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Application of best proximity point(pair) theorem and measure of
noncompactness to a system of integro differential equations in Banach
space

Mallika Sarmah?®, Anupam Das**, Dipak Sarma?

?Department of Mathematics, Cotton University, Panbazar, Guwahati-781001, Assam, India

Abstract. This article explores the existence of an optimal solution for our proposed system of integro
differential equations in Banach space by generalizing the best proximity point (pair) theorem and utilizing

a new contraction operator. With the aid of an appropriate example, the applicability of our findings has
also been demonstrated.

1. Introduction

The measure of noncompactness (MNC) and the best proximity point theorem are widely used to solve
various kinds of integral equations. The first best proximity point theorem was proven by Ky Fan. For a
nonempty subset Y of a normed linear space (NLS) E, we defined amap T : Y — E. If the distance between
d € Y and T (d) is as small as possible, then d € Y represents the best approximate point of T in E.

The paper will follow the following format: We begin by reviewing some basic terms and concepts
related to best proximity theory. The best proximity point theorem for cyclic and noncyclic contractive
operators is then established. Next, we illustrate their particular cases. Lastly, we utilize our results to
explore the optimum solutions of a system of Integro differential equations.

Many researchers considered using the concept of MNC, which was first introduced by Kuratowski and
then further developed by Hausdorff, to obtain significant extensions of the theory of compact operators.
The key ability is to apply MNC to check if a mapping satisfied some significant inequalities. We thus in-
clude a brief history that can help the reader in understanding our problem and motivation. We revisit the
fundamental fixed point problem in a Banach space Z, taking some regularity assumptions from Schauder
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In [14] the authors considered an infinite system of three point boundary value problem of p-Laplacian
operator for the existence of solution in a new sequence space related to the tempered sequence space
I3, p = 1 with the help of Hausdorff MNC and an example is provided to illustrate their new results in
tempered sequence spaces. Using MNC, the authors of [16] first addressed the BPP results. Subsequently,
they applied these results to investigate whether a system of second-order differential equations has optimal
solutions. In [19], the aim of the authors is to formulate theoretical outcomes for the qualitative analysis of
fractional-order integro differential equations with integral type conditions. The idea is derived using fixed
point theory and fractional calculus. For application and numerical verification purposes, an example is
also investigated. In [20] the authors using Meir-Keeler condensing operators to study the criteria under
which an infinite system of integral equations in three variables has a solution in the Banach tempering
sequence space Cﬁ and lf with the help of Hausdorff MNC. Atlast they provided an example to demonstrate
the implications of their established condition.

Motivated by these studies, we developed a newly defined contraction operator utilizing MNC to
construct a best proximity point theorem and investigated the existence of optimum solutions for a system
of integro differential equations in Banach space.

Theorem 1.1. [10] For a nonempty, bounded, closed and convex subset B of a Banach space Z, consider L : B — B
be continuous and compact, then L admits at least a fixed point.

Clearly, it is the generalization of Brouwer fixed point theorem.

Consider a Banach space Z and a closed ball S(r,s) = {k € Z : |k —1]] < s}in Z. Suppose H
(for all nonempty set H) denotes the closure of H and conv (H) denotes the closed and convex hull of the
non empty set H which is the smallest convex and closed set containing H.

Also K7z and Sy represents the family of non empty bounded subsets of Z and the subfamily of Z con-
sisting all relatively compact sets, respectively; R = (=0, ) ; and R+ = [0, 00).

A measure of noncompactness (MNC) is defined axiomatically as follows:

Definition 1.2. [1] A map M : Kz — R, is a MNC (measure of noncompactness) in the Banach space Z, if the
following conditions are holds for M:

1. kerM ={Xe Kz : M(X) =0} # ¢,

X € ker M if and only if X is relatively compact,

X1 CXp = M(X) < M(Xo),

M(X) = M(x),

M (conv(X)) = M(X),

M(CX + (1= 0)Xp) < M) + (1 - OM(Xp), for C€0,1],

max{M (X1), M(X2)} = M(X; UXp),

The set Xoo = N X, is compact and non empty, if (X,) is a decreasing sequence of closed sets which are non
empty in Kz and &1_1)1010/\/1 (Xs) =0.

