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Abstract. In this paper, we define functors between quadratic modules of groupoids and related structures.
The focus of this paper is on the study of functors between quadratic modules of groupoids and related
structures. Specifically, we explore the existence of functors between nil(2)-modules, quadratic modules,
and 2-quadratic modules over groupoids. We also define functors that relate these different types of
modules over groupoids, and investigate the categorical equivalence between them. We show that functors
exist between the categories of 2-quadratic modules of groups, nil(2)-modules, and quadratic modules over
group(oid)s.

1. Introduction

Whitehead defined the concept “crossed module” to describe algebraic models for homotopy 2-types
[23]. The crossed modules are also equivalent to Cat1-group [16] and to G-groupoids [7] which are also
called group-groupoids [9] enables providing additional examples of crossed modules. Simplicial groups
with a Moore complex of length 1 are equivalent to crossed modules. Conduché defined “2-crossed
modules” or “crossed modules of length 2” as an algebraic model for homotopy 3-types by using simplicial
groups with Moore complexes of length 2 as a result of this equivalence[12]. Quadratic modules are
another homotopy 3-type algebraic model. The structure of a quadratic module is a 2-crossed module with
additional nilpotent conditions. Quadratic modules and 2-crossed modules are related algebraic structures
that have been extensively studied in algebraic topology and related fields [2]. Quadratic modules and 2-
crossed modules have many applications in algebraic topology, including the study of homotopy groups of
spaces, higher-dimensional knot theory, and the classification of topological phases of matter in condensed
matter physics. They are also closely related to other algebraic structures, such as Lie algebras, categorical
algebras, Kac-Moody algebras, and quantum groups. For more details, see [22], [17], [20], [1], [19], [14],
[18].

Introducing an alternate model by extending the notion of quadratic modules, 2-quadratic modules
were defined by Atik and Ulualan[3]. 2-quadratic modules represent algebraic models for homotopy 4-
types. Atik and Ulualan also use the image of Fαβ functions to give relations between 2-quadratic modules
via simplicial groups. Brandt was the first to introduce groupoids [5] in 1926. Brown’s survey [8] provides
prospects for many threads of groupoids’ usage. According to Brown, Eilenberg and Mac Lane were
influenced by Brandt’s axioms for groupoids when defining a category[13]. Since every small category
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having invertible elements forms a groupoid, interest in groupoids has grown following Whitehead’s
papers in category theory. Kamps and Porter were the first to mention 2-crossed modules of groupoids [15].
In this work, based on the quadratic module definition defined by Baues on groups, we adapt quadratic
module definition on groupoids. For more details about the theory of groupoids, see [6], [10], [24], [11].
The purpose of this paper is to demonstrate certain connections between quadratic modules of groupoids
and related structures. As a result, the main points of this study can be given as:

i) To obtain a groupoid structure from any nil(2)-module

ii) To obtain a nil(2)-module of groupoid from any quadratic module

iii) To obtain a quadratic module from any 2-quadratic module

We also remark possible functors from quadratic module of groupoids to nil(2)-module of groupoids,
from groupoids to nil(2)-module of groupoids, from nil(2)-modules to quadratic modules and from
quadratic modules to 2-quadratic modules with examples. Our goal is to provide an understanding of
the categorical relationships among them from an introductory and combinatorial perspective, not only to
reprove some (known) results in a simple approach.

2. Preliminaries

Note that a group homomorphism ∂ : M → N is a pre-crossed module with an action of N on M, written
nm for n ∈ N and m ∈M, which satisfy ∂(nm) = n∂(m)n−1 for all n ∈ N and m ∈M.

Definition 2.1. ([4]) Let M be a group then the Peiffer commutator ⟨x1, x2, x3⟩ of length 3 generates the
subgroup P of M. A pre-crossed module ∂ : M→ N with the additional P3(∂) = 1 “nilpotency”condition is
called a nil(2)-module. For x, y ∈M〈

x, y
〉
=∂1x (y)xy−1x−1

is the Peiffer commutator of the pre-crossed module ∂ : M→ N.

A morphism of nil(2)-modules

(1, f ) :
(
M ∂
→ N

)
→

(
M′ ∂

′

→ N′
)

consists of groups homomorphisms f : N → N′ and 1 : M→M′ preserving the action of M on N such that
f∂ = ∂′1. Throughout this study, we will refer to the category of nil(2)-modules as Nil(2).

