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Abstract. In this study, we obtain a unique insight into differentiable convex functions by employing newly
defined conformable fractional integrals. With this innovative approach, we unveil fresh Euler-Maclaurin-
type inequalities designed specifically for these integrals. Our proofs draw on fundamental mathematical
principles, including convexity, Holder’s inequality, and power mean inequality. Furthermore, we delve
into new inequalities applicable to bounded functions, Lipschitzian functions, and functions of bounded
variation. Notably, our findings align with established results under particular circumstances.

1. Introduction and Preliminaries

Convexity is a key term in mathematical analysis, with broad consequences in various domains. Its
utility in optimisation, mathematical modelling, and algorithm design underlines its importance. Convex
functions have several essential characteristics that make them invaluable in academic study and practical
applications [16, 29, 35]. If the subsequent inequality is valid for a function ¥ : [0, p] = R C R then ¥ is
convex:

nF (o) + (1 =mF(p) = F(no + (1 —n)p), )

forall o,p €1, n €0,1]. In contrast if the inequality (1) is reversed, ¥ is classified as concave function.

Integral inequalities are widely utilized in statistical analysis, approximation theory, spectral analysis, and
distribution theory. They established bounds on distributions, errors in approximation methods, spectral
measures, and probability inequalities. It contributes to advances in research and technology through
applications in fields like physics, biology, signal processing, and control theory, playing an important role
in mathematical analysis and addressing complicated problems spanning scientific disciplines [1, 5, 10, 22].
Many scholars have studied fractional calculus, focusing on its application in inequality theory. In [7, 34],

2020 Mathematics Subject Classification. Primary 26D07, 26D10, 26D15; Secondary 26D15.

Keywords. Quadrature formulae; Maclaurin’s formula; Conformable fractional integrals; Bounded function; Function of bounded
variation

Received: 22 May 2024; Revised: 04 December 2024; Accepted: 07 December 2024

Communicated by Miodrag Spalevié¢

* Corresponding author: Haibo Chen

Email addresses: haiderwali416@gmail.com (Wali Haider), hsyn.budak@gmail.com (Hiiseyin Budak), ashehzadi937@gmail.com
(Asia Shehzadi), fatihezenci@gmail.com (Fatih Hezenci), math_chb@csu.edu.cn (Haibo Chen)

ORCID iDs: https://orcid.org/0009-0001-7065-2755 (Wali Haider), https://orcid.org/0000-0001-8843-955X (Hiiseyin
Budak), https://orcid.org/0009-0005-1101-5536 (Asia Shehzadi), https://orcid.org/0000-0003-1008-5856 (Fatih Hezenci),
https://orcid.org/0000-0002-9868-7079 (Haibo Chen)



W. Haider et al. / Filomat 39:3 (2025), 1033-1049 1034

authors analysed fractional forms of trapezoid-type inequalities. In the context of fractional calculus, Aamir
etal. have examined some new parameterized Newton-type inequalities for differentiable convex functions
[3]. Using Riemann-Liouville (R-L) fractional integrals, Hezenci et al. [18] have demonstrated Newton's
inequality for differentiable convex functions. They provide a graphical analysis that elucidates the validity
of the recently established inequalities. Budak and Karagozoglu [14] have unveiled the fractional variant of
Milne-type inequality. Ertugral and Sarikaya [8] have investigated some extended versions of Simpson-type
integral inequalities by leveraging generalised fractional integral. For functions with second derivatives
that exhibit convexity in absolute value, You et al. [40] have obtained numerous Simpson-type inequalities
by taking advantage of generalised fractional integrals. Over the past few years, many publications have
focused on forming significant inequalities by employing fractional integrals [2, 38].

Definition 1.1. [27] Let us consider ¥ € L1[o, p]. The R-L integrals 33, F and I;_F, with order a > 0, defined as
follows:

I F(v) = ﬁ f (v- 1])“_1 F(mdn, v>o )
and

38 F(v) = f (=) " Fdn, v<p, 3)

T(@)
respectively. In this context, ¥ is a function belonging to the space L1[o, p] and T denotes the Gamma function defined

by
1"(0():f0 e I dn.