P NG WD

In particular, the space Z = C(I), where I is the closed and bounded interval, is the set of real valued
continuous functions on I. Then Z is a Banach space with the norm
IID|| = sup{|ID(w)| : w € I},D € Z.
Assume K(# ¢) € Z be bounded. For D € K and g > 0, the modulus of continuity of D, represented by
H(D, q) i.e., H(D, q) = sup{|D(w1) — D(w2)| : w1, w; € I, |wy — wy| < gq}.
Furthermore, we define
H(K, ) = sup{H(D, q) : D € K}; Hy(K) = }11_{1(')1 H(K, g).

A Housdorff MNC X is given by
1
Z(K) = sHo(K)(see [2]).
It is widely known that the map Hy is an MNC in Z.
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2. Preliminaries
We collect some fundamental definitions and notations needed for the paper.

Definition 2.1. [10] Consider Z be a Banach space. Then,

1. Z is a uniformly convex Banach space, if there exists a strictly increasing function B : (0,2] — [0, 1] such that

i~ i <G,
=i < 6= 15 < i< (1-B(E )
iK1,

forallik,jeZ,G>0andl €[0,2G].
2. Zis a strictly convex Banach space, if, for all i,k, j € Z and G > O, the following conditions hold:

li-jll <G,

. i+k
k—jll <G,= IIT—]II <G.
i#k.

Consider a normed linear space (NLS) E. For any two non-empty subset D1, D, of E, the pair (D1, D) is closed
<= both Dy, D, are closed; (D1,D;) C (A1, Ay) & D1 C Ay,Dy C A,
In addition, we denote by dist (Ay, A) = inf {[lu — V|| : (1, v) € Ay X Ay},
Ay = {u € Aj : there exists v1 € Ay so that || — v1l| = dist (A1, Az)),
By = {v € Ay : there exists 1 € Ay so that || — v|| = dist (Ar, Ap)}.

Definition 2.2. [10] Consider E as a NLS. A non-empty pair (A, Az) of E is proximinal if A1 = Ay and A, = By.

For a reflexive Banach space D, if the pair (A1, Ay) be a closed, nonempty, convex and bounded in D, then (Ay, Bo)
is also a closed, nonempty, convex and bounded pair.

Consider a function T : Ay U Ay — Ay U Ay. We say that T is,

1. relatively nonexpansive, if |T (1) — T (v) || < |lu — vl for any (u, v) € Ay X Ay,
2. cyclic, if T (A1) C A and T (Ay) € Ay,

3. non cyclic, if T (A1) € Ay and T (Ay) € Ay,

4. compact, if (T (A, T (3{2)) is compact.

Definition 2.3. [10] Consider (A1, Ay) as a nonempty pair in a Banach space Z and F : Ay U Ay —» AU A bea
cyclic function, then b € Ay U Ay is called a BPP of Fif ||b — F (b) || = dist (A1, Ay).

If ¥ is noncyclic, then the pair (b,v) € Ay X Ay is a best proximity pair if ||b — v|| = dist (A1, A), where
b=F(@®),v=F@).

Corollary 2.4. [10] Suppose a Banach space Z and a nonempty, convex and compact pair (A, Ap) in Z. Let we
have a cyclic and relatively nonexpansive mapping T : Ay U Ay — Ay U Ay. Then T has a BPP.

Corollary 2.5. [10] Suppose a strictly convex Banach space Z and a compact, nonempty and convex pair (Ay, A1)
in Z. Let we have a relatively nonexpansive and noncyclic mapping T : Ay U Ay — Ay U Ay. Then T has a best
proximity pair.

