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Abstract. This paper mainly discuss eight kinds of equivalent characterizations of an M-fuzzifying
topological closure operator cl : 2X

→MX, an M-fuzzifying topological interior operator int : 2X
→MX, and

an M-fuzzifying topological derived operator der : 2X
→ MX, in which M is a completely distributive De

Morgan algebra. As its applications, we give the fuzzy constructions of M-fuzzifying topological operators
cld, intd, derd induced by an M-fuzzifying pseudo metric d in the sense of Morsi’s fuzzy metric and prove that
the continuity between M-fuzzifying topological operator spaces and M-fuzzifying pseudo metric spaces is
maintained. Finally, we show that the M-fuzzifying topological T induced by d is exactly the M-fuzzifying
topological induced by cld, intd and derd. Namely, T d = T cld = T intd

= T derd.

1. Introduction

In 1968, C.L. Chang [2] innovate fuzzy theory into topology. The open sets are fuzzy in a Chang’s
topology, however the topology composed by those open sets is a crisp subset of the I-powerset IX, where I
is the unit interval [0, 1]. Later, J. A. Goguen [7] replaced I with an arbitrary complete infinitely distributive
lattice L (now called a quantale with unit) in 1973. Then he obtained the concept of L-fuzzy topology.
However, in a totally different research direction, Höhle [10] introduced the concept of a fuzzy topology
which is treated as an L-subset of a powerset 2X in 1982. In 1991, Ying [34, 35] studied Höhle’s topology in
a logical sense, while naming it a fuzzifying topology.

With the great development of fuzzy sets[36] in recent years, various kinds of fuzzy structures have
been researched, such as fuzzy convergence structures [18, 19], fuzzy topological structures [11, 17, 20–
22, 39, 40, 43, 45], fuzzy convex structures [13, 28, 31, 33, 37, 42, 44], fuzzy matroid [12, 29, 41] and so on.
Closure operators and interior operators play a crucial part in many mathematical branches, involving the
realm of algebra [1], topology [3], lattices and order [5], matroid theory [16], convex structure [26], etc..
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Fuzzy closure operators and fuzzy interior operators are widely studied in many fuzzy structures from
different angles. In 2001, Xu [32] discussed eight kinds of characterizations of a fuzzifying topological
interior which was regarded as a set P = {px | x ∈ X} of maps px : 2X

−→ [0, 1]. In 2009, Shi [21] proposed
the notions of L-fuzzy closures and L-fuzzy interiors, and studied the relations among them and an L-fuzzy
topology. In 2010, Fang and Yue [6] introduced the notions of a strong L-fuzzy closure operator and a
strong L-fuzzy closure system, and show that a strong L-fuzzy closure system is precisely the fuzzy system
in opposition to the crisp system. In 2013, Shi and Pang [23] investigated the isomorphic categories of
the category of L-fuzzy closure system spaces. In 2017, Guo et al. [8] investigated algebraic fuzzy closure
operators and algebraic fuzzy closure L-systems on a fuzzy complete lattice. And they have shown that
there is a categorical isomorphism between algebraic fuzzy closure operators and fuzzy convex structures.
In 2021, using fuzzy closure operators as tools, Han and Wang [9] demonstrated that the category CFPos
of complete fuzzy posets and their fuzzy-join preserving maps is a reflective full subcategory of FPosu
which denotes the category of fuzzy posets and their fuzzy-existing-join preserving maps. In 2022, Ojeda-
Hernández et al. [15] discussed different alternatives to define the desired fuzzy closure systems and proved
that it exist a one-to-one relation between fuzzy closure operators and fuzzy closure systems. Afterwards,
Zhao and Pang explored the relationships among L-closure (interior) operators, L-closure (interior) systems
and L-enclosed (internal) relations in [38].

Now, we consider whether we can characterize fuzzy topological closure operators, fuzzy topolog-
ical interior operators and fuzzy topological derived operators in the M-fuzzifying case of mappings
cl/int/der : 2X

→MX, and whether we can give the M-fuzzifying constructions of cld, intd, derd from the
perspective of an M-fuzzifying peseudo metric d in the sense of Morsi’s fuzzy metric, where M is a com-
pletely distributive De Morgan algebra These are the problems that need to be solved in the field of fuzzy
topological structures, which are the main research purposes of this paper.

This paper consists of the following sections. In Section 2, M-fuzzy non-negative real number, M-
fuzzifying pseudo metrics and M-fuzzifying topological operators are reviewed. In Section 3, we discuss
eight kinds of equivalent characterizations of an M-fuzzifying topological closure operator cl : 2X

→ MX,
an M-fuzzifying topological interior operator int : 2X

→ MX, and an M-fuzzifying topological derived
operator der : 2X

→ MX. In Section 4, we construct M-fuzzifying topological operators cld, intd, derd

induced by an M-fuzzifying pseudo metric d and study its related properties. In Section 5, we show
T

d = T cld = T intd
= T derd.

2. Preliminaries

Throughout this paper, M denote a completely distributive De Morgan algebra, i.e., a completely
distributive lattice with an sequential involution ′. Use ⊥M and ⊤M to represent the smallest as well as the
largest element in M, respectively.

For a, b ∈ M , we use a ≺ b to indicate that a way-below b, that is, if for each subset D ⊆ M, b ≤
∨

D
suggest d ≥ a when d ∈ D. The set {a ∈ M : a ≺ b} is a greatest minimal family of b in [27], denoted by β(b).
In a completely distributive lattice, b =

∨
β(b) =

∨
{a ∈ M : a ≺ b} for each b ∈ M. Also, the wedge below

relation has the interpolation property, that is, a ≺ b implies a ≺ c ≺ b when exists c ∈ M. In addition, we
know a ≺

∨
j∈J b j implies there exists some b j such that a ≺ b j. [25].

An element a is called co-prime, if a ≤ b ∨ c implies a ≤ b or a ≤ c. The symbol J(M) is used to represent
the set of non-zero co-prime elements. An element a is called prime, if b ∧ c ≤ a implies b ≤ a or c ≤ a. The
symbol P(M) is used to represent the set of non-unit prime elements.

For A ∈MX and α ∈M, the following notations are referenced:

A[α] = {x ∈ X | A(x) ≥ α}, A(α) = {x ∈ X | A(x) ≰ α}.

As we know, there exists a bijection between non-negative real number ā and the interval [0, a]. The
non-negative real number ā can be viewed as the mapping ā : [0,+∞) → [0, 1], r 7→ ā(r) defined by

ā(r) =

1, 0 ≤ r ≤ a ;
0, r > a .

. It is easily to get the mapping ā is decreasing and
∨

r∈[0,+∞)
ā(r) = ⊤M,

∧
r∈[0,+∞)

λ(r) = ⊥M.
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Based on these, we extend it to M-fuzzy cases in the following definition.