Numerous pioneering conformable fractional operators have arisen to overcome the limitations of
classical fractional operators in formulating specific phenomena [17, 41]. Especially, the operator proposed
by Jarad et al. as reported in [26], stands out for its versatility to extend various operators, including
the Hadamard operators, offering a more comprehensive framework for obtaining complex systems and
phenomena.

Definition 1.2. [26] Let ¥ € L[o, p]. The left and right-sided conformable fractional integral operator of order p € C
and R(B) > 0 and a € (0, 1] are outlined as:

(v-o) 17 a)” F (1)
B
»F ) F(ﬁ)f ( ) —oya V>0 @
and
1 (* (p—v)“—(p—n)“)ﬁ‘1 F(n)
T w) = F(ﬁ)f ( a - VP ©

Remark 1.3. If we set 0 = 0,p = 0, and a = 1 in (4) and (5), we find the R-L fractional integrals (2) and (3)
accordingly.

On the other hand, Set et al. [36] proposed the one-sided conformable fractional integral operator as follows:

Tlrm,
ﬁja?'(v) r(ﬁ)f ( ) 1711?1

In [37], authors have proposed a novel identity in the term of conformable fractional integral. By evolving
this identity, they examined the new Ostrowski type inequalities for conformable fractional integral opera-
tors. Celik et al. [9] have extended Milne-type inequalities with the help of conformable fractional integrals.

(6)
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Also, they discussed several function classes, such as bounded functions, Lipschitzian Functions, and func-
tions of bounded variation. Hyder et al. [19] have contributed extensively by presenting midpoint-type
inequalities. Based on previous work, Kara et al. [28] derived midpoint-type and trapezoid-type inequal-
ities for twice-differentiable convex functions. Recently, considerable research devoted for inequalities in
the framework of conformable fractional integrals such as Griiss inequality [30], Chebyshev inequality [31],
Minkowski inequality [32], Hermite-Jensen-Mercer inequality [6], Simpson-type inequalities [20] and so on
[4, 21, 39].

The subsequent Simpson’s rules are applicable to Simpson’s inequalities.

I. The subsequent formula represents Simpson’s quadrature, alternatively referred to as Simpson’s 1/3
rule:

P _
ff(n)dnzp6

II. The Newton-Cotes quadrature formula, commonly known as Simpson’s second formula (also referred
to as Simpson’s 3/8 rule; see [11]), can be stated as:

2r @4 (5E)+ 7 ). 7)

f:?(n)dn~ [T(o) 3?( ) 37( * 2 )+T(p)] (8)

III. The Maclaurin rule, derived from the Maclaurin formula (as seen in [11]), is identical to the corre-
sponding dual Simpson’s 3/8 formula:

o252 (232 2.

Formulas (7), (8), and (9) hold true for any function # with a continuous fourth derivative over the interval
o, p].

The subsequent Newton-Cotes quadrature, frequently utilized, includes a three-point Simpson’s- type
inequality:

Theorem 1.4. Let ¥ : [0, p] — R bea four times differentiable and continuous function on (o, p) , and let ||7—~ ®) Hm =
sup |7: (4)(1])| < 00. Then, the subsequent inequality is valid:
ne(op)

‘%[T(O)ﬂf(a )+¢(p) ——f T(n)dn‘_zsgo IF@]. (0 - 0)*.

In accordance with the Simpson 3/8 inequality, the Simpson 3/8 rule is a well-known closed-type quadrature
rule, and it is expressed as follows:

Theorem 1.5. Assume that F : [0, p] = R is a function that is differentiable four times and continuous on (o, p),
and |[F®| = sup [F@(n)| < oo. Then, one observes the subsequent inequality:

ne(o,p

‘ [T() 3?( ) 3?( ) F (p )]__fT(”)d”‘—az;so”"f@”m@ o).