The following theorems 2.6 and 2.7 are the extended form of corollaries 2.4 and 2.5.
Theorem 2.6. [10] Suppose a reflexive Banach space Z and a convex, nonempty, closed and bounded pair (A1, Ay)

in Z. Let we have a relatively nonexpansive and cyclic mapping T : A1 U Ay — Ay U Ay. Then T has a BPP, if T
is compact.

Theorem 2.7. [10] Suppose a reflexive, strictly convex Banach space Z and a convex, nonempty, closed and bounded
pair (A, Ay) in Z. Let we have a relatively nonexpansive and noncyclic mapping T : Ay U A, — A1 U Ay. Then
T has a best proximity pair, if T is compact.
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3. Main result

Definition 3.1. [7] Let D be the set of all maps P : R. x Ry — Ry with

(i) max{y, v} <P (u,v); p,v=0,
(ii) P is continuous,
(iii) P (u1 + po,v1 +v2) <P (uy,vi) + P (uz,v2); w1, iz, vi,v2 2 0.

As an example, we can consider P (i, v) = u + v for all u, v > 0.
Ay and A, will be nonempty convex subsets of a Banach space Z in this section.

Definition 3.2. Consider (A1, Ay) as a pair of convex and nonempty subsets of a Banach space Z equipped with
a MNC M, and U, V are nondecreasing continuous functions. A mapping T : Ay U Ay — A U Ay, which is
cyclic (noncyclic), is said to be a (P, V, U)-contractive operator such that for any pair of convex, nonempty, proximal,
closed, bounded and T-invariant subsets (M1, M) such that dist (M1, M) = dist(A1, Ay), we have,

PIM(T (1) UT (1)), V (M(T (4) U T (4)))]
<w[P{mMen um), Vmen v H| - U [Pma ey uTe) Vi@ e uTen )| o

Theorem 3.3. Consider a relatively non expansive, cyclic and (P, V, U)-contractive operator T : A1 U Ay —
AL U Ay. Then T has a BPP, if Ay # 0.

Proof. Since Ay # 0, (Ao, By) # 0. By the given conditions on T, clearly (Ap, By) is a closed, convex,
proximinal and T-invariant pair. For each ¢ € Ay, there is a 0 € By satisfying || — O|| = dist (A1, A). Since
T is relatively non expansive, so we get ||[TY — TO|| < |[ip — 0| = dist (A;, Az), which implies Ty € By, that
is, T (Ap) € By. Similarly, T (By) € Ay. Hence we get T is cyclic on Ay U By.

Let us assume that Iy = Ay and Ly = By and {(In, L.) } be a sequence of pairs with I,, = conv (T (I,-1))
and L, = conv (T (L,,—1)), for all n € IN. Now our claim is, I, € L,and L, C I,_; for all n € IN. In fact

L, = cono (T (Lg)) = cono (T (By)) C conv (Ay) = Ay = Iy. Hence we can write,
T (L) € T o) and Ly = cono (T (Ly)) € cono (T (Ip)) = I1.

With the similar argument, we get by using induction that L, C I,_;. Similarly, we get I,.1 C L, for all
n € IN. Hence, we can write I,.» C Lyt1 € I, € Ly—q, foralln € N. So, in Ay X By, the decreasing sequence

of NBCC pairs is { (Ion, Lon) : Moreover,

T (L2n) € T (I2p-1) € conv (T (I24-1)) = Lou, 2)
T(I2n) c T('—Zn—l) c W(T(L2n—1)) = L2n- (3)

Hence, we get (124, Ly,) is a T — invariant pair, for all n € IN. Now, if (a,b) € Ay x By which is proximinal,
we have,

dist (Ion, Lon) < IT?a — T?'b|| < |la — b| = dist (A1, Ay) .