Example 2.2. {eG} → G is a nil(2)-module for a group G, where eG is the identity element of G, and
∂ : {eG} → G is defined by ∂(eG) = eG.

Since {eG} only contains the identity element, we have that y, x, and y−1x−1 are all equal to eG. Thus,
we have <x, y> = eG, which satisfies the Peiffer commutator condition. Finally, we need to show that
P3(∂) = {eG}. Since eG is a trivial group, we have P3(∂) = {x ∈ eG|<x, eG, eG> = eG} = {eG}, which is a trivial
subgroup of {eG}. Therefore, P3(∂) = {eG}, that is ∂ : {eG} → G is a nil(2)-module.

Definition 2.3. ([4]) A diagram

C ⊗ C
ω

		
q

��
C2

∂2

// C1
∂1

// C0
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of group homomorphisms which satisfy:
QM1) ∂1 : C1 → C0 is a nil(2)-module. For the abelianization of the associated crossed module Ccr

1 → C0,
C = (Ccr

1 )ab, the quotient map C1 ↠ C = (Ccr
1 )ab is defined as x 7→ {x}, where the class represented by x ∈ C1

is denoted by {x} ∈ C.
QM2) ∂1∂2 = 1 and ∂2ω = q.
QM3) C2 is a C0-group and all ∂2 and ∂1 preserves the action of C0. Additionally, for a ∈ C2, x ∈ C1:

∂1xaa−1 = ω(({∂2a} ⊗ {x}) ({x} ⊗ {∂2a})).

QM4) For a, b ∈ C2

ω({∂2a} ⊗ {∂2b}) = [b, a]

is called a quadratic module.

A quadratic modules morphism, φ = ( f2, f1, f0) : (ω, ∂2, ∂1)→ (ω′, ∂′2, ∂
′

1) is a commutative diagram,

C ⊗ C

φ∗⊗φ∗

��

ω // C2

f2
��

∂2 // C1

f1
��

∂1 // C0

f0
��

C′ ⊗ C′
ω′
// C′2 ∂′2

// C′1 ∂′1

// C′0

where ( f1, f0) is a nil(2)-module morphism which induces φ∗ : C→ C′ and f2 preserves the action of C0 on
C2. We will refer to the category of quadratic modules as QM.

Definition 2.4. ([3]) A 2-quadratic module is a diagram of groups homomorphism

D ⊗D

q2

��

ω2

		
K

∂3 // L
∂2 // M

∂1 // N

C ⊗ Cω

WW

q

OO

with an action of L on K, an action of M on L,K and an action of N on M,L,K. There are also 2-quadratic
maps

Φ0 : D ⊗ C→ K, Φ1 : C ⊗D→ K, Φ2 : C ⊗D→ K,
ω : C ⊗ C→ L, q : C ⊗ C→M, q2 : D ⊗D→ L,
ω0 : D ⊗D→ K, ω1 : D ⊗D→ K, ω2 : D ⊗D→ K

where C = (Mcr)ab and D = (Lcr)ab. The quotient maps M ↠ C = (Mcr)ab and L ↠ D = (Lcr)ab are given by
x 7→ {x}. The following axioms must be met by this data.

2QM1)

D ⊗Dω2

		
q2

��
K

∂3

// L
∂2

// M

is a quadratic module,
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2QM2) ∂1 : M→ N is a nil(2)-module and

∂2ω({m} ⊗ {m′}) = q({m} ⊗ {m′}) = [m,m′],

2QM3) Φ−1
2 Φ1({m} ⊗ {∂3k}) = Φ0({∂3k} ⊗ {m})k∂2m(k)−1,

2QM4) Φ0({∂3k} ⊗ {m}) =m k(k)−1,
2QM5) Φ0({l} ⊗ {∂2l′}) = ω2({l} ⊗ {l′})−1ω1({l} ⊗ {l′}),
2QM6) Φ1

−1Φ2({∂2l} ⊗ {l′}) = ([l′,l]ω2({l} ⊗ {l′}))ω1({l} ⊗ {l′}),
2QM7) ∂3ω1({l} ⊗ {l′}) = [l, l′]ω({∂2l} ⊗ {∂2l′}),
2QM8) (i)ω({∂2l} ⊗ {m}) = lm(l)−1∂3(Φ0({l} ⊗ {m})) and
(ii)ω({m} ⊗ {∂2l}) =m l∂1m(l)−1∂3(Φ1

