
Filomat 39:3 (2025), 949–962
https://doi.org/10.2298/FIL2503949S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Counting the number of inequivalent
arithmetic expressions on n variables

Ivan Stošića, Ivan Damnjanovićb,c,d,∗, Žarko Rand̄eloviće

aFaculty of Sciences and Mathematics, University of Niš, Niš, Serbia
bFaculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia

cFaculty of Electronic Engineering, University of Niš, Niš, Serbia
dDiffine LLC, San Diego, California, USA

eCentre for Mathematical Sciences, University of Cambridge, Cambridge, UK

Abstract. An expression is any mathematical formula that contains certain formal variables and opera-
tions to be executed in a specified order. In computer science, it is usually convenient to represent each
expression in the form of an expression tree. Here, we consider only arithmetic expressions, i.e., those that
contain only the four standard arithmetic operations: addition, subtraction, multiplication and division,
alongside additive inversion. We first provide certain theoretical results concerning the equivalence of
such expressions and then disclose aΘ(n2) algorithm that computes the number of inequivalent arithmetic
expressions on n distinct variables.

1. Introduction

Every mathematical formula is structured and interpreted according to commonly known rules, which
define the order in which the mathematical symbols are written and what their meaning and scope are.
Here, we constrain ourselves to arithmetic expressions, i.e., mathematical formulae that only contain the
four binary arithmetic operations: addition, subtraction, multiplication and division, together with additive
inversion. We will assume that these arithmetic operations adhere to the standard rules of algebra on real
numbers — the usual commutative, associative and distributive laws apply. We will explore the general
form of these expressions, where the operands are formal variables.

In standard computer science literature, an arithmetic expression can be represented by an ordered
rooted tree known as the expression tree (see, for example, [4, 5, 8]). The leaves of this tree are operands,
while its internal nodes correspond to unary or binary operations. A node representing additive inversion
must have exactly one child, while any node corresponding to the four standard arithmetic operations

2020 Mathematics Subject Classification. Primary 68R05; Secondary 05A15, 05A19, 11C08.
Keywords. number of expressions, inequivalent expressions, expression tree, arithmetic operation.
Received: 22 May 2024; Revised: 20 August 2024; Accepted: 27 November 2024
Communicated by Marko Petković
Ivan Damnjanović is supported by the Science Fund of the Republic of Serbia, grant #6767, Lazy walk counts and spectral radius

of threshold graphs — LZWK.
* Corresponding author: Ivan Damnjanović
Email addresses: ivan100sic@gmail.com (Ivan Stošić), ivan.damnjanovic@elfak.ni.ac.rs (Ivan Damnjanović),

zarkombinatorics@gmail.com (Žarko Rand̄elović)
ORCID iDs: https://orcid.org/0009-0008-2248-5447 (Ivan Stošić), https://orcid.org/0000-0001-7329-1759 (Ivan

Damnjanović), https://orcid.org/0000-0002-0893-0347 (Žarko Rand̄elović)

I. Stošić et al. / Filomat 39:3 (2025), 949–962 950

necessarily has exactly two children. Note that in case of noncommutative operations such as subtraction
or division, the order of the node’s children matters. The value of an expression tree can be computed
recursively by applying the operation from the corresponding internal node to the values obtained from
the subtrees of its children nodes.

+

a b

(a) The expression a + b.

−

a −

b

(b) The expression a − (−b).

×

− −

a b c d

(c) The expression (a − b) × (c − d).

×

− −

d c b a

(d) The expression (d − c) × (b − a).

÷

× c

a b

(e) The expression (a × b) ÷ c.

÷

b ÷

c a

(f) The expression b ÷ (c ÷ a).

Figure 1: The expression tree representations of various arithmetic expressions containing the standard
four arithmetic operations, as well as additive inversion.

We define two arithmetic expressions to be equivalent if they correspond to the same formula, i.e., if
one of their formulae can be obtained from the other by applying standard rules of algebra. For example,
it is clear that a + b = a − (−b), which directly implies that the expressions obtained from the trees given
in Figures 1a and 1b are equivalent. Furthermore, the expressions representable via the trees depicted in
Figures 1c and 1d are also equivalent. Here, we note that although the functions (a, b, c) 7→ (a × b) ÷ c and
(a, b, c) 7→ b ÷ (c ÷ a) do not formally have the same domain, we will consider the expressions shown in
Figures 1e and 1f to be equivalent nonetheless. The reason why this is so is because we are interested only
in the obtained formal expressions without regarding them as functions.

It is natural to ask how many inequivalent arithmetic expressions there are under certain constraints.
In fact, the problem of finding the number of inequivalent arithmetic expressions on n distinct variables
that contain the four standard arithmetic operations: addition, subtraction, multiplication and division, was
considered by Du [2]. Radcliffe [9] also considered the similar problem of finding the number of inequivalent
arithmetic expressions on n distinct variables where the same four operations are allowed together with
additive inversion. A Python program, written by Radcliffe and corrected by van Tol, which solves this
problem, can also be found in [9]. Their implementation uses a procedure that explicitly enumerates all

I. Stošić et al. / Filomat 39:3 (2025), 949–962 951

partitions of the number n into k parts. Since the partition number grows as an exponential function of
the square root of its argument [1], their algorithm does not have polynomial time complexity. Some
results concerning these two problems were obtained in [12], where equations regarding the exponential
generating functions were found. Additionaly, the asymptotic behavior of the two corresponding sequences
was analyzed in [13].

The main result of this paper is a simple and efficient algorithm that computes the number of inequivalent
arithmetic expressions on n distinct variables containing the standard four arithmetic operations together
with additive inversion. The algorithm uses Θ(n2) arbitrary precision integer arithmetic operations and
Θ(n) memory, measured in the number of stored arbitrary precision integers.

The paper shall be structured as follows. Section 2 will contain the mathematical theory required to
formally define the problem in terms of polynomial theory. It will also introduce the auxiliary concepts of
sum-type and product-type expressions. Afterwards, Section 3 will serve to prove certain mathematical
properties concerning the equivalence of sum-type and product-type expressions. Section 4 will provide
the overview of the problem’s algorithmic solution, whose implementation is given in Appendix A. Finally,
we disclose some open problems in Section 5.

2. Preliminaries

In the present section, we will preview the mathemathical theory needed to properly follow the rest of
the paper, with a particular focus on polynomial theory. Besides that, we will introduce certain auxiliary
terms and concepts that will play a big role while proving the validity of the algorithm disclosed in Section 4.