Now, we are to show that, for all n € N, the pair (I,,L,) is proximinal. For n=0, we have (I, Lo) is a
proximinal pair. Let us assume that (I, Ly) is proximinal and there is an arbitrary p such that y € I =

cono (T (Ix)). So u = Z;-"zlij(gj) with gj € Iy, m € [1,00), f; > 0and Z;»”:lfj = 1. By assumption, we have
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(Ix, L) is a proximinal pair, so there exists i1; € Ly (1 < j < m) such that ||g; — k| = dist (I, Lx) = dist (A1, Ay).
Consider € = 271:1 fiT (hj). Then € € conv (T (L)) = Lxy1, and

e —ell=1)_ AT (97) = Y AT ()11 < Y Fillg = hill = dist (A, Ao) (4)
=1 =1

j=1
Hence, (Ix+1, Li+1) is a proximinal pair and by induction hypothesis our claim is proved.
Now, if max {M (Ton, ) , M(Lay,) } = 0 for some 1y € [1, 00) U{0}, then we have T : Ip,, ULy, — Ion, ULy,

is compact. By corollary (2.4), T has a 8PP. Hence, we consider that max {M(In),M(Ln)} > 0, for all
n € [1,00). Since I,41 € T (I2,) and Ly,+1 € T (Ly,), we have,

P [M(T2141 U Lons1) , V(M (T2n41 U Loys1))]
= P [max {M (Tzu1), M (Laus1) |, V (max {M (Ta1) , M (Lauin) })]

= ]P[max{M (cono (T (In,))), M (cono (T (LG)))},

W (max{ M @7 (T (12,)), M @75 (T (L2}

= P [max {M(T (T2,)), M(T (L)) |, V (max {M(T (T2,)), M(T (L)) })]
=P [M(T(T2) UT (L)), V (M(T (T2) U T (Lo)))]

< U[P{M (T2 ULz), VM (T2 ULz || -

— U [P{M(T (T20) UT (o)), V (M(T (T2) U T (L) |]

< U [P{M T2y U Lay), V(M (T20 U La)) ] -

— U [P{M(T211 ULsyi1), VM (T2 U L)) ]

If im P [M(I2441 U Lonsr), V(M (T2041 U Lpp1))] =N

Then 0 < N < U(N) = U(N) = 0,
ie. N=0.

Thus P [M(I2,41 U Lyus1), VM (I2441 U Lyys1))] = 0asn — coand lir%M(IZH Uly,) = lin& V (M, ULyyy)) =
n— n—
0. Also,

lim M (Ip, U Lyy) = max{ lim M (I,,), lim M(LZn)} =0.

Let I = N7” Iz, and Lo = N7 Loy, S0, we get a nonempty, compact, convex pair (I, L) which is
T-invariant with dist(Ie, Le) =dist(A;, A). Hence from corollary 2.4, T has a BPP. O

Theorem 3.4. Consider a relatively nonexpansive, noncyclic and (P, V, U)-contractive operator T : Ay U Ay —
Ay U A on a strictly convex Banach space Z. Then T has a best proximity pair, if Ay # 0.

Proof. Following the proof of the theorem (3.3), define a pair (I,,L,) as I, = cono(T (I,-1)) and L, =
conv (T (L,-1)), n € IN with Iy = Ay and Ly = By, we get NBCC and decreasing sequence of pairs { (I,, L) }
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in Ay X By. Also,

T(1y) € T(Ip-1) € cono (T (Ip-1)) = I, (5)
T(Ly) € T(Ly-1) € conv (T (Ly-1)) = Ly (6)

Thus, the pair (I,,L,) is T-invariant, for all n > 1. Following the proof of the theorem (3.3), we obtain
a proximinal pair (I,,L,), for all non-negative integer n such that dist(I,,L,) = dist(A;, Az). Now, if

max {M (Tn), M(Lno)} = 0, for some positive integer ng, then T : I, U L,, — I,, UL,, is compact. Hence,

from corollary (2.5) we get the desired result. Thus, we consider that max {M(In),M(Ln)} > 0. Since
I,,1CT(1,)andL, 1 CT(L,), wehave,