−1Φ2({m} ⊗ {l})),
2QM9) ω1({∂3k} ⊗ {l}{l} ⊗ {∂3k}) = ω0({∂3k} ⊗ {l}) = 1,
2QM10) ω1({∂3k} ⊗ {∂3k′}) = [k, k′],
2QM11) Φ0({∂3k} ⊗ {∂2l})Φ1Φ2({∂2l} ⊗ {∂3k}) = 1
for k, k′ ∈ K, l, l′ ∈ L and m,m′ ∈M.

A morphism of the 2-quadratic modules ( f0, f1, f2, f3) : (K,L,M,N, ω2, q) → (K′,L′,M′,N′, ω′2, q
′) is a

commutative diagram

D ⊗D

φ∗⊗φ∗
��

// K

f3
��

∂3 // L

f2
��

∂2 // M

f1
��

∂1 // N

f0
��

D′ ⊗D′ // K′
∂′3

// L′
∂′2

// M′

∂′1

// N′

such that
(a) For m ∈M and n ∈ N,

f1(nm) = f0(n) f1(m), f2(nl) = f0(n) f2(l), f3(nk) = f0(n) f3(k).

(b) For a, b ∈ L (i = 0, 1, 2)

ω′i ({ f2(a)} ⊗ { f2(b)}) = f3ωi({a} ⊗ {b}).

(c) For a ∈M, b ∈ L (i = 1, 2)

φ′i ({ f1(a)} ⊗ { f2(b)}) = f3φi({a} ⊗ {b}).

(d) For b ∈M and a ∈ L

φ′0({ f2(a)} ⊗ { f1(b)}) = f3φ0({a} ⊗ {b}).

(e) For a, b ∈M,

ω′({ f1(a)} ⊗ { f1(b)}) = f2ω({a} ⊗ {b}).

We will refer to the category of 2-quadratic modules as 2QM.

Example 2.5. ([3]) Let

C ⊗ Cω




q
��

L
∂2

// M
∂1

// N
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be a quadratic module. Then we can define a 2-quadratic module as follows:
q2 : D ⊗D→ L defined as q2({l} ⊗ {l′}) =< l, l′ > for l, l′ ∈ L where D = (Lcr)ab, then the diagram

D ⊗D

q2

��

id

��
D ⊗D q2

// L
∂2 // M

∂1 // N

C ⊗ Cω

VV

q

OO

is a 2-quadratic module. Thus, the functor G2 : QM→ 2QM is obtained.

3. Quadratic module of groupoids

A groupoid is a small category that contains all invertible arrows, consisting of a set of objects C0 (referred
as the base), a set of arrows C1, source and target maps s; t : C1 → C0, composition ◦ : C1 × C1 −→ C1, and
identity e : C0 −→ C1.

We will denote such a groupoid with (C1,C0, s, t, e, ◦) with C0 as the set of objects and C1 as the set of
arrows. C1(x, y) represents an arrow from x to y. For a ∈ C1(y, z) and b ∈ C1(x, y), b ◦ a ∈ C1(x, z) represents
the composition of a and b. For a ∈ C1, there exist a−1

∈ C1 such that a ◦ a−1 = et(a) and a−1
◦ a = es(a).

Let G be a groupoid and x, y ∈ G0. The groupoid G is called totally disconnected if G1(x, y) is empty for
every x , y.

In [21] the definition of right action for groupoids is given. In the following, we intend to provide the
definition of left groupoid action.

Definition 3.1. Let G be a totally disconnected groupoid and H be any groupoid over the same object set
of G.

G := G1
t //
s // G0
e

gg

H := H1
t′ //
s′ // G0

Id

e′
gg

The groupoid (left) action of H on G is a map

H1 × G1 −→ G1

(h, 1) 7−→
h1

satisfying the following conditions;

1. h1 is defined if and only if t(h) = s(1), and then s(h) = s(h1),

2. h1◦h21 = h2 (h11) and ex11 = 11,

3. h(11 ◦ 12) =h 11 ◦
h 12 and h1 ey = ex

for 1, 11, 12 ∈ G(x, x) and h, h1 ∈ H(x, y), h2 ∈ H(y, z).