Definition 2.1. ([22]) An equivalency class [λ] of reverse-order maps λ : [0,+∞)→ M is called an M-fuzzy
non-negative real number if it satisfies∨

r∈[0,+∞)
λ(r) = ⊤M,

∧
r∈[0,+∞)

λ(r) = ⊥M,

.

We denote [0,∞)(M) as the set of all M-fuzzy real numbers.
In 1988, Morsi gave the definition of a fuzzy pseudo metric d : X × X → [0,∞)([0, 1]) by using non-

negative [0, 1]-fuzzy real number [14]. If Morsi’s fuzzy pseudo metrics degenerates to the classical case,
then a mapping χd : X × X→ [0,∞) ([0, 1]) is defined by

χd(x, y)(r) =

1, d(x, y) ≥ r ;
0, d(x, y) < r .

.

In 2018, Wang and Shi proposed the concept of an M-fuzzifying pseudo metric [24], in which they
generalize the value [0, 1] of Morsi’s fuzzy pseudo metric to a completely distributive lattice M as follows.

Definition 2.2. ([22, 24]) A mapping d : X × X −→ [0,∞)(M) is called an M-fuzzifying pseudo metric if it
satisfies: ∀x, y, z ∈ X and ∀r, s > 0,
(MF1) d(x, x)(0+) =

∨
r>0 d(x, x)(r) =⊥M, i.e.,∀r > 0, d(x, x)(r) =⊥M;

(MF2) d(x, y)(r) = d(y, x)(r);
(MF3) d(x, y)(r + s) ≤ d(x, z)(r) ∨ d(z, y)(s).
Then (X, d) is an M-fuzzifying pseudo metric space, and d(x, y)(r) represents the degree to which the distance
between x and y is greater than or equal to r.

Example 2.3. Let M = {⊤M, a,⊥M}. Define d: X × X −→ [0,∞)(M) by

d(x, y)(t) =


⊤M, t = 0;
a, 0 < t ≤| x − y |;
⊥M, t >| x − y | .

Then d is an M-fuzzifying pseudo metric.

Proof. Firstly, we need to check that d(x, y)(−) : [0,+∞) → M is well defined, which means d(x, y)(−) is an
M-fuzzy non-negative real number. From its construction, it is obvious that d(x, y)(−) satisfies the conditions
in Definition 2.1. Secondly, we need to prove that the mapping d : X × X −→ [0,∞)(M) is an M-fuzzifying
pseudo metric, which means d should satisfy the conditions (MF1)-(MF3) in Definition 2.2. (MF1) and
(MF2) are easily to be verified. We only need to check (MF3). If neither of d(x, z)(r) and d(z, y)(s) equal
⊥M, then d(x, y)(r + s) ≤ d(x, z)(r) ∨ d(z, y)(s) holds. If d(x, z)(r) = ⊥M and d(z, y)(s) = ⊥M, which means
r >| x − z | and s >| z − y |, then r + s >| x − z | + | z − y |≥| x − y |. This implies d(x, y)(r + s) = ⊥M. Hence
d(x, y)(r + s) ≤ d(x, z)(r) ∨ d(z, y)(s).

Remark 2.4. Actually, (MF3) is a generalization of the classical triangle inequality: d(x, y) ≤ d(x, z)+ d(z, y).
In fact, by Theorem 1.2 in [14], we know

(d(x, z) ⊕ d(z, y))(t) =
∧

r+s=t

(d(x, z)(r) ∨ d(z, y)(s)) =
∨

r+s=t

(d(x, z)(r) ∧ d(z, y)(s)).

Based on that, we get ∀t > 0, d(x, y)(t) ≤ (d(x, z) ⊕ d(z, y))(t)⇔ ∀r, s > 0, d(x, y)(r + s) ≤ d(x, z)(r) ∨ d(z, y)(s).
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Let (X, dX) and (X, dY) be two M-fuzzifying pseudo metric spaces. If a mapping f : (X, dX) → (X, dY)
satisfies the following formula: for any r > 0 and for all x1, x2 ∈ X, we have dX(x1, x2)(r) ≥ dY( f (x1), f (x2))(r),
then f is called continuous.

Next, we shall recall some concepts of M-fuzzifying topological spaces.

Definition 2.5. ([34]) A mapping T : 2X
→M is called an M-fuzzifying topology if it satisfies:

(MFT1) T (∅) = T (X) = ⊤M;
(MFT2) ∀A1,A2 ∈ 2X, T (A1)

∧
T (A2) ≤ T (A1

⋂
A2);

(MFT3) ∀{A j : j ∈ J} ⊆ 2X,
∧

j∈J T (A j) ≤ T (
⋃

j∈J A j).

In the theory of topology, we know that the topological closure and interior operator are defined from
the perspective of sets. To be specific, A crisp topological closure operator is a mapping cl : 2X

→ 2X defined
by cl(A) =

⋂
{B | cl(B) ⊆ B,A ⊆ B}. A crisp topological interior operator is a mapping int : 2X

→ 2X defined
by int(A) =

⋃
{B | B ⊆ int(B),B ⊆ A}.

In 2001, Xu [32] gave the definition of a fuzzy topological closure and interior operator which were
regarded as a set P = {px | x ∈ X} of maps px : 2X

−→ [0, 1]. Compared with crisp topological closure and
interior operators, Xu’s fuzzy topological operators may not the most appropriate one.

In 2009, Shi [21] proposed the concepts of an M-fuzzifying closure operator cl : 2X
→ MX and an

M-fuzzifying interior operator int : 2X
→MX which are compatible with the crisp cases.

Definition 2.6. ([21]) A mapping cl : 2X
→ MX is called an M-fuzzifying topological closure operator if it

satisfies:
(MFCL1) cl(∅)(x) = ⊥M;
(MFCL2) ∀x ∈ A, cl(A)(x) = ⊤M;
(MFCL3) cl(B1

⋃
B2) = cl(B1)

∨
cl(B2);

(MFCL4) cl(A)(x) =
∧

x<B⊇A
∨

y<B cl(B)(y).

Let (X, clX) and (Y, clY) be two M-fuzzifying topological closure spaces. If a map f : X → Y satisfies
clX(A)(x) ≤ clY( f→(A))( f (x)) for any x ∈ X and A ∈ 2X, where f→(A) = { f (x) | x ∈ A} , then f is called
continuous.

Similarly, we present the definition of an M-fuzzifying interior operator.

Definition 2.7. ([21]) A mapping int : 2X
→ MX is called an M-fuzzifying topological interior operator if it

satisfies:
(MFIN1) int(X)(x) = ⊤M;
(MFIN2) ∀x < A, int(A)(x) = ⊥M;
(MFIN3) int(A1

⋂
A2) = int(A1)

∧
int(A2);

(MFIN4) int(A)(x) =
∨

x∈B⊆A
∧

y∈B int(B)(y).