P [M (In+1 U Ln+1)/V(M (In+1 U Ln+1))]
= P |max (M (Tus), M (L) |, V (max M (1), ML) )|

- ]P[max [ M (cam (T (1)), M @1 (T (L) ],

W (max M@ (T (1.)), M@ (T (L)) )

= P [max {M(T(1,)), M(T (L)) }, V (max {M(T (1)), M(T (L)) })]
=P[M(T(@,) UT (L), VIM(T (@) UT (L)

<U[PIM(L, ULy, VM, U L) |] -

~U[PIM(T (L) UT (L)), VIMT (@) UT (L) |]

<U[PM(T, UL, VM U L) |] -

~ U [P{M (51 U Li1), VM (T U Liaa)) ]

If im P [M(T,41 U Lps1), VIM(T01 ULis)) =N,

then 0 < N < TU(N) = U(N) = 0.

ie. N=0.

Thus, P[M(Iy41ULps1), VIM(Ty41ULyi1))] = 0asn — coand lim M(T, UL,) = lim V(M(T, UL,)) =
0. Also,

lim M(T, UL,) = max{ lim M(I,), lim M(L,)} =0.

n—oo

LetIo =N I,and Le =N Ly, so, we getanonempty, compact, convex pair (I, Le) which is T-invariant
with dist(Ieo, Leo) = dist(A, Az). Hence from corollary 2.5, T has a best proximity pair. [

Corollary 3.5. Consider a relatively nonexpansive, cyclic operator T : Ay U A, — Ay U Ay such that,

M(T (G VT () +VM(T(G)VUTI(C))
SUM@G UG+ VMG U -UIMT(GQ)VUT(E) +VIM(T(CG) VT )], (7)

for (C1,Cp) € (A1, Az). Then T has a BPP, if Ay # 0.

Proof. Putting IP (u,v) = u + v in equation (1) of definition (3.2) and using theorem 3.3, we obtain the result
shown above. [
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Corollary 3.6. Consider a relatively nonexpansive, cyclic operator T : Ay U Ay — Ay U A, such that,

M(T(C)UT(C)) < UMG UG -UIM(T(G)UTGR)], (8)
for (C1,Cp) € (A1, Ap). Then T has a BPP, if Ay + 0.
Proof. Putting V (w) = 0 in equation (7) of corollary (3.5), we obtain the result shown above. [

Corollary 3.7. Consider a relatively nonexpansive, cyclic operator T : Ay U Ay — HAy U Ay such that,

M(T () VT I(C) S MG UG), 9)
for (C1,Cp) € (A1, Ap). Then T has a BPP, if Ay + 0.

Proof. Putting U (w) = 2w, in equation (8) of corollary (3.6), we obtain the result shown above. [

4. Applications

We apply our findings to investigate the optimum solution the following system of integro differential
equations:

Q) =ag—A(t) f(f Q(s) ds + (t=5)""{M1(5, Q) + [; ©(2,Q(z)) dz}ds,

1 ¢
W () =by— A(F) fo‘s\y(s) ds + G fot (t—s)7? {Az(s,\lf(s)) + 7O (z, ¥(2)) dz}ds,

fort,06,z,5,0 € [0,1] = J and ap, by € R. Also, assume that (IR, ||.|[) be a Banach space and two closed ball
Ki = S(ag,x) and Ky = S(bg, x) in Rwith k € Rand ||A1 (, Q) || €Dy, |1A2 (., W () || £ Dy, ||O|| £ P, where
A1, Ay, A and O are continuous functions. Consider a standard Banach space R = C(J, R) of continuous
function with supremum norm for | = [0,1) C J. Also I'(,) denotes Euler’s gamma function. Let:
R; ZC(],Kl):{Q:]—) K12QER},
RZZCU,Kz):{\I]ZI—)Kzi\PER}.
Then (Ry, Ry) is an NBCC pair in R. Now, for every QQ € R; and W € R,,
€2 = Wl = sup;; 12 () = W () || = llao — boll-

Thus, diSt(Rl, Rz) = ||110 - bo”

Now, we define T : R; UR; — Rlsuch that
bo— A [ Q) ds + Fo b =97 {nals 0+
+ [y ©(z, Q) dz}ds, QeR,,
ag— A(t) foé Q(s) ds + % fot (t—s)?71 {Al(s,Q (8)+
+ [y ©(z,Q(2)) dz}ds, QeR,.