A groupoid morphism is a commutative diagram

G1

s1

��
t1

��

f0 // G′1
s′1
��

t′1
��

G0 f1
// G′0
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compatible with source and target maps that is:

s′1 f0 = f1s1

t′1 f0 = f1t1

We will refer to the category of groupoids as Grpd.
Quadratic module of groups is given by Baues [4]. For the groupoid structure existence of C ⊗ C can be

seen from [19]. Because quadratic modules are a special case of 2-crossed modules.

Definition 3.2. Let
∂1 : G1 //

����

G0

����
O O

be a pre-crossed module of groupoids where G1 is a totally disconnect and G0 is a normal groupoid. There
exists a groupoid action (as given in Def 3.1) of G0 on G1. The Peiffer product in totally disconnected
groupoid (G1, ◦) is given as

< 11, 12 >=
∂(11) 12 ◦ 11 ◦ 12

−1
◦ 11

−1

for 11, 12 ∈ G1. P2(∂) generated with < 11, 12 > is the normal subgroupoid of the totally disconnected
groupoid. For the subgroupoid P3(∂) generated with the elements of the form

<< 11, 12 >, 13 > and < 11, < 12, 13 >>

if P3(∂) = {1} then the pre-crossed module ∂ : G1 → C0 is called nil(2)-module of groupoids.

Morphisms of Nil(2)-module of groupoids are defined similarly to morphisms of crossed module of
groupoids. We will refer to the category of nil(2)-module of groupoids as Nil(2)Grpd.

Let

G ⊗ Gω

		
q

��
G2

∂2

// G1
∂1

// G0

be a quadratic module. To adapt this notion to groupoids G2,G1,G0 should be groupoids over same
object set O where if x, y ∈ O(x , y),G2(x, y) = G1(x, y) = G. That is G2 ⇒ G0 and G1 ⇒ G0 are totally
disconnected groupoids. The groupoid action of G0 on G2 can be seen as: if 10 ∈ G0(x, y) and 12 ∈ G2(x, x)
then 1012 ∈ G2(y, y). Similar for 11 ∈ G1(x, x) and for conjugate action 1′0 ∈ G0(x, x). All of the formulas still
make sense after this adjustment. With this manner, we will refer to the category of quadratic module of
groupoids as QMGrpd.

Next with propositions and examples, we define functors between quadratic modules of groupoids and
related structures.

Proposition 3.3. If ∂ : M→ N is a nil(2)-module, then (G1,G0, s, t, e) is a groupoid with source, target, and identity
mappings defined as s(m,n) = n, t(m,n) = ∂(m)n, and e(n) = (1M,n) for n ∈ N,m ∈M, and the composition

(m,n) ◦ (m′,n′) = (m′m,n).

Proof. Let G0 = N and G1 =M ⋉N. For (m′,n′), (m,n) ∈M ⋉N we have
s[(m′,n′) ◦ (m,n)] = s(m′m,n)

= n
= s(m,n)



E. Soylu Yilmaz / Filomat 39:3 (2025), 921–933 927

t[(m′,n′) ◦ (m,n)] = t(m′m,n)
= ∂(m′m)n
= ∂(m′)∂(m)n
= ∂(m′)n′ (since ◦ is defined ∂(m)n = n′)
= t(m′,n′)

(1)

and for n ∈ N we have

se(n) = s(1,n) = n = Id(n)
te(n) = t(1,n) = ∂(1)n = n = Id(n)

The inverse of (m,n) ∈ G1 can be defined as

(m−1, ∂(m)n) : ∂(m)n→ n

That is, there exists a functor
F1 : Nil(2)→ Grpd

from the category of nil(2)-modules to that of groupoids.

Proposition 3.4. A quadratic module gives a nil(2)-module.

