(B)\K) as p =

∑
φ̃<K p̂(φ̃)φ̃ with ∥p∥B∗ ≤ 1 we have∣∣∣∣∣∣∣∣

∑
φ̃<K

p̂(φ̃)σ(φ̃)

∣∣∣∣∣∣∣∣ < ε. (2)
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Let
F = {φ : φ̃ ∈ K},

which is compact in ∆(A). Then for any p ∈ span(∆(A)\F) as p =
∑
φ<F p̂(φ)φ with ∥p∥A∗ ≤ 1 we have

∥p∥B∗ ≤ ∥p∥A∗ ≤ 1

and by (2) we obtain ∣∣∣∣∣∣∣∣
∑
φ<F

p̂(φ)σ(φ)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∑
φ̃<K

p̂(φ)σ(φ̃)

∣∣∣∣∣∣∣∣ < ε.
Therefore p ∈ C0

BSE(∆(A)) and the proof is completed.

One can also indicate the symbol σ with σ, if there is no ambiguity.

Proposition 2.3. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra, (B, ∥ · ∥B) be an abstract Segal
algebra with respect to A and σ ∈ C0

BSE(∆(A)). Suppose that σ̃ is a complex valued function on ∆(B), defined as

σ̃(φ̃) = σ(φ) (φ̃ ∈ ∆(B)). Then σ̃̂b ∈ C0
BSE(∆(B)), for all b ∈ B.

Proof. It is obvious that σ̃ ∈ Cb(∆(B)) and ∥̃σ∥∞ = ∥σ∥∞. It is sufficient to prove the statement for the members
in the unit ball of B. Thus take b ∈ B with ∥b∥B ≤ 1. Since σ ∈ CBSE(∆(A)), [17, Theorem 4] implies that
there exists the bounded net {aλ}λ in A such that âλ(φ) → σ(φ) (φ ∈ ∆(A)). Thus {aλb}λ is bounded in B
and âλb(φ̃) → σ̃̂b(φ̃) (φ̃ ∈ ∆(B)). It follows that σ̃̂b ∈ CBSE(∆(B)). Moreover, for any ε > 0, there exists the
compact subset K of ∆(A) such that for all p ∈ span(∆(A)\K) as p =

∑
φ<K p̂(φ)φ with ∥p∥A∗ ≤ 1 we have∣∣∣∣∣∣∣∣

∑
φ<K

p̂(φ)σ(φ)

∣∣∣∣∣∣∣∣ < ε. (3)

Now let
K̃ = {φ̃ : φ ∈ K},

which is compact in ∆(B). Now for all p ∈ span(∆(A)\K̃) as p =
∑
φ̃<K̃ p̂(φ̃)φ̃ with ∥p∥B∗ ≤ 1, suppose that

p =
∑
φ<K

p̂(φ̃)φ(b)φ.

Thus

∥p∥A∗ = sup
∥a∥A≤1

∣∣∣∣∣∣∣∣
∑
φ<K

p̂(φ̃)φ(b)φ(a)

∣∣∣∣∣∣∣∣
= sup

∥a∥A≤1

∣∣∣∣∣∣∣∣
∑
φ<K

p̂(φ̃)φ(ab)

∣∣∣∣∣∣∣∣
≤ sup

∥c∥B≤1

∣∣∣∣∣∣∣∣
∑
φ<K

p̂(φ̃)φ(c)

∣∣∣∣∣∣∣∣
= ∥p∥B∗
≤ 1.

By (3) we obtain ∣∣∣∣∣∣∣∣
∑
φ<K

p̂(φ̃)φ(b)σ(φ)

∣∣∣∣∣∣∣∣ < ε.
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It follows that ∣∣∣∣∣∣∣∣
∑
φ̃<K̃

p̂(φ̃)̃σ̂b(φ̃)

∣∣∣∣∣∣∣∣ < ε.
Therefore σ̃̂b ∈ C0

BSE(∆(B)), as claimed.

One can also denote the symbol σ̃ with σ, if there is no ambiguity.

Theorem 2.4. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract Segal
algebra with respect toA. Then B̂ ⊆ C0

BSE(∆(B)) if and only if Â ⊆ C0
BSE(∆(A)).

