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Bounds and monotonicity results for means involving the
g-polygamma functions
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Abstract. Let i, = (-1)"" " for n € N U {0} and g € (0, 1), where ¢{" is the g-polygamma functions. In
this paper, by means of the monotonicity of means and two classes of completely monotonicity functions,
we establish lower and upper bounds for the means Ly, a0 (a,b) defined, for b > a > 0 and w being positive

and integrable on [4, b], by
b
([ 0@ 0
R e

and prove that the sequence {Iwn,w (a, b)} is decreasing with

n>0

31_130 Ly,,w(a,b) = a.

Moreover, we show that, for a,b € R with a # b, the function

fﬂbw(t)zpw(x”)dtJ
- X

-1
X — lybq,n { fab w (t) at

is increasing from (—min {a, b}, o) onto (min {a, b}, B,), where

[Mw®gat
B2 =10gq — |
[w(t)dt

These generalize some known results.
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1. Introduction

The g-gamma function is defined [11], [20] for x > 0 and g # 1 by

e 1-— qn+1 )
(1-9)" ™ TI2, g if0<g<1,
I;(x) = - 1— gD 1)
(g— 1) gD, m ifg>1
It follows from (1) that, for all g > 0,
Ty () = g* 2P (0, x>0, (2)

It is easy to see that
lin& [;(x) =c0 and lim I'; (x) = oco.
x— X—00

The logarithmic derivative of the g-gamma function , (x) = I7 (x) /Ty (x) is known as g-psi or g-digamma
function, which has a series representation:

°° k+x
Y@ = ~In(l-g)+(ng)y - 1 = @3)
k=0
x kx
= —ln(1—q)+(lnq)zlq_qk for0<g<1. 4)
k=1

The i, 97, ..., 1/),(1”) are called g-polygamma functions. For convenience, we denote by ¢, , = (-1t 57”) for
n € Nand ¢, 0 = —1,. From (4) ¢, , has a series representation:
n kx

© k
l/’q,n (x) = (_1);1—1 lp,(,]n) (JC) — (_ In q)n+1 Z 1 _qqk if 0 < q< 1 (5)

for x > 0 and n € IN, which shows that ¢, , for n € N is completely monotonic on (0, o).

Remark 1.1. A function f is called completely monotonic on an interval 1, if f has the derivative of any order on I
and satisfies

D (FE)Y =0
forall k € No= INU {0} on I, see [7, 41] and recent papers [22, 39, 42, 43, 46, 47].
It is readily seen from (4) and (5) that, forn € N and q € (0, 1),

Xlij& Py (x) = —o0, }g{}o P, (x) =-In(1-¢q),
(6)

Lim iy () = 00, Tim gy (x) = 0.

Usually, I'; and 1, are respectively called a g-analogue of the ordinary gamma I' and digamma 1
functions since

lim T, () = lim [y () = T() and lim g () = lim ¢, (9 = ¢ (2 ?)
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for x > 0, where the first and second limit relations were proved in [5] (see also [11, p. 17], [23]) and in [21].

Similarly, as shown in Appendix, 1/1,(7”) is a g-analogue of the ordinary polygamma functions ¢™. We thus
have

lim gy () = Lim [0 91 @] = (D" 9 () = 9 ().

This allows us to deduce the properties of the polygamma functions ¢ via l,bfin), or, to generalize the
properties of polygamma functions ™ to I]ZJ,;").
Let f : I — R be (strictly) monotonic, a,b € I. Elezovi¢ and Pecari¢ [9] (see also [24]) introduced the
so-called integral f-mean of 2 and b defined as
b
[ f@x)dx
I (a,b) = f abT ifa#b and If(a,a) = a. 8)

The authors proved that for x,a,b > 0, Iy (a,b) < Iy (a,b), and the function x + Iy (x +a,x +b) — x is
increasing concave with

lim(1¢(x+a,x+b)—x): a;—b'

X—00

Yang and Zheng in [48, Theorems 1.2, 1.3] showed that for x,a,b > 0, the sequence {Iy, (a, b)}>o is strictly
decreasing with

lim Iy, (a,b) = min {a, b} ;
the function x - Iy, (x +a,x + b) — x is strictly increasing from (—min {a, b}, ) onto (min {a, b}, (a + b) /2).
Moreover, Qi [31, Theorem 1] established lower and upper bounds for I, (a,b) in terms of generalized
logarithmic mean, that is, the double inequality