Clearly, T is cyclic, and if ||s — T (s) || = dist (R, Ry), for s € R; URy, then s is a 8PP for the operator T
and it is equivalent to that s is an optimum solution of the system (10).

T(Q@) =

Theorem 4.1. [9] Consider f € C[ny, ny] with ny < ny. Let g is Lebesgue integrable on [nq,nz] and g does not
change its sign in [n1, ny]. Then the generalized mean value theorem of integral calculus gives,

fzf(t)g(t) dt=f(c)fzg(t) i, (1)

for some ¢ € (n1, ny).
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Theorem 4.2. Assume that Hy bea MNC on R with W —Q)| < |bg—agpl, |QQ < v, {IA ® v+ b+ 9¢+) 1 ‘} <

My, and |bo| + My < My for My > 0, My > 0 and ||©(z,Q(z)) — O(z, V(2))|| < T(0+2) €2 _‘y“, where

0,0, Y, 0 and z are defined as above discussion. Then an optimal solution exists for the system of integro differential
equations (10) if:

1. For any bounded pair (1, C2) € (Ry, Ra), Ho({A2( x C1) + ©( x 01) ), Ho({A1 (T x &) + © (T x 02) ) > 0
implies that,

Ho({/\z(fx Q)+ x0) UM x0)+O( X @)}) < Ho(G1 U ).

2. Forall Qe Ry, W eRyands €[0,1),

sr(9+1){”Q;W”

~ b - aol(1+ A )]

H(Az(S/ Q) - (s, W)

Proof. First we show that the operator T is cyclic.
For Q e Ry,

IT (2 (#)) — boll =

O
bO—A(t)fO Q(s) ds+—f(t—s91 Ao(s, Q(s))+f (z,Q(z))dz}ds—bo

0
= '—A(t) f Q(s) ds+m fo (t=9)""{Aasls, Q) + fo O (z,Q(2)) dz}ds

t S
sA(t)fQ %f(t—s)e_l{Dz+f¢’dz}ds
) Ot 0
=A@ Q(s)ds ()f(t—s)a_l{D2+7)s}ds
0 0
=AM | Q) ds|+ (19) f(t—s)e_1D2d5+Pf(t—s)e_lsds
0
< A(t)|v6+r(9 1)' ®° D2+90{(—s(t—s)9 f(t—s) ds}
6+1
1
SIA(t)|v+r( . 2+@+1‘
<M.

Hence, T (Q(#)) € Ro.
Using a similar method, we can show that T (Q2(#)) € Ry for Q € Ry. Thus, T is cyclic. We now show
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that T (R;) is an equicontinuous and bounded subset of R,. Consider QO € R; and t € J. We have,

IT@Q@) =

O t S
bo — A(t) fo Q(s) ds+% fo (t =" {Ax(s, Q) + fo O (z,Q(z)) dz}ds

< bO—A(t)ij(s) ds+%ft(t—s)6_l{Dz+7’s}ds

‘(t) D2+7>{(—s(t—s) +f:(t—s)9ds}

<|bol + A () VO + —————=

F(@ 1)
6+1
s|b0|+|A(t)|v6+r(9+1)‘(t) D2+P 1
S|b0|+|A(t)|v+r(61+1) D2+6f_)1
< |bol + My
<M.