Let (X, intX) and (Y, intY) be two M-fuzzifying topological interior spaces. If a map f : X → Y satisfies
intY(B)( f (x)) ≤ intX( f←(B))(x) for any x ∈ X and B ∈ 2Y, where f←(B) = {x ∈ X | f (x) ∈ B}, then f is called
continuous.

In addition to closure operators and interior operators, derived operators also have a one-to-one cor-
respondence with topologies. A topological derived operator is a mapping der : 2X

→ 2X satisfying the
conditions: (DER1) der(∅) = ∅; (DER2) x < der({x}); (DER3) ∀A1,A2 ⊆ X, der(A1

⋃
A2) = der(A1)

⋃
der(A2);

(DER4) der(der(A)) ⊆ A
⋃

der(A).
In 2019, F.H. Chen, Y. Zhong and F.G. Shi [4] generalized the crisp topological derived operators to the

M-fuzzifying case in the following.

Definition 2.8. ([4]) A mapping der : 2X
→ MX is called an M-fuzzifying topological derived operator if it

satisfies:
(MFDER1) ∀x ∈ X, der(∅)(x) = ⊥M;
(MFDER2) ∀x ∈ X, der({x})(x) = ⊥M;
(MFDER3) der(A1

⋃
A2) = der(A1)

∨
der(A2);

(MFDER4) der(A)(x) =
∧

x<B⊇A−{x}
∨

y<B der(B)(y).
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Let (X, derX) and (Y, derY) be two M-fuzzifying topological derived spaces. If a map f : X → Y satisfies
derX(A)(x) ≤ f→(A)( f (x)) ∨ derY( f→(A))( f (x)), where

f→(A)( f (x)) ∨ derY( f→(A))( f (x)) =

⊤, f (x) ∈ f→(A) ;
derY( f→(A))( f (x)), f (x) < f→(A) .

then f is called continuous.

Remark 2.9. ([4]) If a mapping der : 2X
→MX satisfies (MFDER1)-(MFDER3), then der(A)(x) = der(A−{x})(x)

for all x ∈ X and A ∈ 2X .

3. Equivalent characterizations of M-fuzzifying topological operators

3.1. Equivalent characterizations of an M-fuzzifying topological closure operator
Before discussing equivalent characterizations of an M-fuzzifying topological closure operator, We need

the following lemma which describes the equivalent characterizations of a crisp topological closure operator.

Lemma 3.1. Let a mapping cl : 2X
→ 2X be a crisp topological closure operator defined by cl(A) =

⋂
{B ⊆ X | A ⊆

B, cl(B) ⊆ B}. Then

x ∈ cl(A)⇔ ∀B ⊆ X,A ⊆ B, cl(B) ⊆ B, s.t. x ∈ B.

i.e., x < cl(A) ⇔ (1) ∃B ⊆ X,A ⊆ B, cl(B) ⊆ B, suchthat.t. x < B
⇔ (2) ∃B ⊆ X,A ⊆ B, cl(B) ⊆ B, s.t. x < B, x < cl(B)
⇔ (3) ∃B ⊆ X,A ⊆ B, cl(A) ⊆ B, s.t. x < B, x < cl(B)
⇔ (4) ∃B ⊆ X,A ⊆ B, cl(B) ⊆ B, s.t. x < B, x < cl(A)

Proof. (1)⇔ (2)⇔ (4) and (2)⇒ (3) are obvious. We only show (3)⇒ (2).
Since x < cl(B), it follows from (3) that there exists some Bx with A ⊆ Bx, cl(A) ⊆ Bx such that x < Bx and

x < cl(Bx). Let

W =
⋂
{Bα ⊆ X | A ⊆ Bα, cl(A) ⊆ Bα}.

Then Bx ⊇W ⊇ A. Further x <W ⊇ A.
Next, we verify cl(W) ⊆ W. For any y < W, there exists some By with A ⊆ By and cl(A) ⊆ By such that

y < By. So y < cl(A). By (3), we know there exists B̃y with A ⊆ B̃y and cl(A) ⊆ B̃y such that y < B̃y and
y < cl(B̃y). Then B̃y ⊇ W, which implies cl(B̃y) ⊇ cl(W). Hence y < cl(W). By the arbitrariness of y, we get
cl(W) ⊆ W. Therefore, there exists W ⊆ X with A ⊆ X, cl(W) ⊆ W such that x < W and x < cl(W), which
means (2) holds.

Next, we will generalize the conclusions of a topological closure operator in Lemma 3.1 to the M-
fuzzifying cases.

Theorem 3.2. Let a mapping cl : 2X
→ MX satisfying the conditions (MFYC1)-(MFYC3). Then the followings are

equivalent.
(MFYC4-1) cl(A)(x) =

∧
x<B⊇A

∨
y<B cl(B)(y);

(MFYC-2) cl(A)(x) =
∧

x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

)
;

(MFYC4-3) cl(A)(x) =
∧

x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(A)(y)

)
;

(MFYC4-4) cl(A)(x) =
∧

x<B⊇A

(
cl(A)(x) ∨

∨
y<B cl(B)(y)

)
;

(MFYC4-5) cl(A)(x) =
∧

B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

)
;

(MFYC4-6) cl(A)(x) =
∧

B⊇A

(
cl(B)(x) ∨

∨
y<B cl(A)(y)

)
;

(MFYC4-7) cl(A)(x) =
∧

B⊇A

(
cl(A)(x) ∨

∨
y<B cl(B)(y)

)
;

(MFYC4-8) ∀α ∈ J(M), cl(cl(A)[α])[α] ⊆ cl(A)[α], where cl(A)[α] = {x ∈ A | cl(A)(x) ≥ α}.
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Proof. (1) Firstly, we prove that (MFYC4-1)⇔ (MFYC4-3)⇔ (MFYC4-8). Since Shi and Pang have proved
(MFYC4-1)⇔ (MFYC4-8) in [23], we need to show (MFYC4-1)⇔ (MFYC4-3).
i) By Definition 2.6 , we know the mapping cl is order-preserving. Then

∧
x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(A)(y)

)
≥

cl(A)(x). On the other hand, it follows from (MFYC4-1) that

cl(A)(x) =
∧

x<B⊇A
∨

y<B cl(B)(y) ≥
∧

x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(A)(y)

)
.

Therefore cl(A)(x) =
∧

x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(A)(y)

)
. This shows (MFYC4-1)⇒ (MFYC4-3).

ii) For any x < B ⊇ A, we know
∨

y<B cl(B)(y) ≥ cl(B)(x) ≥ cl(A)(x). Then cl(A)(x) ≤
∧

x<B⊇A
∨

y<B cl(B)(y). In
order to prove (MFYC4-1), it suffices to verify cl(A)(x) ≥

∧
x<B⊇A

∨
y<B cl(B)(y), i.e.,

cl(A)(x)′ ≤
∨

x<B⊇A
∧

y<B cl(B)(y)′.