Proof. Let

G ⊗ Gω

��
q
��

σ : L σ2
// M σ1

// N

be a quadratic module. Since N acts on M and L we define semi-direct products M⋉N and L⋉N. As given
in proposition 3.3, M ⋉N is a groupoid over N with source, target and identity maps s1(m,n) = n, t1(m,n) =
σ1(m)n and e1(m1) = (1M,m1) for (m,n) ∈M ⋉N and n1 ∈ N respectively. Similarly L ⋉N is a groupoid with
s2(l,n) = n, t2(l,n) = σ1(σ2(l))n and e2(n) = (1L,n). Since

L
σ2 // M

σ1 // N

is a complex of groups σ1(σ2(l))n = n makes L ⋉ N a totally disconnected groupoid over N. The groupoid
action of M ⋉N on L ⋉N can be defined as

(m,n)(l,n) = (ml,n) = (ω(σ2(l) ⊗m)l,n)

for (m,n) ∈ M ⋉N, (l,n) ∈ L ⋉N. Define α : L ⋉N → M ⋉N, α(l,n) = (σ2(l),n). Then for (m,n) ∈ M ⋉N and
(l,n), (l′,n) ∈ L ⋉N we have

α((m,n)(l,n)) = α(ml,n)
= (σ2(ml),n)
= (σ2ω(σ2(l) ⊗m),n)
= (< σ2(l),m > σ2(l),n)
= (σ1σ2(l)mσ2(l)m−1σ2(l)−1σ2(l),n)
= (m,n) ◦ α(l,n) ◦ (m,n)−1



E. Soylu Yilmaz / Filomat 39:3 (2025), 921–933 928

with P3(α) = 1.
L ⋉N α //

����

M ⋉N

����
N

AA

N

]]

is a nil(2)-module of groupoids.

That is there exists a functor
F2 : QM→ Nil(2)Grpd

from the category of quadratic modules to that of nil(2)-module of groupoids.

Example 3.5. ([4]) A quadratic module

G ⊗ GId

��
q
��

G ⊗ G q
// M

∂
// N.

arises from any nil(2)-module, ∂ : M→ N. That is we get a functor

G1 : Nil(2)→ QM

from the category of nil(2)-modules to that of quadratic modules.

Proposition 3.6. A 2-quadratic module provides a quadratic module.

Proof. Let

H ⊗H

q2

��

ω2

		
K

σ3 // L
σ2 // M

σ1 // N

G ⊗ G

WW OO

be a 2-quadratic module. We claim that

G∗ ⊗ G∗

q∗

��

ω∗

��
K ⋉N α2

//

����

L ⋉N

����

α1
// M ⋉N

����
N

]]

N

]]

N

]]

is a quadratic module of groupoids where α1(l,n) = (σ2(l),n), α2(k,n) = (σ3(k),n) and G∗ = ((L ⋉ N)cr)ab . In
proposition 3.4, we obtain groupoid structures on L ⋉N and M ⋉N. Also

K ⋉N
s3 //
t3

// N

e3

cc
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with s(k,n) = n, t(k,n) = σ1σ2σ3(k)n = n is a totally disconnected groupoid. We define

ω∗ : G∗ ⊗ G∗ → K ⋉N
({l,n} ⊗ {l′,n}) 7→ (ω2{l ⊗ l′},n)

by using ω2 : H ⊗H→ K in 2-quadratic module.
QM1) In proposition 3.4, we show that

L ⋉N //

����

M ⋉N

����
N

AA

N

]]

is a nil(2)-module of groupoids.
QM2) For (k,n) ∈ K ⋉N

α1α2(k,n) = α1(σ3(k),n)
= σ2σ3(k)n
= n

and for {l1,n} ⊗ {l2,n} ∈ G∗ ⊗ G∗.

α2ω
∗({l1,n} ⊗ {l2,n}) = α2({l1 ⊗ l2},n)

= σ3(ω2{l1 ⊗ l2},n)
= (∂1(l1)l2 ◦ l1 ◦ l−1

2 ◦ l−1
1 ,n)

= (∂1(l1)l2,n) ◦ (l1,n) ◦ (l−1
2 ,n) ◦ (l−1

1 ,n)

QM3) For (k,n) ∈ K ⋉N and (l,n) ∈ L ⋉N

ω∗[({α2(k,n)} ⊗ {l,n})({l,n} ⊗ {α2(k,n)})] = [(ω2({α2(k,n)} ⊗ {l,n}))ω2({l,n} ⊗ {α2(k,n)})]
= [(ω2({α2(k)} ⊗ {l}))(ω2{l ⊗ α2(k)},n)]
= (ω2({α2(k) ⊗ l}{l ⊗ α2(k)}),n)
= (α1(l)k ◦ k−1,n)
= α1(l,n)(k,n) ◦ (k−1,n)
= α1(l,n)(k,n) ◦ (k,n)−1

QM4) For (k,n), (k′,n) ∈ K ⋉N

ω∗({α2(k,n)} ⊗ {α2(k′,n)}) = ω2({α2(k,n) ⊗ α2(k′,n)})
= [(k′,n), (k,n)]
= (k′,n) ◦ (k,n) ◦ (k′,n)−1

◦ (k,n)−1.