Thus, T (R;) is bounded. Suppose that t,f € ], t > Fand Q € Ry. Then

[ram-reo)|

:Hbo—A(t)j:Q(s) ds+%j{:(t—s)971 {AZ(S,Q(S))+f05®(z,Q(z)> dz}ds—b0+A(D‘f:Q(s) ds—%]:(f—s)s_l{AZ(S,Q(S))-#‘L‘S@(Z,Q(Z)) dz}ds

O
<‘—A(t)f§)(s)ds+A(f)f Q(s) ds
0 0

O t S t S t
:‘(A(D—A(t) fo Q(s) ds +‘%fo (t—s)071 {Az(s,Q(s>>+f0 O (z,Q(2)) dz}ds—%fo (F-s5)01 {AZ(S,Q(S))+fU 0(z,Q(z)) dz}ds+ﬁfo (=97 {Aasls, Q)+

f@(z Q(z)) dz}ds %fot(ﬁs)ﬁ {Az(s,(l(s))Jrf:@(z,()(z)) dz}ds

t s F 9
+‘ﬁ£(t—s)5_l {Az(s,g<s))+fo O (z,Q(z)) dz}ds— fo(;,s)e—l {Az(s,u(s>)+fo O(z,Q(2)) dz)ds

1
r®

=[a@-aw)o|+ S a0+ [ ooy aiss i [0 ras0e + [ 000 ais
~[a0-20)p+| f(a 9071 = (=90 Yoo + o) e + \r(g)ft 901 0, + s ds

~[am-a0)p+| 2 f((t 91— - s‘”)ds+r(6 f ((r—s>9*‘—(f—s>9*1)ds+'@ft 9 1d<+@ Cs-9 as
:‘(A ) s SO r<6>f5“ 9% ds= r<6>f5“ o il g (-0, rw)f =5 a
-[po-s0)+ |G (e-o" ”9'99%%“)0“ o5 0 ¢ 1 O -t O ’r<0¢)+2>(z'”9+1

Ast—t,wehave, |[T(Q@®)-TQ®H)|| — 0,

that is, T (R;) is equicontinuous. We can show that T (R,) is equicontinuous and bounded with the similar
manner. Thus, by Arzela-Ascoli theorem we conclude that (Rj, R,) is a relatively compact pair. Now, for
each (QQ, W) € R; X Ry, we have,

“T(Q(t)—T(\I/(t)“

Hho A(t)f Q(s)ds+r(g)f(t 9971 {Ax(5,Q(5)) + f (z,Q(2)) dz}ds - uU+A(t)f W (s) ds — 19) j(:(t—s)e’l{Al(s,\lr’(s))JrJ:@(z,‘I/(z))dz}ds

+‘A(t)f0 \Il(s)ds—A(t)j:Q(s)ds
6

+ ‘%@ ff =90 (A2, 260 - M6 W ) + fos (0 0@) -0, V(@) )dz)ds

‘“‘ 9>f<t 9% {(ro+ 1){”Q Ll ~ oo —aol(1+A®)}) + f(r(mz) 2~ “’”)d }dS’

(1+A(t))+r(91+1) @+ 1){”Q il

_ 1 t _ s
+'mf0 (t—5)° 1{A2(S,Q(s))+f0 0(2,0() dz}ds-%fo (=) 1{A1(5,\I/(s))+fo 0z, W(z) dz)ds

< ‘bo —ag

+A(t) 'bo ap

‘bo ap

=l -~ aol(1+ A0} 0 + (@ +2) ”Q;‘y” @‘fn (=90 sds

< ‘bo —ag

(1+A(t))+{w—|b0—u0\(1+A(t )} (r(e+2) S \y”) (el+2) (#)?0+1

< ‘bo —ag

112 =1l 12 = ||
2 2

< by — apl(1 + A (1) + —lbg - aol(1+ () +

=lQ-v.
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Thus T is relatively nonexpansive.
Now, we assume that the pair (C1, (2) € (Ry, Ry) is a NBCC, T-invariant, proximinal pair and dist (C, C;) =
dist (R, Ry). Using assumption (1) of theorem 4.2 and theorem 4.1, we get,