Proof. First, suppose that B̂ ⊆ C0
BSE(∆(B)). Proposition 2.2 implies that B̂ ⊆ C0

BSE(∆(A)). Now take a ∈ A.

For any ε > 0 there exists b0 ∈ B such that ∥a − b0∥A < ε/2. Since b̂0 ∈ C0
BSE(∆(B)), there exists the compact

subset K of ∆(B) such that for all p ∈ span(∆(B)⧹K), as p =
∑
φ̃<K p̂(φ̃)φ̃ with ∥p∥B∗ ≤ 1 we have∣∣∣∣∣∣∣∣

∑
φ̃<K

p̂(φ̃)φ̃(b0)

∣∣∣∣∣∣∣∣ < ε/2. (4)

Suppose that
F = {φ : φ̃ ∈ K},

which is a compact subset of ∆(A). Thus for all p ∈ span(∆(A)⧹F), as p =
∑
φ<F p̂(φ)φ with ∥p∥A∗ ≤ 1 we

have ∥p∥B∗ ≤ 1 and so by (4) we obtain ∣∣∣∣∣∣∣∣
∑
φ<F

p̂(φ)φ(b0)

∣∣∣∣∣∣∣∣ < ε/2.
Consequently, by the inequality (4) we have∣∣∣∣∣∣∣∣

∑
φ<F

p̂(φ)φ(a)

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑
φ<F

p̂(φ)φ(a − b0)

∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣
∑
φ<F

p̂(φ)φ(b0)

∣∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥∥∥
∑
φ<F

p̂(φ)φ

∥∥∥∥∥∥∥∥
A∗

∥a − b0∥A + ε/2

< ε/2 + ε/2
= ε.

It follows that â ∈ C0
BSE(∆(A)) and so Â ⊆ C0

BSE(∆(A)).

Conversely, suppose that Â ⊆ C0
BSE(∆(A)). We show that B̂ ⊆ C0

BSE(∆(B)). To this end, take b ∈ B. There
exist a ∈ A and c ∈ B such that b = ac. By the assumption â ∈ C0

BSE(∆(A)). Also Proposition 2.3 implies that

b̂ = â̂c belongs to C0
BSE(∆(B)). Therefore B̂ ⊆ C0

BSE(∆(B)), as claimed.

Remark 2.5. The obvious question that is raised, is the relationship between the inclusions C0
BSE(∆(A)) ⊆ Â

and C0
BSE(∆(B)) ⊆ B̂. We provide an example to show that the inclusion C0

BSE(∆(A)) ⊆ Âdoes not necessarily

imply the inclusion C0
BSE(∆(B)) ⊆ B̂. Let G be an abelian locally compact Hausdorff group,A be the group

algebra L1(G) and 1 < p < ∞. Moreover, suppose that B is Sp(G), defined as

Sp(G) = L1(G) ∩ Lp(G)
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and for any f ∈ B let
∥ f ∥Sp(G) = max{∥ f ∥1, ∥ f ∥p}.

Thus B is an abstract Segal algebra with respect to A [16]. By [10, Remark 4.14], A is a BED algebra.
Furthermore, by [10, Theorem 6.3] B is not a BED algebra. Theorem 2.4 implies that C0

BSE(∆(B)) ⊈ B̂.
However, C0

BSE(∆(A)) ⊆ Â.

According to Remark 2.5, in the following we present some results that are slightly different from what
we expected.

First we have the following lemma, which is immediately obtained.

Lemma 2.6. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract Segal
algebra with respect toA. ThenA has BSE norm if and only if B̂ is dense in (Â, ∥ · ∥BSE,A).

Proposition 2.7. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract Segal
algebra with respect toA. IfA is a BSE norm algebra thenM(A) =M(B).