Assume thatα ∈ J(M) withα ≺ cl(A)(x)′. By (MFYC4-3), we get cl(A)(x)′ =
∨

x<B⊇A

(
cl(B)(x)′ ∧

∧
y<B cl(A)(y)′

)
.

On the other hand, for any y < Bx, there exists some Bx with x < Bx ⊇ A such that cl(A)(y)′ ≻ α and
cl(Bx)(x)′ ≻ α. Let

U =
⋂
{Bu ⊆ X | u < Bu ⊇ A, α ≺ cl(Bu)(u)′,∀y < Bu, α ≺ cl(A)(y)′}

Then Bx ⊇ U. Further x < U ⊇ A.
Next, we shall show α ≤

∧
z<U (cl(U)(z))′. For any z < U, there exists some Bu with u < Bu ⊇ A,

α ≺ cl(Bu)(u)′, ∀y < Bu, α ≺ cl(A)(y)′ such that z < Bu. It follows that α ≺ cl(A)(z)′. By (MFYC4-3), there
exists some Bz and z < Bz ⊇ A such that α ≺ cl(Bz)(z)′ and α ≺ cl(A)(w)′ for any w < Bz. By the construction
of U, we get Bz ⊇ U. Then cl(Bz)(z) ≥ cl(U)(z), i.e., cl(U)(z)′ ≥ cl(Bz)(z)′ ≥ α. Further

α ≤
∧

z<U cl(U)(z)′ and α ≤
∨

x<B⊇A
∧

y<B cl(B)(y)′.

Due to the arbitrariness of α, we obtain

(cl(A)(x))′ ≤
∨

x<B⊇A
∧

y<B cl(B)(y)′.

Hence
(cl(A)(x))′ =

∨
x<B⊇A

∧
y<B

cl(B)(y)′.

Therefore cl(A)(x) =
∧

x<B⊇A
∨

y<B cl(B)(y). This shows (MFYC4-3)⇒ (MFYC4-1).
(2) Since cl(B)(x) = ⊤M for all x ∈ B, we get

cl(A)(x) =
∧

B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

)
=

(∧
x∈B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

))
∧

(∧
x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

))
= ⊤M ∧

(∧
x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

))
=

∧
x<B⊇A

(
cl(B)(x) ∨

∨
y<B cl(B)(y)

)
This shows (MFYC4-2)⇔ (MFYC4-5).

(3) The proofs of (MFYC4-3)⇔ (MFYC4-6), (MFYC4-4)⇔ (MFYC4-7) are similar to that of (MFYC4-2)
⇔ (MFYC4-5), Here we omit.
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3.2. Equivalent characterizations of an M-fuzzifying topological interior operator
Before discussing equivalent characterizations of an M-fuzzifying topological interior operator, we

need the following lemma which describes the equivalent characterizations of a crisp topological interior
operator.

Lemma 3.3. Let a mapping int : 2X
→ 2X be a crisp topological interior operator defined by int(A) =

⋃
{B ⊆ X |

B ⊆ int(B),B ⊆ A}. Then

x ∈ int(A) ⇔ (1) ∃B ⊆ X,B ⊆ A,B ⊆ int(B), s.t. x ∈ B
⇔ (2) ∃B ⊆ X,B ⊆ A,B ⊆ int(B), s.t. x ∈ B, x ∈ int(B)
⇔ (3) ∃B ⊆ X,B ⊆ A,B ⊆ int(A), s.t. x ∈ B, x ∈ int(B)
⇔ (4) ∃B ⊆ X,B ⊆ A,B ⊆ int(B), s.t. x ∈ B, x ∈ int(A)

Proof. (1) ⇔ (2) ⇔ (4) and (2) ⇒ (3) are obvious. We only show (3) ⇒ (2). Since B ⊆ int(A) and x ∈ B,
it follows that x ∈ int(A). By (3), we know there exists some Bx with Bx ⊆ A,Bx ⊆ int(A) such that
x ∈ Bx, x ∈ int(Bx). Let

U =
⋃
{Bα | Bα ⊆ A,Bα ⊆ int(A)}.

Then Bx ⊆ U ⊆ A and x ∈ U.
Next, we verify U ⊆ int(U). For any y ∈ U, there exists some By with By ⊆ A,By ⊆ int(A) such that

y ∈ By. So y ∈ int(A). By (3), we know there exist some B̃y with B̃y ⊆ A, B̃y ⊆ int(A) such that y ∈ B̃y,
y ∈ int(B̃y). Then B̃y ⊆ U. Further y ∈ int(B̃y) ⊆ int(U). Hence y ∈ int(U). Because of the arbitrariness of y,
we get U ⊆ int(U). Therefore there exists U ⊆ X with U ⊆ A, U ⊆ int(U) such that x ∈ U and x ∈ int(U),
which means (2) holds.

In what follows, eight equivalent characterizations of an M-fuzzifying topological interior operator will
be presented.

Theorem 3.4. Let a mapping int : 2X
→ MX satisfying conditions (MFIN1)-(MFIN3). Then the followings

are equivalent.
(MFIN4-1) int(A)(x) =

∨
x∈B⊆A

∧
y∈B int(B)(y);

(MFIN4-2) int(A)(x) =
∨

x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

)
;

(MFIN4-3) int(A)(x) =
∨

x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(A)(y)

)
;

(MFIN4-4) int(A)(x) =
∨

x∈B⊆A

(
int(A)(x) ∧

∧
y∈B int(B)(y)

)
;

(MFIN4-5) int(A)(x) =
∨

B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

)
;

(MFIN4-6) int(A)(x) =
∨

B⊆A

(
int(B)(x) ∧

∧
y∈B int(A)(y)

)
;

(MFIN4-7) int(A)(x) =
∨

B⊆A

(
int(A)(x) ∧

∧
y∈B int(B)(y)

)
;

(MFIN4-8) ∀α ∈ P(M), int(A)(α)
⊆ int(int(A)(α))(α), where int(A)(α) = {x | int(A)(x) ≰ α}.

Proof. (1) Firstly, we want to prove that (MFIN4-1)⇔ (MFIN4-3)⇔ (MFIN4-8). Since Shi and Pang have
proved (MFIN4-1)⇔ (8) in [23], we only need to show (MFIN4-1)⇔ (MFIN4-3).
i) According to the order-preserving properties of int, we know that int(A)(x) ≥

∨
x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

)
.