The Maclaurin rule, originating from the Maclaurin inequality, is equivalent to the corresponding dual
Simpson’s 3/8 formula:
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Theorem 1.6. Assume F : [0, p] = R is a function that is differentiable four times and continuous on (o, p), and
let |F@|, = sup |[F@(n)| < co. Then, the subsequent inequality is valid:

ne(o,p
p)+37_,(0+5p)]

‘ [ (50 + p) o+
3F 27 (

2
In the framework of differentiable convex functions, authors have examined several Euler-Maclaurin-type
inequalities in [23]. Dedic et al. [13] reported a sequence of inequalities by employing the Euler-Maclaurin
formulas, and these results were utilized to derive error estimates for Maclaurin quadrature rules. In [24],
using the Riemann-Liouville fractional integrals, Hezenci has investigated some corrected Euler-Maclaurin-
type inequalities. For a deeper understanding of these specific types of inequalities, interested readers are
directed to [12, 15, 33] and the citations therein.
Motivated by ongoing investigations, we establish Euler-Maclaurin-type inequalities for several function
classes concerning conformable fractional integrals. The study is divided into seven sections, with the
introduction being the first, which includes fundamental definitions of fractional calculus and reviews
related to research in the field. Section 2, we will prove an integral equality crucial for the main findings
discussed. Section 3 presents various Euler-Maclaurin-type inequalities for differentiable convex functions
using conformable fractional integrals. Section 4 examines Euler-Maclaurin-type inequalities for bounded
functions through fractional integrals. Section 5 establishes fractional Euler-Maclaurin-type expressions for
Lipschitzian functions. In Section 6, Euler-Maclaurin-type inequalities are proved via fractional integrals of
bounded variation. Finally, in Section 7, we discuss our perspectives on Euler-Maclaurin-type inequalities
and their potential consequences for future research areas.

[ o < ST Il -0

2. Principal Outcome

Let us begin with the following evaluated integrals, which will be utilized in obtaining our key findings:

Hi-a-np*y 1
(—a )‘wd”

Alei-4l+ e [Bler1ba-4)- 23(5”/&'1‘(1‘(%)%))]’ 0<f< oy,

Ala, p) = (10)

w8 L1 5) ﬁ>%,
sl 1) o lenfoer1-(1-) ) -2s(e 1 20-(-())

= -B(p+1,21-%)+8(p+1,1,1-1)], 0<ﬁ<1(1(3),
w8+ 1L21-%)-8(+1L1-4)], p> ol

o (1en\[(1-a-prY 1
miep = [ (S e
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ﬁ[%C%wl—%]ﬂw[ (B+131-%)- ZB(ﬁ”'a' (1_(%)%))
=J +8(p+1.21 (1—(}1)%))—53(%1,5,1——)] 0<f < pty,
15(p1,2,1-3)-5(p+1,51- 4, B> aity

a\B
(1—(1—17) ) 1y
a 4ap

[ Al tlegnlslerza-2) sz (- o< gy
- (e 13- 3), B> ik

1
%wm=ﬁ($—(

1
ﬂé(%ﬁ):ﬁ U[%—

-5 .
"~ 18af

1—(10(—17)“) )dn:3}7+%[B(ﬁ+1’§’1_317)_%(ﬁ+1’§)]’

1-a-pey
(= Jor

%[%(5+1,2)—B(5+1,§,1—%)—%(ﬁ+1,%)+8(ﬁ+1,i 1—3%)]

1 1-1 -V
= [ () - (=) o

11

3

1
"~ 36af * aftl

1 —
\%mm=ﬁ(%§ﬂ

3

1

[B6+1. 1= 50)-8oe1.3)+ 385 00.5) 386+ 51 5]

1 (1-a-pV), 1 1 2 1 2
J_(__E__ in=sop i B2 51— 5) 2B+ 5)]

1\
Here, C; =1 - (1 - (%)’5 ) , the functions B (-,-) and B (., -, -) are the Beta function and the incomplete Beta

function defined as

1
B(x,y) = [ 7711 - n)rld,
0

B(x,y,r) = [0 - n)¥dn,
0

forx,y > 0 and r € [0, 1] . Now, we prove integral equality in order to illustrate the main conclusions of this

study.