To begin, let X = {x1, x2, x3, . . .} be a countably infinite set consisting of formal variables and let Z[X] be
the ring of polynomials in these variables with integer coefficients. It is well known that Z[X] represents
an integral domain with a unique factorization, i.e., a unique factorization domain (see, for example, [6]).
Furthermore, let Z(X) denote the field of fractions of Z[X]. For each fraction f ∈ Z(X), we will say that
f = P

Q is a canonical representation of f provided P,Q ∈ Z[X] are two coprime polynomials such that Q . 0. It

is straightforward to see that each f ∈ Z(X) has precisely two distinct canonical representations f = P1
Q1

and

f = P2
Q2

that are related by the equalities P2 = −P1 and Q2 = −Q1. This immediately follows from the fact
that the only two invertible elements in Z[X] are 1 and −1, hence the only two associates of any nonzero
polynomial P ∈ Z[X] are P and −P. For further insight into the standard polynomial theory, please refer to
[3, 6, 7].

Moving on, let M ⊂ NN0 consist of all the N-indexed sequences of nonnegative integers that contain
finitely many nonzero elements. Each polynomial P ∈ Z[X] can now conveniently be represented by a
mapping ΩP : M → Z that assigns each M = (m1,m2,m3, . . .) ∈ M the coefficient corresponding to the∏

j∈N xm j

j term in P. Moreover, letMP ⊂ M denote the set comprising the finitely many M ∈ M for which
ΩP(M) , 0. For example, if we have P = 2x1x3

2 − 4x3x4x2
6, then

ΩP(1, 3, 0, 0, . . .) = 2 and ΩP(0, 0, 1, 1, 0, 2, 0, 0, . . .) = −4,

whileΩP(M) = 0 for any other M ∈ M. Also, it is trivial to obtainMP = {(1, 3, 0, 0, . . .), (0, 0, 1, 1, 0, 2, 0, 0, . . .)}.
We will say that a polynomial P ∈ Z[X] contains the variable xi if there exists an M = (m1,m2, . . .) ∈ MP

such that mi , 0. Thus, a constant polynomial contains no variable. It is now convenient to generalize
the aforementioned definition to fractions by saying that f ∈ Z(X) contains the variable xi if at least one of
the two polynomials P,Q from its canonical representation f = P

Q contains the variable xi. Furthermore,
let Var(f) ⊂ X signify the finite set of all the variables contained by f ∈ Z(X). Here, we observe that
Var(f) = Var(P) ∪ Var(Q) holds for any canonical representation f = P

Q . It is also worth noting that it
does not matter which of the two possible canonical representations is being used to find Var(f), since
Var(−P) = Var(P) and Var(−Q) = Var(Q), hence the concept is well-defined. We resume by disclosing the
following auxiliary lemma.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 952

Lemma 1. For a given s ∈N, if f1, f2, . . . , fs ∈ Z(X)\{0} are fractions such that the sets Var(f1),Var(f2), . . . ,Var(fs)
are mutually disjoint, then we have

Var

 s∑
i=1

fi

 = s⋃
i=1

Var(fi).

Proof. Let fi = Pi
Qi

be the canonical representation of fi, for each 1 ≤ i ≤ s, and let f =
∑s

i=1 fi. From here, it
immediately follows that f = P

Q , where

P =
s∑

i=1

Pi

s∏
j=1, j,i

Q j

 , (1)

Q =
s∏

i=1

Qi.

Furthermore, Qi and Q j necessarily have a constant GCD for any 1 ≤ i, j ≤ s, i , j, since otherwise, they
would both contain the same variable, hence Var(fi) ∩ Var(f j) , ∅. It is also trivial to conclude that Qi and
P j must have a constant GCD for any 1 ≤ i, j ≤ s. If we let R ∈ Z[X] be a nonconstant irreducible factor of
Q, this means that R | Qk surely holds for a fixed 1 ≤ k ≤ s, hence R ∤ Pk, while R ∤ Pi,Qi is also necessarily
satisfied for every 1 ≤ i ≤ s, i , k. Therefore, the sum term from Equation (1) is divisible by R if and only
if i , k, which directly yields R ∤ P. Thus, the canonical representation of fraction f bears the form f = P0

Q0
,

where P0 =
P
c and Q0 =

Q
c for some constant c ∈ Z.

Bearing in mind that Var(f) ⊆
⋃s

i=1 Var(fi) is obviously true, it is sufficient to demonstrate that Var(fi) ⊆
Var(f) holds for each 1 ≤ i ≤ s in order to complete the proof. Let xh ∈ Var(fℓ). If xh ∈ Var(Qℓ), then clearly
xh ∈ Var(Q), hence xh ∈ Var(f) and there is nothing left to discuss. On the other hand, if xh < Var(Qℓ), then
surely xh ∈ Var(Pℓ), which means that the sum term from Equation (1) contains a term with a positive power
of xh corresponding to a nonzero coefficient if and only if i = ℓ. From here, it is easy to see that xh ∈ Var(P),
hence xh ∈ Var(f) holds once again, thus yielding Var(fℓ) ⊆ Var(f).

In an entirely analogous manner, it is possible to obtain the next lemma whose proof we choose to omit.

Lemma 2. For a given s ∈ N, t ∈ N0, if f1, f2, . . . , fs, 11, 12, . . . , 1t ∈ Z(X) \ {0} are fractions such that the sets
Var(f1), . . . ,Var(fs),Var(11), . . . ,Var(1t) are mutually disjoint, then we have

Var
(∏s

i=1 fi∏t
i=1 1i

)
=

s⋃
i=1

Var(fi) ∪
t⋃

i=1

Var(1i).

We will now introduce the auxiliary concepts of a sum-type and a product-type expression. For starters,
we define both the sum-type expression of depth zero and the product-type expression of depth zero to be anyZ(X)
element of the form xi or −xi for some i ∈N. The sum-type and product-type expressions of positive depth
can now recursively be defined as follows.

Definition 1. For each k ∈ N, a sum-type expression of depth k ∈ N is a fraction f ∈ Z(X) that can be written
as f =

∑s
i=1 fi, where s ∈N, s ≥ 2, and the fractions f1, f2, . . . , fs . 0 are such that:

(i) all of them represent a product-type expression of depth at most k−1, while at least one of them is a product-type
expression of depth exactly k − 1;

(ii) the sets Var(f1),Var(f2), . . . ,Var(fs) are mutually disjoint.

Definition 2. For any k ∈ N, a product-type expression of depth k ∈ N is a fraction f ∈ Z(X) that can be

written as f =
∏s

i=1 fi∏t
i=1 1i

, where s ∈ N, t ∈ N0, s + t ≥ 2, and the fractions f1, f2, . . . , fs, 11, 12, . . . , 1t . 0 are such

that:

I. Stošić et al. / Filomat 39:3 (2025), 949–962 953

(i) all of them represent a sum-type expression of depth at most k − 1, while at least one of them is a sum-type
expression of depth exactly k − 1;

(ii) the sets Var(f1), . . . ,Var(fs),Var(11), . . . ,Var(1t) are mutually disjoint.