By (MFIN4-1), we get

int(A)(x) =
∨

x∈B⊆A

∧
y∈B

int(B)(y) ≤
∨

x∈B⊆A

int(B)(x) ∧
∧
y∈B

int(A)(y)

 .
Therefore int(A)(x) =

∨
x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

)
. This shows (MFIN4-1)⇒ (MFIN4-3).

ii) To show (MFIN4-1), we only prove
∨

x∈B⊆A
∧

y∈B int(B)(y) ≥ int(A)(x).
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On one hand,
∨

x∈B⊆A
∧

y∈B int(B)(y) ≤ int(A)(x) is trivial. On the other hand, assume that α ≺ int(A)(x)

and α ∈ J(M). By (MFIN4-3), int(A)(x) =
∨

x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(A)(y)

)
. For any y ∈ Bx, α ≺ int(A)(y)

and α ≺ int(Bx)(x), there exists some Bx with x ∈ Bx ⊆ A. Let

V =
⋃
{Bu | u ∈ Bu ⊆ A, α ≺ int(Bu)(u),∀y ∈ Bu, α ≺ int(A)(y)}

Then Bx ⊆ V. Further x ∈ V ⊆ A.
Next, we shall show α ≤

∧
z∈V int(V)(z). For any z ∈ V, there exists some Bu with u ∈ Bu ⊆ A,

α ≺ int(Bu)(u), ∀y ∈ Bu, α ≺ int(A)(y) such that z ∈ Bu. It follows that α ≺ int(A)(z). By(MFIN4-3), there
exists some Bz with z ∈ Bz ⊆ A such that α ≺ int(Bz)(z) and α ≺ int(A)(w) for any w ∈ Bz. By the construction
of V, we get Bz ⊆ V. Then α ≤ int(Bz)(z) ≤ int(V)(z). Further,

α ≤
∧

z∈V int(V)(z) and α ≤
∨

x∈B⊆A
∧

y∈B int(B)(y).

Because of the arbitrariness of α, we have

int(A)(x) ≤
∨

x∈B⊆A

∧
y∈B

int(B)(y).

Therefore
int(A)(x) =

∨
x∈B⊆A

∧
y∈B

int(B)(y).

This shows (MFIN4-3)⇒ (MFIN4-1).
(2) Due to int(A)(x) = ⊥M for any x < A, we get

int(A)(x) =
∨

B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

)
=

(∨
x<B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

))
∨

(∨
x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

))
= ⊥M ∨

(∨
x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

))
=

∨
x∈B⊆A

(
int(B)(x) ∧

∧
y∈B int(B)(y)

)
This shows (MFIN4-2)⇔ (MFIN4-5).

(3) The proofs of (MFIN4-3)⇔ (MFIN4-6) and (MFIN4-4)⇔ (MFIN4-7) are similar to that of (MFIN4-2)
⇔ (MFIN4-5), Here we omit.

3.3. Equivalent characterization of an M-fuzzifying topological derived operator
In [4], it has shown that if cl is an M-fuzzifying topological closure operator, then dercl : 2X

→MX defined
by dercl(A)(x) = cl(A − {x})(x) is an M-fuzzifying topological derived operator. On the contrary, if der is an

M-fuzzifying topological derived operator, then clder : 2X
→MX defined by clder(A) =

⊤M, x ∈ A;
der(A)(x), x < A.

is

an M-fuzzifying topological closure operator. Besides, derclder
= der and cldercl

= cl.
Namely, there exists one-to-one correspondence between M-fuzzifying topological derived operators

and M-fuzzifying topological closure operator. Due to Theorem 3.2 and the above conclusions, it is easy to
get the following eight characterizations of an M-fuzzifying topological derived operator.

Theorem 3.5. Let a map der : 2X
→ MX satisfying the conditions (MFDER1)-(MFDER3). Then the follow-

ings are equivalent.
(MFDER4-1) der(A)(x) =

∧
x<B⊇A−{x}

∨
y<B der(B)(y);

(MFDER4-2) der(A)(x) =
∧

x<B⊇A−{x}

(
der(B)(x) ∨

∨
y<B der(B)(y)

)
;

(MFDER4-3) der(A)(x) =
∧

x<B⊇A−{x}

(
der(B)(x) ∨

∨
y<B der(A − {x})(y)

)
;
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(MFDER4-4) der(A)(x) =
∧

x<B⊇A−{x}

(
der(A − {x})(x) ∨

∨
y<B der(B)(y)

)
;

(MFDER4-5) der(A)(x) =
∧

B⊇A−{x}

(
der(B)(x) ∨

∨
y<B der(B)(y)

)
;

(MFDER4-6) der(A)(x) =
∧

B⊇A−{x}

(
der(B)(x) ∨

∨
y<B der(A − {x})(y)

)
;

(MFDER4-7) der(A)(x) =
∧

B⊇A−{x}

(
der(A − {x})(x) ∨

∨
y<B der(B)(y)

)
;

(MFDER4-8) ∀α ∈ J(M), der(der(A)[α])[α] ⊆ A
⋃

der(A)[α], where der(A)[α] = {x ∈ A | der(A)(x) ≥ α}.

4. M-fuzzifying topological operators cld, intd, derd induced by an M-fuzzifying pseudo metric d

In this section, we shall show the fuzzy construction of an M-fuzzifying topological closure operator
cld : 2X

→ MX, an M-fuzzifying topological interior operator intd : 2X
→ MX, and an M-fuzzifying

topological derived operator derd : 2X
→ MX induced by an M-fuzzifying pseudo metric d respectively.

Also, we will show that the continuity between M-fuzzifying topological operator spaces and M-fuzzifying
pseudo metric spaces is maintained.

Firstly, let us recall the construction of the closure of a subset A ⊆ X induced by a metric d. In classical
case, let (X, d) be a metric space. Define d(x,A) = in f {d(x, y) | y ∈ A} be the distance from the point x to the
subset A. Then

cld(A) = {x ∈ X | d(x,A) = 0} = {x ∈ X | ∀r > 0,∃y ∈ A, d(x, y) < r}.

As it was mentioned in preliminaries, a crisp metric d can be equivalently regarded as a mapping

χd : X × X→ [0,∞)([0, 1]) defined by χd(x, y)(r) =

1, d(x, y) ≥ r ;
0, d(x, y) < r .

Based on that, we extend cld to an M-fuzzifying case.

Theorem 4.1. Let (X, d) be an M-fuzzifying pseudo metric space. Define a map cld : 2X
→MX by ∀A ∈ 2X, x ∈ X

cld(A)(x) =
∧
r>0

∨
y∈A

d(x, y)(r)′.

Then cld is an M-fuzzifying closure operator.

Proof. We need to check that cl meet with (MFYC1)-(MFYC4).
(MFYC1) and (MFYC2) are trivial.
(MFYC3) On one side, cld(A1) ≤ cld(A2) is trivial for any A1 ⊆ A2. Then cld(A1) ∨ cld(A2) ≤ cld(A1 ∪ A2). On
the other side, we have

cld(A1)(x) ∨ cld(A2)(x) =

∧
s>0

∨
y1∈A1

d(x, y1)(s)′
 ∨
∧

t>0

∨
y2∈A2

d(x, y2)(t)′


=
∧

s>0,t>0

∨
y1∈A1,y2∈A2

(
d(x, y1)(s)′ ∨ d(x, y2)(t)′

)
≥

∧
r>0

∨
y∈A1∪A2

d(x, y)(r)′ = cld(A1 ∪ A2)(x).