Lemma 2.1. Let us consider that  : [0, p] — R is an differentiable mapping (o, p) and o, > 0 so that ¥’ €
Li([o, p]). Then, the subsequent equality holds:

[3?(50+p) 27’(

_a¥(p-0)

4

[ +1].

) (T220)] D g (7)o (750
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Here,
2
I = Of((l (1a 17)") Mﬁ)[?_-,(lm " _g> 7~/<1+Tr7 Tn )]dn/
L= Zfl((l(lan)a )ﬁ 3 %) [7:' (%P + 1;2”0) -F (%a + 1%np)] dn.

Proof. Using the integration by parts, we observe
_ (==Y 1 1+17 “1 )\ _(ltn  1-n
[ e e
0

o2 ((1-a-nprY o1 1+ 1-7 0 1-n
-p—o[( )‘r«ﬁ]["f’(T“ o) (5 *TP)]O

_ a\p-1 _ _
( (1- n)) (_n)a1[¢(1+np+1 n0)+7:(1+170+1 np)]dn
1
3a

Wi

2 2 2

2 (1= 1 5p+0 50 + p 4 o+p
_p—o[( a ]_EJ[T( 6 )+T( 6 )]+4aﬁ(p—o)7:( 2 )

209 _ (1 _ e\l _
- 2 (1 (1-n ) (1- 17)“_1 [T(lﬂp + —no) + T(lﬂo + 1—np)] dan.
0

p—o0 a 2 2 2 2
Similarly,
B
1-5 5 5
gl 2
p—o o af 6 6
28 (1= —np\! wal(1+n  1-7 1+n 1-79
s §( " 1-n 7’—2 pt——0 +F 5 0t dan.
By substituting (11) and (12), then we achieve
3 2 5p+0 o+p) 50 +p
L+ = Hp=o) [ST( G )+2T( > +3F G (13)

2 51— —-n)\ft 1 - 1 1-
) s (e e e (e e

1 _ o\ p-1
] e e e 50

1+

1+n

If we use the change of the variable v = —~p + —a andv=—o0+ —p for n € [0, 1], then the equality (13)

can be rewritten as follows

L+l = M(;_@ [3?(5059) 2?( ) 3?(“659) (14)
St )

Accordingly, multiplying both sides of (14) by ), concludes the proof of Lemma 2.1. O
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3. Convex functions: Fractional Euler-Maclaurin-type inequalities

Theorem 3.1. Assume the conditions stipulated in Lemma 2.1 holds. If the function || is convex on [o, p], then
the subsequent inequality is valid:

ibr (o) o)

e )

(p=o)”
(15)
< (p— )(ﬂl(aﬁ+ﬂ5(a ﬁ))[l?"’(a)|+(7:' ]
where Ai(a, [3) and As(a, p) are defined as in (10).
Proof. If we consider the absolute value in Lemma 2.1, we can directly get
50 + p g+p o+5p\| 2%PT(B+D) (50 (TP pra (O FP
‘ [”r( ) ZT(T)”T( 6 )‘ (r—0)" e (555)+ r (5
(16)
-0 | (lL=a-nY 1|l (141  1-n H(ltn 1-7
=T f'( 2 )‘MHT(TP* Ml “*T)H‘*’
0
rli1 a-nY 1 1 1
— — )« + + —
STl (e (e 5
Given that || is convex, it becomes
50+ p a+5p\| 29T (B+1) bro (TP, o (TP
[37( ) 27:( ) 37:( 6 )]_ (o — o) []‘” ( 2 )+I ( 2 )]
-1 @ 1 [1
Sy f' = ’7)) = ﬁH S el o e o

1
1+ 1- 1+ 1-
-f el o e )y

1 (1-a-n
ab o
ab

T2 (e, )+ Aoee, ) [0 + 7]

—~ I

Therefore, the demonstration is completed. [J
Remark 3.2. If we take a« = 1 in Theorem 3.1 leads to [25, Theorem 4].