Finally, we will say that a sum-type expression is a sum-type expression of any depth k ∈ N0, while a
product-type expression is a product-type expression of any depth k ∈ N0. We further note that Lemmas 1
and 2 swiftly imply that no sum-type or product-type expression can be zero.

While examining any arithmetic expression, it is possible to recursively transform each subtraction
into addition by simply “forwarding” the minus into the corresponding operand in the form of a unary
minus. Thus, it suffices to consider only the arithmetic expressions whose allowed operations are addition,
additive inversion, multiplication and division. Bearing in mind the newly defined concepts of a sum-type
and product-type expression together with the results obtained in Lemmas 1 and 2, it is not difficult to
observe that our problem is actually equivalent to the following one.

Problem 1. For each n ∈N, determine how many distinct fractions f ∈ Z(X) represent a sum-type or product-type
expression such that Var(f) = {x1, x2, . . . , xn}.

In the upcoming sections, our focus will be to expand the knowledge regarding sum-type and product-
type expressions and then to derive a direct solution to Problem 1.

3. Sum-type and product-type expressions

By virtue of Lemmas 1 and 2, we may conclude that any sum-type or product-type expression of positive
depth surely contains at least two different variables. For this reason, it is impossible for a sum-type or
product-type expression of zero depth to be equal to a sum-type or product-type expression of positive
depth. It is in fact true that a sum-type expression of positive depth and a product-type expression of
positive depth can also never be equal, which leads us to the next theorem.

Theorem 1. A sum-type expression of positive depth and a product-type expression of positive depth can never be
equal.

As it turns out, two sum-type or product-type expressions of positive depth are equal under very specific
conditions, as stated in the following two theorems.

Theorem 2. Let
∑s1

i=1 f1,i and
∑s2

i=1 f2,i be two sum-type expressions of positive depth, where s1, s2 ≥ 2 and
f1,1, f1,2, . . . , f1,s1 , f2,1, f2,2, . . . , f2,s2 ∈ Z(X) are product-type expressions such that:

(i) Var(f1,1),Var(f1,2), . . . ,Var(f1,s1) are mutually disjoint;

(ii) Var(f2,1),Var(f2,2), . . . ,Var(f2,s2) are mutually disjoint.

Then
∑s1

i=1 f1,i =
∑s2

i=1 f2,i holds if and only if s2 = s1 and there exists a permutation π ∈ Sym(s1) such that f2,π(i) = f1,i
for every 1 ≤ i ≤ s1.

Theorem 3. Let

∏s1
i=1 f1,i∏t1
i=1 11,i

and

∏s2
i=1 f2,i∏t2
i=1 12,i

be two product-type expressions of positive depth, where si ≥ 1, ti ≥ 0,

si+ti ≥ 2, for i ∈ {1, 2}, while f1,1, . . . , f1,s1 , 11,1, . . . , 11,t1 , f2,1, . . . , f2,s2 , 12,1, . . . , 12,t2 ∈ Z(X) are sum-type expressions
such that:

(i) Var(f1,1), . . . ,Var(f1,s1),Var(11,1), . . . ,Var(11,t1) are mutually disjoint;

(ii) Var(f2,1), . . . ,Var(f2,s2),Var(12,1), . . . ,Var(12,t2) are mutually disjoint.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 954

Then

∏s1
i=1 f1,i∏t1
i=1 11,i

and

∏s2
i=1 f2,i∏t2
i=1 12,i

are equal up to sign if and only if s2 = s1, t2 = t1, and there exist permutations

π ∈ Sym(s1) and σ ∈ Sym(t1) such that f2,π(i) and f1,i are equal up to sign for every 1 ≤ i ≤ s1, while 12,σ(i) and 11,i
are equal up to sign for every 1 ≤ i ≤ t1.

The goal of the present section will be to provide the full proof of Theorems 1, 2 and 3. These theorems
will serve as the backbone to the algorithm disclosed in Section 4 as they directly guarantee the validity
behind its logical reasoning. All three of their proofs will heavily rely on formal partial derivatives ofZ(X)
fractions. Here, for convenience, we will regard each partial derivative ∂ f

∂xi
as a purely formal concept, i.e.,

we will always treat it as a Z(X) element and never as a function. While doing so, it is trivial to verify that
all the standard rules of derivative calculus continue to hold. It is also fairly easy to notice that for every
f ∈ Z(X) and xi ∈ X, we have ∂ f

∂xi
≡ 0 if and only if xi < Var(f). Therefore, the partial derivative of any

sum-type or product-type expression with respect to each variable it contains can never be zero. With this
in mind, we derive the proof of Theorem 1 as follows.

Proof of Theorem 1. Suppose that there exists a sum-type expression of positive depth and a product-type

expression of positive depth that are equal. In other words, let h =
∑r

i=1 hi =

∏s
i=1 fi∏t
i=1 1i

hold for some r ≥ 2

and s ≥ 1, t ≥ 0, s + t ≥ 2, where h1, h2, . . . , hr are product-type expressions with mutually disjoint sets of
contained variables and f1, f2, . . . , fs, 11, 12, . . . , 1t are sum-type expressions also with mutually disjoint sets
of contained variables. For convenience, let fs+1 =

1
11
, fs+2 =

1
12
, . . . , fs+t =

1
1t

, so that h =
∑r

i=1 hi =
∏s+t

i=1 fi.
We will now prove that any two variables of fraction h contained by different operands from h1, h2, . . . , hr

are surely contained by the same operand from f1, f2, . . . , fs+t. Let xℓ1 ∈ Var(hk1) and xℓ2 ∈ Var(hk2), where

1 ≤ k1, k2 ≤ r, k1 , k2. In this case, it is obvious that ∂h
∂xℓ1
=
∂hk1
∂xℓ1

, which quickly gives us xℓ2 < Var
(
∂h
∂xℓ1

)
. Now,

suppose that xℓ1 ∈ Var(fk3) holds for some 1 ≤ k3 ≤ s + t. Since xℓ1 < Var(fi) for every 1 ≤ i ≤ s + t, i , k3, we
immediately obtain

∂h
∂xℓ1

=
∂ fk3

∂xℓ1

s+t∏
i=1, i,k3

fi. (2)

Furthermore, if we have xℓ2 < Var(fk3), then Equation (2) yields xℓ2 ∈ Var
(
∂h
∂xℓ1

)
, which is impossible.