Next, we shall prove the inequality in the above.
Take any a ∈ M \ {⊥} with a ≰

∧
s>0,t>0

∨
y1∈A1,y2∈A2

(
d(x, y1)(s)′ ∨ d(x, y2)(t)′

)
, then there exist some s > 0

and t > 0 such that a ≰ d(x, y1)(s)′ for all y1 ∈ A1 and a ≰ d(x, y2)(t)′ for all y2 ∈ A2.
Let 0 < r < s∧t. For any y ∈ A1∪A2 (that is, y ∈ A1 or y ∈ A2), since d(x, y)(−) is non-increasing, it follows

that d(x, y)(r) ≥ d(x, y)(s), that is, d(x, y)(r)′ ≤ d(x, y)(s)′. If y ∈ A1, then a ≰ d(x, y)(s)′. So a ≰ d(x, y)(r)′. If
y ∈ A2, we get a ≰ d(x, y)(r)′ similarly. Hence a ≰

∧
r>0
∨

y∈A1∪A2
d(x, y)(r)′. By the arbitrariness a, we have∧

s>0,t>0

∨
y1∈A1,y2∈A2

(
d(x, y1)(s)′ ∨ d(x, y2)(t)′

)
≥

∧
r>0

∨
y∈A1∪A2

d(x, y)(r)′.

(MFCL4) By theorem 3.2, it suffices to prove (MFCL4-2), that is,
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cld(A)(x) =
∧

x<B⊇A

(
cld(B)(x) ∨

∨
y<B cld(A)(y)

)
.

Since a mapping cl is order-preserving, we have

cld(A)(x) ≤
∧

x<B⊇A

cld(B)(x) ∨
∨
y<B

cld(A)(y)

 .
What remains is to prove

cld(A)(x) ≥
∧

x<B⊇A

(
cld(B)(x) ∨

∨
y<B cld(A)(y)

)
,

i.e., cld(A)(x)′ ≤
∨

x<B⊇A

(
cld(B)(x)′ ∧

∧
y<B cld(A)(y)′

)
.

In fact, take any a ∈ J(M) with a ≺ cld(A)(x)′ =
∨

r>0
∧

y∈A d(x, y)(r), there exists r0 > 0 such that a ≤ d(x, y)(r0)
for all y ∈ A. Let

B = {y ∈ X | d(x, y)
( r0

2

)
≥ a}.

Then x < B ⊇ A (Actually, we have d(x, y)( r0
2 ) ≱ a for any y < B, and d(x, y)( r0

2 ) ≥ d(x, y)(r0). Then
d(x, y)(r0) ≱ a, which implies y < A. So B ⊇ A. Besides d(x, x)( r0

2 ) ≱ a, it follows that x < B ⊇ A).
Note that

cld(B)(x)′ =
∨
s>0

∧
y∈B

d(x, y)(s) ≥
∧
y∈B

d(x, y)
( r0

2

)
≥ a,

and ∧
y<B

cld(A)(y)′ =
∧
y<B

∨
t>0

∧
z∈A

d(y, z)(t) ≥
∧
y<B

∧
z∈A

d(y, z)
( r0

2

)
.

Then we shall verify
∧

y<B cld(A)(y)′ ≥ a. For all y < B, d(x, y)( r0
2 ) ≱ a and for all z ∈ A, d(x, z)(r0) ≥ a. By

a ∈ J(M) and d(x, z)(r0) ≤ d(x, y)
(

r0
2

)
∨ d(y, z)

(
r0
2

)
, we get d(y, z)( r0

2 ) ≥ a. This implies
∧

y<B cld(A)(y)′ ≥ a and

a ≤
∨

x<B⊇A

(
cld(B)(x)′ ∧

∧
y<B cld(A)(y)′

)
. Because of the arbitrariness of a, we obtain

cl(A)d(x)′ ≤
∨

x<B⊇A

cld(B)(x)′ ∧
∧
y<B

cld(A)(y)′
 .

Therefore (MFCL4-2) holds, which is equivalent to condition (MFCL4) holds.

In what follows, we shall show that the continuity of f between M-fuzzifying pseudo metric spaces and
their induced M-fuzzifying topological closure spaces remains consistent.

Theorem 4.2. Let (X, dX) and (Y, dY) be two M-fuzzifying pseudo metric spaces. If f : (X, dX) → (Y, dY) is
continuous, then f : (X, cldX )→ (Y, cldY ) is also continuous.

Proof. It required to show that cldX (A)(x) ≤ cldY ( f→(A))( f (x)) for any x ∈ X and for all A ∈ 2X. Since
f : (X, dX)→ (X, dY) is continuous, it follows that (dY( f (x1), f (x2))(r))′ ≥ (dX(x1, x2)(r))′ for any r > 0 and for
all x1, x2 ∈ X. Then

cldY ( f→(A))( f (x)) =
∧
r>0

∨
z∈ f→(A)

(dY( f (x), z)(r))′ ≥
∧
r>0

∨
y∈A

(dY( f (x), f (y))(r))′ ≥
∧
r>0

∨
y∈A

(dX(x, y)(r))′ = cldX (A)(x).
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Let (X, d) be a crisp metric space and let A ⊆ X. Define the open ball B(x, r) = {y ∈ X | d(x, y) < r}. Then

intd(A) = {x ∈ X | ∃r > 0,B(x, r) ⊆ A} = {x ∈ X | ∃r > 0,∀y < A, d(x, y) ≥ r}.

As it is mentioned in preliminaries, a crisp metric d can be equivalently regarded as a mapping χd :

X × X→ [0,∞)([0, 1]) defined by χd(x, y)(r) =

1, d(x, y) ≥ r ;
0, d(x, y) < r .

According to that, intd could be extended to

the M-fuzzifying case in the following theorem.

Theorem 4.3. Let (X, d) be an M-fuzzifying pseudo metric space. Define a map intd : 2X
→MX by ∀A ∈ 2X, ∀x ∈ X

intd(A)(x) =
∨
r>0

∧
y<A

d(x, y)(r).

Then intd is an M-fuzzifying interior operator.