Remark 3.3. If we choose o = p =1 in Theorem 3.1, then we can obtain Euler-Maclaurin-type inequality

P
[37'(5“") ZT(¥)+3T(GZSP)]—pigf?‘(n)dn

which is established in paper [23, Corollary 1].

25(p=0)r. ., ,
< L2 @+ |7
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Theorem 3.4. Assume the conditions stipulated in Lemma 2.1 holds. If the function |¥'|", q > 1 is convex on [, p],
then the subsequent inequality is valid:

e e e R e L e |

(17)

1

[4|9f' ()| + 217" (a)lq]" N (4 7 (N +2|F" (p)|f’ﬂ

p

< aﬁ(p4— o) fz

0

a 4ab

(1—(1—11)“)’3_L

9 9

p

) TF e +17 @r (1 @+ |7 O
n 36 * 36 '

Proof. Through utilizing Holder’s inequality to (16), we achieve

‘ [3?‘(50+p)+27f( p) +3?.(0+65P)]_ Zaﬁ_laﬁr(i; D [ﬁ]&i (HP)JIP_ (Hp)”

(p-o0) 2 2
3 r( 3 1
a¥(p - o) 1--pY 1 1+ 1-n \f
< 1 f(—a ) "1 dn ff(—z pt— 0) dn
0 0
: 1-(1 )aﬁ 1 p "3 " 1 q !
-7 , N -1
+f( . )4aﬁd f¢(20+_2)dq
0 0

==
=

1

1
1-a-npo\ 1[ 1+ 1-7
AT ] | [ (e ) o

2 2
3

==
==

1

+f 1-1-n*Y 1 ”d flf' Len  1-q "d
" af| 2 7T 1
%

2
3

By employing the convexity |¥|7, it yields

‘ [3?(5“”) 2?(#)%?(025’))

afo-o) || Fll1-a-my 1 [
. ”( a )_47#
0

ap-1,8
e

1 1
P 2 q

f (1 T o) + =217 o )W)dn
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p

(3 ;
1-a-n*Y 1 40 0 =0,
+ I(T) T a dn f(TWj (o)l +T|77 ()| |dn
0
i

0

==

1 1

1-A-ny 1[ 1
=2 stror- )
[

1-1-n*V¥ 1 1 1-
(g3 st 2o

14

=
==
==

9 9

) ,, [4|¢ ‘(o) +21F" <o>|"J3 L[4 @ 2] (p)l”]él

_af(p-0) f 1-a-p 1
B 4 a 40b
0
1
1-a-nyY 1[
* f‘(T) T af

Hence, the proof is finished. [

e s ory (i or e el
L 36 " 36 '

Remark 3.5. If we take o = 1 in Theorem 3.4 leads to [25, Theorem 5].
Remark 3.6. If we choose o = p =1 in Theorem 3.4 leads to [25, Corollary 1].

Theorem 3.7. Assume the conditions stipulated in Lemma 2.1 holds. If the function |F'|", q > 1 is convex on [, p],
then the subsequent inequality is valid:

sl (et () e () e b (5 e (5]

(18)

< T2 (1, (0, ) [(1 P O + A I @)+ (IO + A, )|

(A5 (@, )77 [(ﬂ7 (@ B)|[F O + s (@ B IF @) + (A (0, ) IF @)1 + As (a, ) (T'(p)r’)ﬁ]} .
Here, Ay (a, B) — As (a, B) are defined as in (10).
Proof. With the help of the Power-Mean inequality in (16), we acquire

() (52 () T D) (752

2 1-1 2 i
2 q q
af(p - o) ( 1-1-n\y 1 ( 1-a-np*y 1 Jl+n  1-q
< f(T)‘wd” I(T)‘w"”(T“ z") an
0 0