That is there exists a functor
F3 : 2QM→ QMGrpd

from the category of 2-quadratic modules to that quadratic module of groupoids.
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Example 3.7.

G2 // G1
s //
t
// G0

is a nil(2)-module of groupoids. We know that {eM} is a totally disconnected groupoid over G0, then we
obtain the following sequence of groupoids

{eM}
i // G2

∂ // G1
// // G0.

In this construction, if we define C as ((G2)cr)ab where

(G2)cr = G2/P2(∂)

and

P2(∂) = {< 11, 12 >: 11, 12 ∈ G2}

< 11, 12 > is the Peiffer commutators of morphisms in the groupoid

G1
// // G0

.
(G1)cr // // G0

is a quotient groupoid. That is there exists a functor G3 : Grpd→ Nil(2)Grpd from groupoids to nil(2)-module
of groupoids.

Example 3.8. A quadratic module of groupoids can be obtained from a given nil(2)-module of groupoids
by setting the example 3.5 for groupoids. For this if ∂ : M→ N is a nil(2)-module of groupoids, in the group
case, the group M satisfying the nil(2) module conditions is sufficient, while in the groupoid case M must
also be extremely disconnected groupoid. We need to take L = 1M and the resulting sequence

1M
q // M ∂ // N

with the groupoid actions is a quadratic module of groupoids since 1M is extremely disconnected groupoid.
That is

G ⊗ Gω

		
q

��
1M q

// M
∂
// N.

is a quadratic module of groupoids where ω is identity morphism. Then we get a functor G4 : Nil(2)Grpd →

QMGrpd.

4. Gray groupoids from 2-quadratic modules

In this section we will show that a functor can be defined from 2-quadratic modules to Gray groupoids.

Definition 4.1. A Gray groupoid [15] G consists of G0 class of objects, G1 set of morphisms, G2 set of
2-morphisms and G3 set of 3-morphisms with

i) sn, tn : Gi → Gn are the n-source and n-target functions for 0 ≤ n < i ≤ 3.
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ii) #n : Gn+1 × Gn+1 → Gn+1 is a vertical composition for 0 ≤ n < 3.

iii) #n : Gi × Gn+1 → Gi and #n : Gn+1 × Gi → Gi are the whiskering functions for 0 ≤ n ≤ 1,n + 1 < i ≤ 3.

iv) ◦h : G2 × G2 → G3 is a horizontal composition.

v) id : Gi → Gi+1 is an identity function for 0 ≤ i ≤ 2.

such that

G1) G is a globular set.

G2) G(1, 1′) is a 2-category with 1 0-source, 1′ 0-target of composition #n+1 and id map for 1, 1′ ∈ G0.

G3) For ϕ : 1′ → 1′′ 1-morphism and for all 1, 1′′′ ∈ G0

#0ϕ : G(1′′, 1′′′)→ G(1′, 1′′′)

is a 2-functor. In a similar way,

ϕ#0 : G(1, 1′)→ G(1, 1′′)

is also a 2-functor.

G4) For 1, 1′, 1′′ ∈ G0, #0id1′ is equivalent to identity functor on G(1′, 1′′). id1′#0 is equivalent to identity
functor on G(1, 1′).

G5) For all γ, δ ∈ G2, γ : f =⇒ f ′ and δ : ϕ =⇒ ϕ′ that hold the t0(γ) = s0(δ) equality is

s2(δ#0γ) = (δ#0 f ′)#1(ϕ#0γ)
t2(δ#0γ) = (ϕ′#0γ)#1(δ#0 f )

for f , f ′, ϕ, ϕ′ ∈ G1.