Therefore, xℓ2 ∈ Var(fk3) must be true.
Thus, we may conclude that if any two variables xℓ1 , xℓ2 ∈ Var(h) are not contained by the same operand

from h1, . . . , hr, then they are certainly contained by the same operand from f1, . . . , fs+t. However, if we
have two variables xℓ1 , xℓ2 ∈ Var(h) that are indeed contained by the same operand from h1, . . . , hr, then it is
obviously possible to select a distinct third variable xℓ3 that is contained by a different hi-operand, bearing
in mind that r ≥ 2. In this case, it is easy to see that xℓ1 and xℓ3 are necessarily contained by the same
fi-operand, as are xℓ2 and xℓ3 . Therefore, xℓ1 and xℓ2 are once again contained by the same operand from
f1, . . . , fs+t. This precisely means that there exists an fk, 1 ≤ k ≤ s + t, such that Var(fk) = Var(h), which
is clearly not possible since s + t ≥ 2. We conclude that a sum-type expression of positive depth and a
product-type expression of positive depth cannot be equal.

Before disclosing the proofs of Theorems 2 and 3, we will need several additional results. For this
reason, we shall first prove the following lemma alongside two of its immediate corollaries.

Lemma 3. The canonical representation f = P
Q of every sum-type or product-type expression f ∈ Z(X) is such that:

(i) MP ∩MQ = ∅;

(ii) for each M ∈ M, we have ΩP(M),ΩQ(M) ∈ {−1, 0, 1}.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 955

Proof. We will carry out the proof by mathematical induction. To begin, it is obvious that the given
statements are true for any sum-type or product-type expression of zero depth. Now, suppose that the
statements are satisfied for every sum-type or product-type expression of depth less than k ∈N.

If f ∈ Z(X) is a sum-type expression of depth k, then it can certainly be written as f =
∑s

i=1 fi, where
s ≥ 2 and the fractions f1, f2, . . . , fs are product-type expressions of depth below k with mutually disjoint
sets of contained variables. Furthermore, let fi = Pi

Qi
be the canonical representation of fi, for each 1 ≤ i ≤ s.

From here, we immediately obtain f = P
Q , where

P =
s∑

i=1

Pi

s∏
j=1, j,i

Q j

 and Q =
s∏

i=1

Qi.

As already shown in the proof of Lemma 1, the polynomials P and Q necessarily have a constant GCD.
Moreover, by statement (i) from the induction hypothesis, it is not difficult to observe that among the
polynomials Q and Pi

∏s
j=1, j,i Q j, 1 ≤ i ≤ s, no two can both contain the same monomial, i.e., two monomials

with the same powers of all the variables. Therefore, it promptly follows that MP ∩MQ = ∅. It is also
trivial to see that ΩP(M),ΩQ(M) ∈ {−1, 0, 1} must be satisfied for any M ∈ M. Since gcd(P,Q) is constant,
we further obtain that these two polynomials are certainly coprime, hence f = P

Q represents the canonical
representation of f . Thus, both (i) and (ii) indeed hold for fraction f .

On the other hand, if f ∈ Z(X) is a product-type expression of depth k, then it can surely be written as

f =
∏s

i=1 fi∏t
i=1 1i

, where s ≥ 1, t ≥ 0, s+ t ≥ 2, and the fractions f1, f2, . . . , fs, 11, 12, . . . , 1t are sum-type expressions

of depth below k with mutually disjoint sets of contained variables. Now, let

f1 =
P1

Q1
, f2 =

P2

Q2
, . . . , fs =

Ps

Qs
, 11 =

Qs+1

Ps+1
, 12 =

Qs+2

Ps+2
, . . . , 1t =

Qs+t

Ps+t

be the canonical representations of these sum-type expressions, so that f = P
Q , where P =

∏s+t
i=1 Pi and

Q =
∏s+t

i=1 Qi. By using the same strategy from Lemma 1, it is easy to see that the polynomials P and Q must
have a constant GCD. Furthermore, by simply expanding both products from P and Q, we conclude that
MP ∩MQ = ∅ is true and thatΩP(M),ΩQ(M) ∈ {−1, 0, 1} holds for every M ∈ M. From here, it also quickly
follows that P and Q are necessarily coprime, thus implying that both provided statements are once again
satisfied for fraction f .

Corollary 1. Let f1, f2 ∈ Z(X) each be a sum-type or product-type expression. If f1 − f2 is a constant, then f1 = f2.

Proof. Suppose that f1 − f2 = c1
c2

for some coprime c1, c2 ∈ Z, c2 , 0, and let f1 = P1
Q1

and f2 = P2
Q2

be the
canonical representations of f1 and f2, respectively. Thus, we have

c2 P1Q2 − c2 P2Q1 = c1 Q1Q2.

It promptly follows that Q1 | c2 P1Q2, which then quickly gives Q1 | Q2, since Q1 and P1 are clearly coprime,
while statement (ii) from Lemma 3 guarantees that Q1 and c2 are also coprime. In an analogous manner, it
can be shown that Q2 | Q1 must be true, hence Q1 and Q2 are surely associates. Without loss of generality,
we may now assume that Q1 = Q2, which directly leads us to c2 P1− c2 P2 = c1 Q1. Since c2 , 0, we see that if
c1 , 0, then statement (i) from Lemma 3 immediately yields a contradiction. Therefore, c1

c2
= 0 is necessarily

satisfied.

Corollary 2. Let f1, f2 ∈ Z(X) each be a sum-type or product-type expression. If f1
f2

is a constant, then f1 and f2 are
equal up to sign.

Proof. Suppose that f1
f2
= c1

c2
for some coprime c1, c2 ∈ Z, c2 , 0, and let f1 = P1

Q1
and f2 = P2

Q2
be the canonical

representations of f1 and f2, respectively. It is obvious that c1 , 0. Moreover, a quick computation directly

I. Stošić et al. / Filomat 39:3 (2025), 949–962 956

tells us that c2 P1Q2 = c1 P2Q1. Since P1 and Q1 are coprime, as are P2 and Q2, it is trivial to conclude that
Q1 | c2 Q2 and Q2 | c1 Q1 are both necessarily satisfied. Moreover, statement (ii) from Lemma 3 guarantees
that Q1 and Q2 are both surely coprime with any noninvertible nonzero constant, hence Q1 | Q2 and Q2 | Q1
also hold, which means that Q1 and Q2 must be associates. Thus, we may assume without loss of generality
that Q1 = Q2, which promptly leads us to c2 P1 = c1 P2. Bearing in mind statement (ii) from Lemma 3 once
more, it is clear that c1 and c2 are necessarily equal up to sign, which precisely means that f1 and f2 are
equal up to sign as well.

We will now rely on Corollary 1 to provide the proof of Theorem 2 and thus demonstrate that any two
sum-type expressions of positive depth are equal if and only if their summands are pairwise equal in some
order.