AT — (1= me\f
(-]
a 4af
0

f' —(1 n)“ ﬁ

7_~,(1+770+1;77 )
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; g T (1—=me\ q %’
1 1-1-n)° 1 1-1-n)* (147 1-1
+fﬁ_(7) dn fﬁ_(T) T( 7 Pt )
7 1-1-ne\ N 1-(1-n2\ 1 1 d %
1 —d-n" 1 (1-a-n (1t —n
+fa_5_( " ) dn facﬁ ( " ) 77( > o+ 5 )dn
Utilizing the convexity of 7|7, it gives
5 208-10PT (B + 1
o) oo () 2050 >[ﬁfsf<ﬂ>+ﬁfsf<w>ﬂ
6 (p—o)“ﬁ 2 2
2 -3/ 2
-0 || fl1-a-mV 1 Cllr-a-mpeY 1 |[t+n, ., v
< =) -al) [ -l 5 ror s Sheore
0 0
; B e B %
1-1-n)” 1 1-1-n)” 1 1+n o) 4 —17 N
[T -selin] | [ -l [ oo
0 0
1 a-oy | ¢ A=\ n
1 (1-1-n~ T (=A=' 1+ g 120 g
+fﬁ—( : ) n fﬁ—( - ) S+ L
7 1-(1-n)\ N 1-1-n\\[1 Y
1 —(1-n" 1 (1-Q0-n L P | NPT
-t [f- S ster ot

B(p — ’ 1 1
= W {(ﬂ1 (@p)' [(ﬂs (@ p)|F ()] + A (@, B)IF @) + (As (2, )IF (@) + A (ct, B) )ff’(p)l”)q]

+(As (a, p)) [(% (@ p)|F )|+ As (a, B) |¢’(o)|")% + (A7 (o, p)IF (0)I" + As (a, p) ﬂ?’(p)|")5]} .
0
Remark 3.8. If we take o = 1 in Theorem 3.7 leads to [25, Theorem 6].

Remark 3.9. If we choose « = § = 1 in Theorem 3.7 leads to [23, Corollary 3].

4. Bounded functions: Euler-Maclaurin-type inequalities with conformable fractional integrals

In this section, we deal with some Euler-Maclaurin-type inequalities for bounded functions via con-
formable fractional integrals.

Theorem 4.1. Suppose that the conditions of Lemma 2.1 holds. If there exist m, M € R such that m < ¥'(n) < M

forn € [a, p], then it follows:
) 3?(0 +65p)] ~ 2987 10fT (B + 1) [ﬁ]ng (o : p) Ny (0 er p)]’

(p—0)*

i)
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ablo —
< # [ﬂl(a/ﬁ) + L‘ﬂS(Ol/ﬁ)] (M - m) ’
where Ay (e, B) and As(a, B) are defined as in (10).
Proof. By using Lemma 2.1, we have
ap-1 .8
137__ 50 +p +27__(G+p)+37__ a+5p\| 2T (B+1)
8 2 (p— o)

af(p - o) ( 1-1-n\y 1 (1+n  1-7 m+M
. f((—a ) -7 (e ) - 15

0

1-A-n*Y 1 \[m+M _ (1+n 1-7
(- o e e

0
1
1-a-n*Y 1\[_(1+n 1-n)\ m+M]
+I(T)_E)_T( 2 Pr o) T |
1

6 6

prr(2) r (52 o

2

1-A-np*Y 1\[m+M __ (1+n 1-n1 )]
(T)_E_ 7 ot 2p_d’7'

Through the absolute value of (20), we attain

1 50 +p o+p o+5p
‘g[ST( 5 )+27—“(—2 )+3T( G )

21T (B4 1)
(p—o0)?

o+p

e (52 (230

dp-o) | (== 1
=71 f'( o )_4aﬁf 2 PP ¢
0

A= (1= e\
+I(M)_L
a 4ab
0

(1—(1—n)“)ﬁ_l T,(1+1] 1-17 )_m+M

1 1-
,( +1 17)_1714;M|d'7

m+ M (1+7 1-17
> —7“( 7 0t p)ldr]

" o 7 P ¢ 2

(1—(1—n)“)ﬁ 1 m+M_7__,(1+1]0 1—17)

P T2 2 ‘t P

+ +
wio € ~ Wi € =

It is known that m < F’(n) < M for n € [0, p]. Then, we observe

, (22)

(1+n 1-79 m+M| M-m
- <
T( 2 P72 O) 2 ‘— 2
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and

m+ M 1+7 n M-m
> —T( > +—p)‘ — (23)

With the help of the (22) and (23), we achieve

F?(%+p) m{igﬂye?(gzmj

ap-1,8
L e (1) e (450)

1
(p—) —(1 17)“ 1 1 (1-a-npe\
f’ wd’”f(ﬁ‘(—a )]d”

- @ [Ai(a, ) + As(a, H] (M —m).