Proof. Note that we always haveM(A) ⊆ M(B). In fact, take σ ∈ M(A) and b ∈ B. By the essentiality of B
we have b = ac, for some a ∈ A and c ∈ B. According to the choice of σ, there exists d ∈ A such that σ̂a = d̂.
Now we have dc ∈ B and

σ̂b = σâc = d̂̂c = d̂c,

which implies that σ̂b ∈ B̂. Thus σB̂ ⊆ B̂ and so σ ∈ M(B). Consequently,M(A) ⊆ M(B).
Now we prove the reverse of the inclusion, by using the BSE norm property ofA. Take σ ∈ M(B) and

a ∈ A. There exists the sequence {bn}n in B such that

lim
n→∞
∥a − bn∥A = 0.

Thus
lim
n→∞
∥̂a − b̂n∥BSE,A = 0

and so
lim
n→∞
∥σ̂a − σb̂n∥BSE,A = 0.

By the fact that σ ∈ M(B), we have σb̂n ∈ B̂ (n ∈N). SinceA has BSE norm, Lemma 2.6 implies that σ̂a ∈ Â.
Therefor σÂ ⊆ Â and so σ ∈ M(A).

Proposition 2.8. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract Segal
algebra with respect toA. Moreover, suppose thatA has BSE norm. If C0

BSE(∆(B)) ⊆ B̂ then C0
BSE(∆(A)) ⊆ M(A).

Proof. Take σ ∈ C0
BSE(∆(A)). SinceA has BSE norm, it is sufficient by Proposition 2.7 to show that σ ∈ M(B).

To this end, take b ∈ B to be arbitrary. By the assumption and also Proposition 2.3, σ̂b ∈ B̂. It follows that
σ ∈ M(B). Thus the proof is completed.

Let (A, ∥ · ∥A) be a BSE algebra and (B, ∥ · ∥B) be an abstract Segal algebra with respect toA. Then by [11,
Theorem 9.10] and also [15], B is a BSE algebra if and only if B admits a bounded ∆−weak approximate
identity; equivalently M(B) ⊆ CBSE(∆(B)) [17, Corollary 5]. Analogously, we have the main result of the
present work, as the following.

Theorem 2.9. Let (A, ∥ · ∥A) be a BED algebra and (B, ∥ · ∥B) be an abstract Segal algebra with respect toA. Then
B is a BED algebra if and only if C0

BSE(∆(B)) ⊆ B̂.
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Proof. First, let C0
BSE(∆(B)) ⊆ B̂. SinceA is a BED algebra, thus

Â ⊆ C0
BSE(∆(A)).

By Theorem 2.4 we have B̂ ⊆ C0
BSE(∆(B)). It follows that B is BED. The converse is obvious.

We conclude the paper with the following results, which are obtained from Proposition 2.1 and Theorem
2.4, immediately.

Corollary 2.10. Let (A, ∥ · ∥A) be a Tauberian commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an
abstract Segal algebra with respect toA. Then B is a BED algebra if and only if C0

BSE(∆(B)) ⊆ B̂.

Corollary 2.11. Let (A, ∥ · ∥A) be a commutative and semisimple Banach algebra and (B, ∥ · ∥B) be an abstract Segal
algebra with respect to A. Moreover, suppose that Â ⊆ C0

BSE(∆(A)). Then B is a BED algebra if and only if
C0

BSE(∆(B)) ⊆ B̂.

Examples 2.12. We provide some examples, for clarification.

(1). Let G be an infinite abelian compact group and 1 < p < ∞. Then Lp(G) is a proper Segal algebra with
respect to L1(G); see [16] for more details. Since L1(G) is Tauberian, by Proposition 2.1 Lp(G) is also
Tauberian. Moreover, by [18, Theorem 4]

L̂p(G) = CBSE(∆(Lp(G))),

which implies that
L̂p(G) = C0

BSE(∆(Lp(G))) = CBSE(∆(Lp(G))).

Thus Lp(G) is a BED algebra.
(2). Let G be an abelian locally compact group and 1 < p < ∞. Then Sp(G), defined in Remark 2.5, is an

abstract Segal algebra with respect to L1(G) which is not BED.
(3). Let X be a nonempty set. It is known that ℓ1(X) is a Banach algebra under pointwise product, which

is an abstract Segal algebra with respect to c0(X). By [10, Theorem 5.10], c0(X) is a BED algebra.
Furthermore, by [10, corollary 4.2] and also [4, Theorem 3.2] ℓ1(X) is a BED algebra.
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