Proof of Theorem 2. If s2 = s1 and the given permutation π ∈ Sym(s1) exists, it is trivial to observe that∑s1
i=1 f1,i =

∑s2
i=1 f2,i must be true. Thus, it suffices to only prove the converse. Suppose that

∑s1
i=1 f1,i =

∑s2
i=1 f2,i

does indeed hold for two given sum-type expressions, and let f ∈ Z(X) denote both of these sums.
To begin, we will demonstrate that if two variables xℓ1 , xℓ2 ∈ Var(f) are contained by the same operand

from f1,1, f1,2, . . . , f1,s1 , then they are necessarily contained by the same operand from f2,1, f2,2, . . . , f2,s2 , as
well. We will carry out the proof by contradiction. Without loss of generality, let xℓ1 , xℓ2 ∈ Var(f1,1) be such
that xℓ1 ∈ Var(f2,1) and xℓ2 ∈ Var(f2,2). In this scenario, it is clear that f1,1 is surely a product-type expression
of positive depth, hence it can be represented as f1,1 =

∏t
i=1 1i, where t ≥ 2 and 11, 12, . . . , 1t ∈ Z(X) have

mutually disjoint sets of contained variables, while each of them is a sym-type expression or the reciprocal
of a sum-type expression. From here, it follows that xℓ1 ∈ Var(1k) holds for some 1 ≤ k ≤ t. Furthermore,
we notice that

∂ f
∂xℓ1

=
∂ f1,1
∂xℓ1

=
∂1k

∂xℓ1

t∏
i=1, i,k

1i,

hence if xℓ2 < Var(1k), then xℓ2 ∈ Var
(
∂ f
∂xℓ1

)
. However, this is clearly impossible given the fact that ∂ f

∂xℓ1
=
∂ f2,1
∂xℓ1

.

Thus, xℓ2 ∈ Var(1k) must be true. Now, since t ≥ 2, there certainly exists a variable xℓ3 ∈ Var(f1,1) such that

xℓ3 < Var(1k). From ∂ f
∂xℓ3
=
∂ f1,1
∂xℓ3

, it is possible to show in an entirely analogous manner that xℓ1 , xℓ2 ∈ Var
(
∂ f
∂xℓ3

)
is surely satisfied. However, ∂ f

∂xℓ3
cannot simultaneously contain both of these variables because they are

not contained by the same operand from f2,1, f2,2, . . . , f2,s2 . Therefore, we reach a contradiction once again.
Taking everything into consideration, we swiftly obtain that any two variables xℓ1 , xℓ2 ∈ Var(f) are con-

tained by the same operand from f1,1, f1,2, . . . , f1,s1 if and only if they are contained by the same operand from
f2,1, f2,2, . . . , f2,s2 . This observation promptly implies s2 = s1 and that there necessarily exists a permutation
π ∈ Sym(s1) such that Var(f2,π(i)) = Var(f1,i) for every 1 ≤ i ≤ s1. In order to complete the proof, we will
show that f2,π(i) = f1,i is always satisfied. Now, for any fixed 1 ≤ k ≤ s1, it is clear that

f2,π(k) − f1,k =
s1∑

i=1, i,k

(
f1,i − f2,π(i)

)
,

which tells us that all the variables contained by f2,π(k)− f1,k must belong to the set
⋃s1

i=1, i,k Var(f1,i). However,
we also already know that Var(f2,π(k) − f1,k) ⊆ Var(f1,k). Since the sets Var(f1,k) and

⋃s1
i=1, i,k Var(f1,i) are

obviously disjoint, it follows that the fraction f2,π(k) − f1,k contains no variable, i.e., f2,π(k) − f1,k is a constant.
By virtue of Corollary 1, we may conclude that f2,π(k) = f1,k. Therefore, f2,π(i) = f1,i is certainly true for any
1 ≤ i ≤ s1.

The rest of the section will focus on showing that any two product-type expressions are equal up to sign
if and only if their numerator and denominator factors are pairwise equal up to sign in some order. We will
first prove the asserted claim for products of sum-type expressions, as disclosed in the next lemma.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 957

Lemma 4. For a given s1, s2 ∈ N0, let f1,1, f1,2, . . . , f1,s1 ∈ Z(X) be sum-type expressions such that the sets
Var(f1,1),Var(f1,2), . . . ,Var(f1,s1) are mutually disjoint, and let f2,1, f2,2, . . . , f2,s2 ∈ Z(X) be sum-type expressions
such that the sets Var(f2,1),Var(f2,2), . . . ,Var(f2,s2) are also mutually disjoint. If

∏s1
i=1 f1,i and

∏s2
i=1 f2,i are equal up

to sign, then s2 = s1 and there exists a permutation π ∈ Sym(s1) such that f2,π(i) and f1,i are equal up to sign for each
1 ≤ i ≤ s1.

Proof. Suppose that f1 =
∏s1

i=1 f1,i and f2 =
∏s2

i=1 f2,i are indeed equal up to sign. If s1 = 0, then it is
straightforward to see that s2 = 0 must also be satisfied, hence there clearly exists a trivial permutation
π ∈ Sym(0) with the desired property. On the other hand, if s1 = 1, then it is impossible for s2 ≥ 2 to be true,
since this would imply that f2 is a product-type expression of positive depth. In this scenario, we would
have f1 = f1,1, while f2 would surely be distinct from both f1,1 and − f1,1, according to Theorem 1. Therefore,
whenever s1 = 1, we necessarily have s2 = 1 as well, and the required permutation π ∈ Sym(1) obviously
exists once again. Thus, we may now suppose without loss of generality that s1, s2 ≥ 2.

It is trivial to notice that Var(f1) = Var(f2). For starters, we will show that if two variables xℓ1 , xℓ2 ∈ Var(f1)
are contained by the same operand from f1,1, f1,2, . . . , f1,s1 , then they are also contained by the same operand
from f2,1, f2,2, . . . , f2,s2 . The proof will be carried out by contradiction, so we may assume without loss of
generality that xℓ1 , xℓ2 ∈ Var(f1,1), while xℓ1 ∈ Var(f2,1) and xℓ2 ∈ Var(f2,2). Here, it is easy to see that f1,1
must be a sum-type expression of positive depth, which means that it can be represented as f1,1 =

∑t
1=1 1i,

where t ≥ 2 and 11, 12, . . . , 1t ∈ Z(X) are product-type expressions with mutually disjoint sets of contained
variables. Since xℓ1 ∈ Var(1k) clearly holds for a fixed 1 ≤ k ≤ t, we promptly reach

∂ f1
∂xℓ1

=
∂ f1,1
∂xℓ1

s1∏
i=1, i,k

f1,i =
∂1k

∂xℓ1

s1∏
i=1, i,k

f1,i.