Proof. We need to prove (MFIN1)-(MFIN4).
(MFIN1) and (MFIN2) are trivial.
(MFIN3) On one hand, it is obvious that intd(A1) ≤ intd(A2) for any A1 ⊆ A2. Then intd(A1 ∩ A2) ≤
intd(A1) ∧ intd(A2). On the other side,

intd(A1) ∧ intd(A2) =

∨
s>0

∧
y1<A1

d(x, y1)(s)

 ∧
∨

t>0

∧
y2<A2

d(x, y2)(t)


=
∨

s>0,t>0

∧
y1<A1,y2<A2

d(x, y1)(s) ∧ d(x, y1)(t) ≤
∨
r>0

∧
y<A1∩A2

d(x, y)(r) = intd(A1 ∩ A2)

Next, we shall prove the inequality in the above.
Assume a ∈ M \ {⊥} with a ≺

∨
s>0,t>0

∧
y1<A1,y2<A2

d(x, y1)(s) ∧ d(x, y2)(t). there exist s > 0 and t > 0 such
that a ≺ d(x, y1)(s) ∧ d(x, y2)(t) for all y1 < A1 and y2 < A2. This implies a ≤ d(x, y1)(s) for any y1 < A1 and
a ≤ d(x, y2)(t) for any y2 < A2. Let 0 < r < s ∧ t. Take any y < A1 ∩ A2 (that is, y < A1 or y < A2). If y < A1,
then d(x, y)(s) ≥ a and d(x, y)(r) ≥ d(x, y)(s) ≥ a. If y < A2, we get d(x, y)(r) ≥ a similarly. So d(x, y)(r) ≥ a.
Further a ≤

∨
r>0
∧

y<A1∩A2
d(x, y)(r). Because of the arbitrariness of a, we get∨

s>0,t>0

∧
y1<A1,y2<A2

d(x, y1)(s) ∧ d(x, y2)(t) ≤
∨
r>0

∧
y<A1∩A2

d(x, y)(r).

Hence intd(A1 ∩ A2) = intd(A1) ∧ intd(A2).

(MFIN4) By Theorem 3.4, we only need to check (MFIN4-2), that is,

intd(A)(x) =
∨

x∈B⊆A

intd(B)(x) ∧
∧
y∈B

intd(A)(y)

 .
It follows from (MFIN3) that the map intd(·) is order-preserving, it could draw the conclusion that

intd(A)(x) ≥
∨

x∈B⊆A

intd(B)(x) ∧
∧
y∈B

intd(A)(y)

 .
It suffices to show

intd(A)(x) ≤
∨

x∈B⊆A

intd(B)(x) ∧
∧
y∈B

intd(A)(y)

 .
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Take any a ∈ P(M) with a ≺ intd(A) =
∨

r>0
∧

y<A d(x, y)(r), there exists r0 > 0 such that a ≤ d(x, y)(r0) for
all y < A. Let

B = {y ∈ X | d(x, y)(
r0

2
) ≱ a}.

Then x ∈ B ⊆ A. (In fact, since d(x, y)(r0) ≥ a for all y < A, and d(x, y)(−) is non-increasing, it follows that
d(x, y)( r0

2 ) ≥ d(x, y)(r0). This shows d(x, y)( r0
2 ) ≥ a which means y < B. So B ⊆ A. Besides d(x, x)(r0) =⊥M≤ a,

we get x ∈ B ⊆ A).
Note that

intd(B)(x) =
∨
r>0

∧
y<B

(
d(x, y)(r)

)
≥

∧
y<B

d(x, y)(
r0

2
) ≥ a,

and ∧
y∈B

intd(A)(y) =
∧
y∈B

∨
r>0

∧
z<A

d(y, z)(r) ≥
∧
y∈B

∧
z<A

d(y, z)(
r0

2
).

Due to a ∈ P(M) and d(x, z)(r0) ≤ d(x, y)( r0
2 ) ∨ d(y, z)( r0

2 ). So d(y, z)( r0
2 ) ≥ a, which shows

∧
y∈B intd(A)(y) ≥ a.

Further a ≤
(
intd(B)(x) ∧

∧
y∈B intd(A)(y)

)
. Because of the arbitrariness of a, we obtain

intd(A)(x) ≤
∨

x∈B⊆A

intd(B)(x) ∧
∧
y∈B

intd(A)(y)

 .
Therefore (MFIL4-2) holds, which is equivalent to condition (MFIL4) holds.

In the following, it shall shows that the continuity of f between M-fuzzifying pseudo-metric spaces and
their induced M-fuzzifying interior spaces is consistent.

Theorem 4.4. Let (X, dX) and (Y, dY) be two M-fuzzifying pseudo metric spaces. If f : (X, dX) → (Y, dY) is
continuous, then f : (X, intdX )→ (Y, intdY ) is also continuous.

Proof. It suffices to prove that intdY (B)( f (x)) ≤ intdX ( f←(B))(x) for any x ∈ X and B ∈ 2Y. Due to f : (X, dX)→
(X, dY) is continuous, we know dX(x1, x2)(r) ≥ dY( f (x1), f (x2))(r)) for any r > 0 and for all x1, x2 ∈ X. Then

intdY (B)( f (x)) =
∨
r>0

∧
z<B

(
dY( f (x), z)(r)

)
≤

∨
r>0

∧
y< f←(B)

(
dY( f (x), f (y))(r)

)
≤

∨
r>0

∧
y< f←(B)

(
dX(x, y)(r)

)
= intdX ( f←(B))(x).

In [4], it has shown that M-fuzzifying topological derived operators and M-fuzzifying topological closure
operators exists a one-to-one correspondence. By dercl(A)(x) = cl(A− {x})(x) and Theorem 4.1, the following
theorem could be obtained.

Theorem 4.5. Let (X, d) be an M-fuzzifying pseudo metric space. For all A ∈ 2X and x ∈ X. Defined a mapping
derd : 2X

→MX by ∀A ∈ 2X,∀x ∈ X,

derd(A)(x) =
∧
r>0

∨
y∈A−{x}

d(x, y)(r)′.

Therefore derd is an M-fuzzifying derived operator.

Finally, we shall show that the continuity of f between M-fuzzifying pseudo metric and their induced
M-fuzzifying topological derived spaces remains consistent.
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Theorem 4.6. Let (X, dX) and (Y, dY) be two M-fuzzifying pseudo metric spaces. If f : (X, dX) → (Y, dY) is
continuous, then f : (X, derdX )→ (Y, derdY ) is also continuous.

Proof. We need to show ∀x ∈ X, ∀A ∈ 2X, derdX (A)(x) ≤ f→(A)( f (x)) ∨ derdY ( f→(A))( f (x)). Since f : (X, dX)→
(X, dY) is continuous, we have (dY( f (x1), f (x2))(r))′ ≥ (dX(x1, x2)(r))′ for any r > 0 and for all x1, x2 ∈ X.
(1) If f (x) ∈ f→(A), then

f→(A)( f (x)) ∨ derdY ( f→(A))( f (x)) = ⊤M ≥ derdX (A)(x).

(2) If f (x) < f→(A), then

derdY ( f→(A))( f (x)) =
∧
r>0

∨
z∈ f→(A)− f (x)

(dY( f (x), z)(r))′

=
∧
r>0

∨
z∈ f→(A)

(dY( f (x), z)(r))′ ≥
∧
r>0

∨
y∈A

(dY( f (x), f (y))(r))′

≥

∧
r>0

∨
y∈A

(dX(x, y)(r))′ ≥
∧
r>0

∨
y∈A−{x}

(dX(x, y)(r))′ = derdX (A)(x).