3

0
Remark 4.2. If we take a = 1 in Theorem 4.1 leads to [25, Theorem 71.
Remark 4.3. If we choose a = B = 1 in Theorem 4.1 leads to [25, Corollary 2].

5. Lipschitzian functions: Fractional Euler-Maclaurin-type inequalities
In this section, we give some fractional Euler-Maclaurin-type inequalities for Lipschitzian functions.

Theorem 5.1. Assume the conditions stipulated in Lemma 2.1 holds. If ¥ is an L-Lipschitzian function on [o, p],
then the subsequent inequality is valid:

‘ F?(5G+p) 2?(5§£)+3?(625p)

~ Zaﬁ—(lpaira()ﬁa; 1) [ﬁ]ng (o . p) g (a + p)]’

Bl — )2
L ¥p-0)
B 4

where A (a, f) and As(av, B) are defined as in (10).

( )] W(;,;r;ﬁ; Do (To2) s (232 )]]
(5

ALtn o 1-m
)—7’( 5 o+ 7 p)‘dn

[A(a, B) + As(r, ] L,

Proof. By utilizing Lemma 2.1, we attain
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As || is L-Lipschitzian function, we can conclude
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Remark 5.2. If we take a = 1 in Theorem 5.1 leads to [25, Theorem §].

Remark 5.3. If we choose & = p =1 in Theorem 5.1 reduces to [25, Corollary 5].

6. Functions of bounded variation: Euler-Maclaurin-type inequalities via fractional integrals

In this section, we represent Euler-Maclaurin-type inequalities by fractional integrals of bounded vari-
ation.

Theorem 6.1. Consider that F : [0, p] — R is a function of bounded variation on o, p| . Then, we get

ap-1 .8
SprFat e () or (= S b () (52
(15 w5 [T

p
} \/@®.
p
Here, \/ () demonstrates the total variation of F on [0, p].

Proof. Define the function K, g(x) by
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With the help of the integrating by parts, we get
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This follows
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It is known that if g, 7 : [0, p] = R are such that g is continuous on [o, p] and ¥ is of bounded variation on
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p
[0, p], then [ g(n)dF (1) exist and

p
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By using (25), we have
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ap-1,p
s (5o (50 (5 |- e b () A (30)
211 p-1 £
= - K p(x)dF (x)
(p-0)" f '

ap-1 —0\X a\P
< (pz_ﬁa)aﬁ = )ﬁmax{}l,l —(1 -(3) ) }Y(T)



W. Haider et al. / Filomat 39:3 (2025), 1033-1049 1048
1 1 Y\
= 5 max Z,l - (1 - (5) ) \U/(T)
This completes the proof. [J

Remark 6.2. If we take o = 1 in Theorem 6.1 leads to [25, Theorem 9].

Remark 6.3. If we choose a = B = 1 in Theorem 6.1 leads to [25, Corollary 6].

7. Conclusion

In this investigation, we aim to derive Euler-Maclaurin-type inequalities applicable to various classes
of functions by utilizing conformable fractional integrals. Initially, we introduce an integral equality
crucial for establishing the article’s key findings. We employ conformable fractional integrals to investigate
Euler-Maclaurin-type inequalities tailored for differentiable convex functions. Furthermore, we extend
our investigation to Euler-Maclaurin-type inequalities applicable to bounded functions through fractional
integrals. Moreover, we consider fractional Euler-Maclaurin-type inequalities applicable to Lipschitzian
functions. Finally, we demonstrate the validity of Euler-Maclaurin-type inequalities through fractional
integrals of bounded variation. Furthermore,these inequalities can be applied to various fractional integrals.
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