Therefore, if xℓ2 < Var(1k), it quickly follows that xℓ2 < Var
(
∂ f1
∂xℓ1

)
. However, this is obviously not possible

bearing in mind that

∂ f2
∂xℓ1

=
∂ f2,1
∂xℓ1

s2∏
i=2

f2,i.

Thus, we may conclude that xℓ2 ∈ Var(1k) necessarily holds. Due to t ≥ 2, it follows that there must exist
a variable xℓ3 ∈ Var(f1,1) such that xℓ3 < Var(1k). Now, it is not difficult to apply an analogous reasoning

in order to obtain that xℓ1 , xℓ2 < Var
(
∂ f1
∂xℓ3

)
. Regardless of which operand from f2,1, f2,2, . . . , f2,s2 contains the

variable xℓ3 , it is impossible for ∂ f2
∂xℓ3

to contain neither xℓ1 nor xℓ2 since these two variables are not contained
by the same f2,i-operand, thus yielding a contradiction.

Taking everything into consideration, we have that any two variables xℓ1 , xℓ2 ∈ Var(f1) are contained
by the same f1,i-operand if and only if they are contained by the same f2,i-operand. From here, it quickly
follows that s2 = s1 and that there exists a permutation π ∈ Sym(s1) such that Var(f2,π(i)) = Var(f1,i) for every
1 ≤ i ≤ s1. In order to finalize the proof, it is enough to show that f2,π(i) and f1,i are necessarily equal up to
sign for each 1 ≤ i ≤ s1. Moving on, for each fixed 1 ≤ k ≤ s1, we see that

f2,π(k)

f1,k
= ±

s1∏
i=1, i,k

f1,i
f2,π(i)

.

Since Var
(f2,π(k)

f1,k

)
is simultaneously a subset of Var(f1,k) and

⋃s1
i=1, i,k Var(f1,i), it promptly follows that f2,π(k)

f1,k
must be a constant. Corollary 2 now immediately implies that f2,π(k) and f1,k are equal up to sign. Therefore,
f2,π(i) and f1,i are surely equal up to sign for any 1 ≤ i ≤ s1.

We end the section by combining Lemma 4 together with Corollary 2 in order to give the proof of
Theorem 3.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 958

Proof of Theorem 3. If s2 = s1, t2 = t1, and the given permutations π ∈ Sym(s1) and σ ∈ Sym(t1) exist, then

it is clear that

∏s1
i=1 f1,i∏t1
i=1 11,i

and

∏s2
i=1 f2,i∏t2
i=1 12,i

are surely equal up to sign. Therefore, it is enough to only prove the

converse. Suppose that the two given product-type expressions f1 =

∏s1
i=1 f1,i∏t1
i=1 11,i

and f2 =

∏s2
i=1 f2,i∏t2
i=1 12,i

are indeed

equal up to sign.
To begin, observe that Var(f1) = Var(f2). We will now show that if some variable xℓ ∈ Var(f1) is

contained by one of the operands f1,1, f1,2, . . . , f1,s1 , then it is also certainly contained by one of the operands
f2,1, f2,2, . . . , f2,s2 . Indeed, if this was not true, then without loss of generality, we would have xℓ ∈ Var(f1,1)
and xℓ ∈ Var(12,1). However, in this case, the fraction

∏s1
i=1 f1,i

∏t2
i=1 12,i would contain the variable xℓ, while

the fraction
∏s2

i=1 f2,i
∏t1

i=1 11,i would not, which is impossible since these two fractions are obviously equal
up to sign. Therefore, each variable xℓ ∈ Var(f1) is contained by one of the operands f1,i, 1 ≤ i ≤ s1, if
and only if it is contained by one of the operands f2,i, 1 ≤ i ≤ s2. This observation promptly implies⋃s1

i=1 Var(f1,i) =
⋃s2

i=1 Var(f2,i), alongside
⋃t1

i=1 Var(11,i) =
⋃t2

i=1 Var(12,i).

Moving on, it is easy to see that

∏s1
i=1 f1,i∏s2
i=1 f2,i

and

∏t1
i=1 11,i∏t2
i=1 12,i

are equal up to sign. Moreover, we know that

the sets Var
(∏s1

i=1 f1,i∏s2
i=1 f2,i

)
and Var

∏t1
i=1 11,i∏t2
i=1 12,i

 are necessarily disjoint, thus implying that

∏s1
i=1 f1,i∏s2
i=1 f2,i

must be a

constant. If s1 = 1, then
∏s1

i=1 f1,i = f1,1 is obviously a sum-type expression, while for s1 ≥ 2, we have that∏s1
i=1 f1,i represents a product-type expression. The same conclusion can be made for

∏s2
i=1 f2,i, which means

that both of these fractions are certainly a sum-type or product-type expression. By virtue of Corollary 2, we
may conclude that

∏s1
i=1 f1,i and

∏s2
i=1 f2,i are equal up to sign, which means that

∏t1
i=1 11,i and

∏t2
i=1 12,i are as

well. As a direct consequence of Lemma 4, we obtain that s2 = s1, t2 = t1, and that there exist permutations
π ∈ Sym(s1) and σ ∈ Sym(t1) such that f2,π(i) and f1,i are equal up to sign for each 1 ≤ i ≤ s1, while 12,σ(i) and
11,i are equal up to sign for any 1 ≤ i ≤ t1.

4. Algorithm overview

The main idea behind the algorithm is to iteratively compute the number of sum-type and product-
type expressions on k fixed variables for all positive integers k up to n ∈ N, similarly to the Python
program written by Radcliffe and van Tol, linked in [9]. Our algorithm avoids the combinatorial explosion
by using the identities presented in this section, eliminating the need to explicitly enumerate integer
partitions. We denote the number of sum-type expressions on k fixed variables by Sk, the number of
product-type expressions on k fixed variables by Pk and the number of expressions of either type by Ak.
In order to determine these values, we will also need to have the binomial coefficients

(k
m
)

computed for
all k,m ∈ N0, 0 ≤ m ≤ k ≤ n. We will show that it is sufficient to store O(n) of these binomial coefficients
in memory at any given time. The algorithm is a direct implementation of all the propositions given
throughout this section. To begin, we derive the following result.