Ho(T(Cq) U T(C))
= max{Hy(T(C1)), Ho(T(C2))}

< max{sup(Ho({TQ(t) :Qeqh) SuP{Ho([T‘I’(f) WeLhl

t
=max{>up{H0 {bo A f Q(s) db+r @) fo (t =97 Az, Q00 + fo S@(z,u(z)) dz}ds})},
sup{ 0({a0—A(r)f W(s) ds+wf (t-5)07" {/\1(5,W(s))+f5®(z/‘ll(z)) dz}ds})}}
0- 1 1 N X :
<max{stlg>{ﬂo{r(e)f(t 5) A2(<Q(<)>+f®(z Q(z)) dz}ds})}, i&}"{*‘(’({mfo (t-s) {Al(s,\v(b))arfo O(z,¥(2)) dz}ds})}}

o 1 1 ! 0-1 - .
Hy {I‘(G) f (t-s) Az(ﬁ Q@) +0(, Q(c))ﬁ}ds ce(0, t)})}, stz}){Ho({r—e)f (t-s) {Al(s,\lf(s))+®(~,,\If(c))s}ds.ce (O,f)})}}

t
Ho({r(()) A5, Q) +O(c, Q) ¢ f (t-5)0"ds:c,ce r)})}, ng’{Ho({r(w{Aﬁs W(2) +O(c, W(0) S f (t-91 ds:c,:e(o,t>,})}}

<‘““{i‘é}°{
< masfsur|
_mx{
{

sup{Ho {r(e+ pleEae+ecaodn’cceo t)})}, i\él;’{ﬂo({ﬁ{l\l(@‘l’ @ +0E W W® cece, t)})}}
< max sup{Ho { A6 Q@) +0(, Q)] cce t)})}, SH}D{HO({{M(C,‘P(C)) +O(6, W] c,ce, t>})}}

te
SHo({waclH@(fxcl)}u{Aluxaz)+®<chz)})

<Hy(G U G).

Thus, by corollary 3.7, T has a 8PP. Hence, we conclude that the system of equations (10) has s € R; UR;
as an optimal solution. [

Example 4.3. Assume the following system of integro differential equations with [|A1(s, Q ()|l < 2, |Az(s, W (s))I] <
3, forte]=10,1)as

Q)= [ Q) ds+ t(t—s)e_l{%+fos(2dz}ds,

1
| T
W =1+ [ V() ds+Lfot(t—s)ﬁ"l{log(%)+fos\lfdz}ds

Consider Ry = {t} and R, = {t +1}on]=(0,1).
Define an operator T : Ry U Ry — R such that,

1+fObQ(s) d5+%fot(t—s 9_1{10g(9)+f050d2}ds, QeRy,

T(Q(®) =
fObQ(s)ds+r(l)fO(t— 91{9+f0 Qdzjds, QeR,.

(12)

Here A1 : X — G,and Ay 1 X G — G with § = {t}, & = {t+ 1} and (G1,8) € (R, Ry) on ] =[0,1),
Ho({/\z(] XC)+O(x0) }) >0, Ho({/\l(] X0)+O( x0) }) >0
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Now

Ho({/\z(fx G)+O (X)) fU{A(X5) +O( c»})

-2 ()}

< max{Hp ({C1}) , Ho ({C2})}
< Ho(G1 U Gp).

Now, forall Q € Ry, ¥ € R,, we have,

oo 2w - os(3)- 3]
=3
<||— = —
2 2
sr(z)”Q;—\y”,

Since the above system of equation satisfies all the conditions of theorem (4.2).

Therefore s € {0, 1} = R; UR; is the optimal solution for the above system of equationatt = 0as|ls—T(s) || =
1 =dist (Rl, Rz).
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