G6) Let

ν : γ =⇒ γ′ : f =⇒ f ′ : 1→ 1′

be a 3-morphism and

δ : ϕ =⇒ ϕ′ : 1′ → 1′′

be a 2-morphism. For γ : f =⇒ f ′ : 1 → 1′ 2-morphism, ν : δ =⇒ δ′ : ϕ =⇒ ϕ′ : 1′ → 1′′

3-morphism and

((ϕ′#0ν)#1(δ#0 f ))#2(δ#0γ) = (δ#0γ
′)#2((δ#0 f ′)#1(ϕ#0ν))

the following property is hold.

(δ′#0γ)#2((ν#0 f ′)#1(ϕ#0γ)) = ((ϕ′#0γ)#1(ν#0 f ))#2(δ#0γ)

G7) Let γ : f =⇒ f ′ : 1 → 1′, γ′ : f ′ =⇒ f ′′ : 1 → 1′ and δ : ϕ =⇒ ϕ′ : 1′ → 1′′ be 2-morphisms. The
following equality is hold.

δ#0(γ′#1γ) = ((ϕ′#0γ
′)#1(δ#0γ))#2((δ#0γ

′)#1(ϕ#0γ))

Let γ : f =⇒ f ′ : 1 → 1′ and δ : ϕ =⇒ ϕ′ : 1′ → 1′′, δ′ : ϕ′ =⇒ ϕ′′ : 1′ → 1′′ be 2-morphisms. So
below equality is obtained.

(δ′#1δ)#0γ = ((δ′#0γ)#1(δ#0 f ))#2((δ′#0 f ′)#1(δ#0 f ))
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G8) Let f : 1→ 1′ be a 1-morphism and δ : ϕ =⇒ ϕ′ : 1′ → 1′′ be a 2-morphism so,

δ#0id f = idδ#0 f

must be correct. Let γ : f =⇒ f ′ : 1→ 1′ be a 2-morphism and ϕ : 1′ → 1′′ be a 1-morphism then,

idϕ#0γ = idϕ#0γ

G9) For a ∈ G(1, 1′)p, a′ ∈ G(1′, 1′′)q, a′′ ∈ G(1′′, 1′′′)r and p + q + r ≤ 2,

(a′′#0a′)#0a = a′′#0(a′#0a).

G = (G3,G2,G1,G0) is called a Gray groupoid.

Let

H ⊗H

q2

��

ω2

		
K

σ3 // L
σ2 // M

σ1 // N

G ⊗ G

WW OO

be a 2-quadratic module. From proposition 3.3 (G1 =M⋉N,G0 = N, s, t, e) is a groupoid. From the definition
of quadratic module L is a N-group. Furthermore from proposition 3.4 (L ⋉ N,N, s, t, e) is a groupoid and
there exists a groupoid action of (G1 =M ⋉N,G0 = N, s1, t1, e1) on (L ⋉N,N, s2, t2, e2). That is we can define

G2 = (L ⋉N) ⋉ (M ⋉N)

Similiar way using the action of N on K we can define

G3 = (K ⋉N) ⋉ (L ⋉N) ⋉ (M ⋉N).

Then G = ((K ⋉ N) ⋉ (L ⋉ N) ⋉ (M ⋉ N), (L ⋉ N) ⋉ (M ⋉ N),M ⋉ N,N) satifies the conditions of a Gray
groupoid. As a result we obtain a functor

δ : 2QM→ GrayGrpd

from the category of 2-quadratic modules to that of Gray groupoids.

5. Conclusion

In proposition 3.3, we obtain a groupoid structure from a given nil(2)-module. In proposition 3.4, we
obtain a nil(2)-module of groupoid from any quadratic module. In proposition 3.6, we obtain a quadratic
module of groupoid from any 2-quadratic module. Thus there exists functors

F1 : Nil(2) → Grpd,
F2 : QM → Nil(2)Grpd,
F3 : 2QM → QMGrpd.

Also examples 2.5, 3.5, 3.7 and 3.8 induce functors
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G1 : Nil(2) → QM,
G2 : QM → 2QM,
G3 : Grpd → Nil(2)Grpd,
G4 : Nil(2)Grpd → QMGrpd

As a result, the relations we examine in this work can be summarized with the following diagram,

Nil(2)
G1 //

F1

��

QM
G2 //

F2

��

2QM

F3

��
Grpd

G3

// Nil(2)Grpd G4

// QMGrpd

The functors that have been provided throughout the paper can be used to derive examples of these
categories.
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