Proposition 1. The number of sum-type expressions on k ≥ 2 fixed variables is given by

Sk =

k−1∑
j=1

(
k − 1
j − 1

)
P jAk− j. (3)

Proof. Without loss of generality, let f be a sum-type expression on the variables {x1, x2, . . . , xk}, where k ≥ 2.
It is obvious that f must be a sum-type expression of positive depth. Due to Theorem 2, it immediately
follows that f can be uniquely decomposed into s ≥ 2 summands f1, f2, . . . , fs that represent product-type
expressions with mutually disjoint sets of contained variables. Clearly, we may reorder these terms so that
x1 ∈ Var(f1). Since there are at least two terms, f1 may contain anywhere between one and k − 1 variables,

I. Stošić et al. / Filomat 39:3 (2025), 949–962 959

inclusive. Let j be this number of variables. There are
(k−1

j−1
)

ways to choose j − 1 variables out of the
remaining k − 1 variables for f1. The first term is a product-type expression, so there are P j inequivalent
ways to construct it using the j chosen variables. The sum

∑s
i=2 fi by itself is either a sum-type expression of

positive depth (if s ≥ 3) or a product-type expression (if s = 2). In effect, due to Theorem 1, we can simply
use the value Ak− j to give us the required number of ways to construct the required expression out of the
reminaing k − j variables. By multiplying

(k−1
j−1

)
, P j and Ak− j and summing up over all j, 1 ≤ j ≤ k − 1, we

obtain Equation (3).

Before we present an analogous formula for the number of product-type expressions, we shall define
two more auxiliary types of expressions: Π2-type expressions and Π1-type expressions, and then give a
formula for counting them. Unlike other types of expressions, we will consider two expressions of these
two types to be equivalent provided they are equal up to sign, rather than just equal.

Definition 3. An expression is a Π2-type expression if it is a product of two or more sum-type expressions with
mutually disjoint sets of contained variables.

Definition 4. An expression is a Π1-type expression if it is either a Π2-type expression or a sum-type expression.

We will denote the number of inequivalent Π2-type expressions on k fixed variables by Qk and the
number of inequivalent Π1-type expressions on k fixed variables by Rk. The number of inequivalent sum-
type expressions on k fixed variables, up to sign, is precisely Sk

2 , because they can obviously be split into
additively complementary pairs. Therefore, by Theorem 1, for any k ≥ 2 we have Rk = Qk +

Sk
2 . Moving on,

we will rely on the next proposition to count the number of Π2-type expressions on k fixed variables.

Proposition 2. The number of inequivalent Π2-type expressions on k ≥ 2 fixed variables is given by

Qk =

k−1∑
j=1

(
k − 1
j − 1

)
S j

2
Rk− j. (4)

Proof. By virtue of Theorem 3, we observe that any Π2-type expression is surely a product-type expression
of positive depth. Analogously to the proof of Proposition 1, we may assume that the first factor is a
sum-type expression, while the remaining factors necessarily form a Π1-type expression. Equation (4)
follows immediately from here. Note that S j should be divided by two in order to count only inequivalent
sum-type expressions up to sign. While counting the Π1-type expressions, the sign is already ignored.

Next, we present a formula for computing the number of product-type expressions on k fixed variables.

Proposition 3. The number of product-type expressions on k ≥ 2 fixed variables is given by

Pk = 2

Qk +

k−1∑
j=1

(
k
j

)
R jRk− j

 . (5)

Proof. We will count the number of inequivalent product-type expressions up to sign and then just multiply
this result by two. It is easy to notice that any product-type expression on k ≥ 2 fixed variables is surely
of positive depth. Therefore, due to Theorem 3, it follows that such product-type expressions inequivalent

up to sign can be uniquely decomposed as
∏s

i=1 fi∏t
i=1 1i

, where s ≥ 1, t ≥ 0, s + t ≥ 2, and f1, . . . , fs, 11, . . . , 1t

are sum-type expressions with mutually disjoint sets of contained variables. For t = 0, it is clear that the
number of desired expressions equals Qk. Now, suppose that t ≥ 1 and let j be the number of variables
appearing in the f1, f2, . . . , fs factors. Observe that in this case, j can be any integer between one and k − 1,
inclusive. Furthermore, there are

(k
j
)

ways to select these j variables and then R j and Rk− j ways to construct

the Π1-type expressions
∏s

i=1 fi and
∏t

i=1 1i, respectively. Equation (5) follows directly from here.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 960

Finally, as a direct consequence of Theorem 1, we also reach the following result.

Proposition 4. The number of sum-type or product-type expressions on k ≥ 2 fixed variables is given by

Ak = Sk + Pk.

It is trivial to obtain the values S1 = 2, Q1 = 1, R1 = 1, P1 = 2, A1 = 2. Now, let us find the order in
which the values Sk,Qk,Pk,Rk,Ak can be computed for all k ≥ 2. For any given k ≥ 2, we can compute
Sk,Qk using the values A j,P j,R j,S j for 1 ≤ j < k, and the binomial coefficients of the form

(k−1
j
)

for all the
0 ≤ j ≤ k− 1. This sequence of binomial coefficients is also known as the (k− 1)-th row of the Pascal triangle
(see, for example, [10]). Subsequently, we can compute Rk = Qk +

Sk
2 . Afterwards, we may determine Pk, as

Equation (5) relies only on Qk, the values R j for 1 ≤ j < k, and the k-th row of the Pascal triangle. Finally,
we determine Ak. Note that, in order to compute all the terms Pk,Qk,Rk,Sk,Ak, we only need to store the
(k − 1)-th and k-th row of the Pascal triangle in memory. We can compute the (k + 1)-th row from the k-th
row by implementing the well-known identity(

k + 1
j

)
=

(
k
j

)
+

(
k

j − 1

)
.

Before we do this, we can discard the (k− 1)-th row from memory as it is no longer needed. In order to find
the values Ak for all 1 ≤ k ≤ n, at any moment we only need to store the values P j,Q j,R j,S j,A j for all the
1 ≤ j ≤ n, two rows of the Pascal triangle that both contain at most n + 1 elements and a constant number
of auxilliary variables.

Therefore, the memory complexity of the disclosed algorithm is indeed Θ(n), measured as the number
of stored arbitrary precision integers, while its time complexity is obviouslyΘ(n2), measured as the number
of arithmetic operations on arbitrary precision integers. An example of a C++ implementation of the
algorithm as a function template can be found in Appendix A. For an overview of C++ templates, please
refer to [11].

5. Some open problems

Throughout the paper, we have proved various properties concerning the equivalence of sum-type and
product-type expressions. These results lead up to the construction of a Θ(n2) algorithm for computing
the number of inequivalent arithmetic expressions on k distinct variables containing the standard four
arithmetic operations alongside additive inversion, for every 1 ≤ k ≤ n. Such an algorithm represents an
efficient complete solution to the problem considered by Radcliffe [9]. We end the paper by disclosing some
open problems directly connected to the aforementioned question.