5. M-fuzzifying topology T d = T cld
= T intd

= T derd

In the classical case, there is one-to-one correspondences among closure operators, interior operators,
derived operators and topologies. Besides, it has shown that the topology T d induced by a pseudo d is
exactly the topology induced by cld, intd, derd. Namely, T d = T cld = T cld = T intd

= T derd. Naturally, we
would like to know whether the above conclusions hold or not, when it is extended to M-fuzzifying cases.

Many researchers [4, 6, 21, 32, 34] have shown the relations among M-fuzzifying topological closure
operators, M-fuzzifying topological interior operators, M-fuzzifying topological derived operators, M-
fuzzifying neighborhood system, and M-fuzzifying topologies. Now, we use the following chart to recall
some important relationships.

In [22], it has proved that if d is an M-fuzzifying pseudo metric, then the M-fuzzifying topology
T

d : 2X
→M induced by d is defined by ∀A ∈ 2X,

T
d(A) =

∧
x∈A

∨
r>0

∧
y<A

d(x, y)(r).

Next, we shall show the most meaningful conclusions of this section.
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Theorem 5.1. T d = T cld = T intd
= T derd.

Proof. For any A ∈ 2X,

T
cld(A) =

∧
x∈A

(
cld(A′)(x)

)′
=
∧
x∈A

∧
r>0

∨
y∈A′

(
d(x, y)(r)

)′
′

=
∧
x∈A

∨
r>0

∧
y<A

d(x, y)(r) = T d(A).

T
intd

(A) =
∧
x∈A

intd(A)(x) =
∧
x∈A

∨
r>0

∧
y<A

d(x, y)(r) = T d(A).

T
derd

(A) =
∧
x<A′

(
derd(A′)(x)

)′
=
∧
x∈A

∧
r>0

∨
y∈A′−{x}

d(x, y)(r)′

′

=
∧
x∈A

∨
r>0

∧
y∈A′−{x}

d(x, y)(r) =
∧
x∈A

∨
r>0

∧
y∈A′

d(x, y)(r)

=
∧
x∈A

∨
r>0

∧
y<A

d(x, y)(r) = T d(A).

In the end, we shall show a summary diagram that illustrates the research content of this paper.

6. Conclusions

In this paper, we firstly mainly discussed eight equivalent characterizations of an M-fuzzifying topolog-
ical closure operators, an M-fuzzifying topological interior operators, an M-fuzzifying topological derived
operators. As its applications, we obtained some M-fuzzifying topological operators induced by an M-
fuzzifying pseudo metric d in the sense of Morsi’s fuzzy metric. Finally, it was shown that these M-fuzzifying
topology are equal, that is, T d = T cld = T intd

= T derd. In the future, we will explore the characterizations
and constructions of M-fuzzifying topological operators induced by an M-fuzzifying partial pseudo metric.
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[15] M. Ojeda-Hernández, I. P. Cabrera, P. Cordero, E. Muñoz-Velasco, Fuzzy closure systems: Motivation, definition and properties,

Internat. J. Approx. Reasoning 148 (2022), 151–161.
[16] J. G. Oxley, Matroid Theory (2nd edition), Oxford University Press, 2011.
[17] B. Pang, Y. Zhao, Z. Y. Xiu, A new definition of order relation for the introduction of algebraic fuzzy closure operators, Internat. J. Approx.

Reasoning 92 (2018), 87–96.
[18] B. Pang, Categorical properties of L-fuzzifying convergence spaces, Filomat 32 (2018), 4021–4036.
[19] B. Pang, Convergence structures in M-fuzzifying convex spaces, Quaest. Math. 43 (2020), 1541–1561.
[20] A. A. Ramadan, L-fuzzy interior systems, Comput Math. Appl. 62 (2011), 4301–4307.
[21] F. G. Shi, L-fuzzy interiors and L-fuzzy closures, Fuzzy Sets Syst. 160 (2009), 1218–1232.
[22] F. G. Shi, (L,M) fuzzy metric spaces, Iranian J. Fuzzy Syst. 52 (2010), 231–250.
[23] F. G. Shi, B. Pang, Categories isomorphic to the category of L-fuzzy closure system spaces, Iranian J. Fuzzy Syst.10 (2013), 127–146.
[24] F. G. Shi, K. Wang M-fuzzifying geodesic interval operators, J. Intel. Fuzzy Syst. 34 (2018), 4269–4277.
[25] Y. Shi, C. Shen, F. G. Shi, L-partial metrics and their topologies, Internat. J. Approx. Reasoning 121 (2020), 125–134.
[26] M. Van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
[27] G. J. Wang, Theory of topological molecular lattices, Fuzzy Sets Syst. 47 (1992), 351–376.
[28] K. Wang, F. G. Shi, Fuzzifying interval operators, fuzzifying convex structures and fuzzy pre-orders, Fuzzy Sets Syst. 390 (2020), 74–95.
[29] L. Wang, F.G. Shi, Charaterization of L-fuzzifying matroids by L-fuzzifying closure operators, Iranian Journal of Fuzzy Systems 7

(2010),47–58.
[30] K. Wang, F. G. Shi, M-fuzzifying topological convex spaces, Iranian J. Fuzzy Syst. 15 (2018), 159–174.
[31] Z. Y. Xiu, B. Pang, M-fuzzifying cotopological spaces and M-fuzzifying convex spaces as M-fuzzifying closure spaces, J. Intel. Fuzzy Syst.

33 (2017), 613–620.
[32] L. S. Xu, Characterizations of fuzzifying topologies by some limit structures, Fuzzy Sets Syst. 123 (2001), 169–176.
[33] H. Yang, B. Pang, Fuzzy points based betweenness relations in L-convex spaces, Filomat 35 (2021), 3521–3532.
[34] M.S. Ying, A new approach for fuzzy topolofy (I), Fuzzy Sets and Systems 39 (1991), 303–321.
[35] M. S. Ying, A new approach for fuzzy topolofy (II), Fuzzy Sets Syst. 47 (1992), 221–232.
[36] L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338–353.
[37] L. Zhang, B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat 37 (2023), 2859–2877.
[38] F.F. Zhao, B. Pang, Equivalence among L-closure (interior) operators, L-closure (interior) systems and L-enclosed (internal) relations,

Filomat 36 (2022), 979–1003.
[39] Y. Zhong, F. G. Shi, Characterizations of (L,M)-fuzzy topology degrees, Iranian J. Fuzzy Syst. 15 (2018), 129–149.
[40] Y. Zhong, F. G. Shi, Stratified (L,M)-fuzzy derived spaces, Iranian J. Fuzzy Syst.15 (2018), 109–127.
[41] Y. Zhong, F. . Shi, Derived operators of M-fuzzifying matroids, J. Intel. Fuzzy Syst. 35 (2018), 4673–4683.
[42] Y. Zhong, S. Lin, F. H. Chen, An L-fuzzy convex structure induced by L-subuniverse degrees, J. Nonlinear Convex Anal. 21 (2021),

2795–2804.
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