For starters, it is natural to ask whether a similar approach could be applied to construct a Θ(n2)
algorithm for computing the number of inequivalent arithmetic expressions on n distinct variables when the
only allowed operations are addition, subtraction, multiplication and division, without additive inversion.
This problem was actually considered by Du [2] and although its formulation is quite similar, it seems that
the algorithm shown in Section 4 cannot directly be modified to provide the desired solution. Compared
to the case when additive inversion is allowed, the structure of the set of arithmetic expressions that can be
written without using additive inversion is more difficult to describe. It is not trivial to determine whether
any given arithmetic expression can be rewritten in a form that does not use additive inversion. For this
reason, we choose to leave the following related question.

Question 1. Can we construct a Θ(n2) algorithm for computing the number of inequivalent arithmetic expressions
on k distinct variables, for each 1 ≤ k ≤ n, when the only allowed arithmetic operations are the standard four binary
operations, without additive inversion?

Moving on, it makes sense to consider the similar problem of computing the number of inequivalent
arithmetic expressions on a given number of variables when it is not guaranteed that all the variables are
mutually distinct. This immediately leads us to the next two open problems.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 961

Problem 2. Find an efficient algorithm for computing the number of inequivalent arithmetic expressions that can be
represented by an expression tree such that:

(i) the allowed operations are the standard four arithmetic operations, i.e., addition, subtraction, multiplication
and division, alongside additive inversion;

(ii) there are
∑n

i=1 αi leaves, each containing one of the n ∈ N formal variables {x1, x2, . . . , xn}, so that xi appears
αi ∈N times, for any 1 ≤ i ≤ n.

Problem 3. Find an efficient algorithm for computing the number of inequivalent arithmetic expressions that can be
represented by an expression tree such that:

(i) the allowed operations are the standard four arithmetic operations, i.e., addition, subtraction, multiplication
and division, without additive inversion;

(ii) there are
∑n

i=1 αi leaves, each containing one of the n ∈ N formal variables {x1, x2, . . . , xn}, so that xi appears
αi ∈N times, for any 1 ≤ i ≤ n.

Finally, we shall mention the question of finding the number of expressions inequivalent up to per-
mutation of variables. More precisely, for each bijection φ : X → X, let Fφ : Z(X) → Z(X) denote the
mapping that transforms each fraction by replacing the formal variable xi with φ(xi), for every i ∈ N. It is
now convenient to define two fractions f1, f2 ∈ Z(X) to be symmetrically equivalent if there exists a bijection
φ : X→ X such that f2 = Fφ(f1). With this in mind, we disclose the following two open problems.

Problem 4. Find an efficient algorithm for computing the number of symmetrically inequivalent arithmetic ex-
pressions on n ∈ N distinct variables, when the only allowed arithmetic operations are addition, subtraction,
multiplication, division and additive inversion.

Problem 5. Find an efficient algorithm for computing the number of symmetrically inequivalent arithmetic expres-
sions on n ∈N distinct variables, when the only allowed arithmetic operations are addition, subtraction, multiplication
and division, without additive inversion.

Remark 1. Of course, it is also possible to consider the closely related variants of Problems 4 and 5 when the formal
variables are not guaranteed to be mutually distinct.

Acknowledgements

The authors express their gratitude to Nino Bašić for his useful comments and remarks.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] G.E. Andrews, The Theory of Partitions, Cambridge University Press, 1984, https://doi.org/10.1017/CBO9780511608650.
[2] Z.H. Du, Sequence A140606 in The On-Line Encyclopedia of Integer Sequences, 2008, https://oeis.org/A140606.
[3] D.S. Dummit and R.M. Foote, Abstract Algebra, (3rd edition), John Wiley & Sons, Inc., 2004.
[4] A. Gopal, Magnifying Data Structures, PHI Learning Private Limited, New Delhi, 2010.
[5] D. Grune, K. van Reeuwijk, H.E. Bal, C.J.H. Jacobs and K. Langendoen, Modern Compiler Design, (2nd edition), Springer New

York, NY, 2012, https://doi.org/10.1007/978-1-4614-4699-6.
[6] S. Lang, Algebra, (3rd edition), volume 211 of Graduate Texts in Mathematics, Springer New York, NY, 2002, https://doi.org/
10.1007/978-1-4613-0041-0.

[7] C.C. Pinter, A Book of Abstract Algebra, (2nd edition), Dover Publications, Inc., Mineola, New York, 2009.
[8] B.R. Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in Java, John Wiley & Sons, Inc., 1999.
[9] D. Radcliffe, Sequence A182173 in The On-Line Encyclopedia of Integer Sequences, 2012, https://oeis.org/A182173.

[10] R.P. Stanley, Enumerative Combinatorics: Volume 1, (2nd edition), Cambridge University Press, 2011, https://doi.org/10.1017/
CBO9781139058520.

[11] D. Vandevoorde, N. Josuttis and D. Gregor, C++ Templates: The Complete Guide, (2nd edition), Addison-Wesley Professional, 2017.
[12] Z. Zhang, 2018, https://zhuanlan.zhihu.com/p/34058293.
[13] Z. Zhang, 2018, https://zhuanlan.zhihu.com/p/34261468.

I. Stošić et al. / Filomat 39:3 (2025), 949–962 962

Appendix A. Implementation in C++

1 template <class Number>

2 std::vector<Number> unaryMinusAllowed(size_t n) {

3 std::vector<Number> A(n + 1), S(n + 1), Q(n + 1),

4 R(n + 1), P(n + 1);

5 A[1] = S[1] = P[1] = 2;

6 Q[1] = R[1] = 1;

7
8 // Binomial coefficients (two rows of Pascal’s triangle)

9 std::vector<Number> Bk = {1, 2, 1}, Bkm1 = {1, 1};

10
11 for (size_t k = 2; k <= n; k++) {

12 // Number of sum expressions

13 Number total = 0;

14 for (size_t j = 1; j <= k-1; j++)

15 total += P[j] * A[k - j] * Bkm1[j - 1];

16 S[k] = total;

17 // Number of Pi-2 type expressions

18 total = 0;

19 for (size_t j = 1; j <= k-1; j++)

20 total += S[j] * R[k - j] * Bkm1[j - 1];

21 Q[k] = total / 2;

22 // Number of product expressions

23 total = Q[k];

24 for (size_t j = 1; j <= k-1; j++)

25 total += R[j] * R[k - j] * Bk[j];

26 P[k] = total * 2;

27 // Number of Pi-1 and any type expressions

28 R[k] = Q[k] + S[k] / 2;

29 A[k] = S[k] + P[k];

30 // Update binomial coefficients rows

31 Bkm1 = std::move(Bk);

32 Bk.resize(k + 2);

33 for (size_t j = 1; j <= k; j++)

34 Bk[j] = Bkm1[j] + Bkm1[j - 1];

35 Bk[0] = Bk[k + 1] = 1;

36 }

37
38 return A;

39 }