[ at

L (0,0) <1, (0,6) = 95! [ b—a

] <Ly (a,b) )

holds fora,b > 0 witha # bif p; > —n + 1 and p, < —n, where

o\ (1)
17 bﬂ ifp(p—1) %0 (10)

Lp(a,b):(p Py

is the generalized logarithmic mean of 2 and b (see [37]). This improved Batir’s results in [6].
In what follows, we always suppose that w : I — R, = (0, o) is integrable. Fora, b € I, it is easy to check
that

[ 0@ f@dx

I,w(/b):z -l
fro d [ fahw(x)dx

J ifa#b and Iy (a,a) =a 11

is also a mean of a and b. We call If, (a,b) an integral f-mean with weight w of a and b. Similarly, if
f R — Ris (strictly) monotonic, then we can verify that

[w® f e+ tyde
[w®at

Af (%) :=f1[ ]—xifa;tbandAf,w(x)=aifa=b (12)
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is a mean of 2 and b.

Motivated by the results mentioned above, the aims of this paper are to

(i) find the lower and upper bounds for the mean I, (a,b) for f = ¢, ,;

(ii) prove that the sequence {I¢ - (a, b)}’120 is decreasing;

(iii) prove that the function x = A, (x) for f = 1, , is increasing on (- min {a, b}, ).

The paper is organized as follows. In Section 2, we recall the monotonicity results for the one-parameter
mean and power mean of a function on an interval with a weight, and the latter is crucial to prove Lemma
4 and Theorem 1. In Section 3, we present two classes of completely monotonic functions involving g-
polygamma functions, which are of independent interest. The main results are stated and proved in Section
4, in which several consequences are also listed. In the last section, we summarize the conclusions of this
paper and propose two problems.

2. Preliminaries

2.1. One-parameter mean and power mean of a function
Leta,b > 0 witha # b and r € R. The one parameter mean J, (4, b) is defined as

r ar+1_br+l
r+1 a —b"
a— .
m—L(ﬂ,b) lfT—O,
ablna—lnb _ G*(a,b)
a-b  L(ab)

ifr #-1,0,
]V (a/b) =

ifr=-1,

where L (a,b) and G (g, b) are the logarithmic and geometric means of 2 and b. It was shown in [30, Theorem
1] (see also [44]) that

Lemma 2.1. Leta,b > 0and r € R. The function r — J, (a,b) is increasing on R.

This monotonicity result will be used in the proof of Lemma 3.1.
Recall that the r-th power mean in the discrete case. Let a = (41,4, ...,4,), w = (w1, Wy, ..., w,) be two
positive n-tuples, r € R., Then the r-th power mean of a with weight w is defined by

1/r n
Y wedl ,
%) if r # 0 and M,[P] (a; w) = H a;{uk
Zkzo Wi =0

M (a;w) = (
where w; = wy/ Yo Wk. It is known that the function r — Mg] (a; w) is increasing on R with

lim M (4;w) = min{a} and lim M (a;w) = max{a}.

r——00 r—00

Let f, w be two positive and integrable functions on [4, b] (a < b). The r-th power mean of f on [g, b] with
the weight w is defined [25, Defintion 2.3] by

b . 1/r
—f“ wx)f ) de ifr#0,

b
MY @, b) = [ J, w0 dx
' [ w@)In f (x)dx
Xp| =— ifr=0.
fu w (x) dx

(13)

Evidently, MEf]w (a,b) is completely analogous to the discrete case. The following monotonicity result

will be used to prove Lemma 3.4.
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Lemma 2.2 ([32, Theorem 1.1], [8, p. 375, Theorem 6]). Let f,w be positive and integrable on [a,b] (a < b). Then
the function r — M[er) (a,b) is increasing on R. Moreover, if f is monotonic on [a, b], then

lim MV (a,b) =min{f (@), f (b)} and }LTOM% (a,b) = max{f (a), f (b)}.

r——00

2.2. Simple properties of {4

The following lemma gives five simple properties of 1, ;.

Lemma 2.3. Let ¢, = (-1 gbr(;) forg € (0,1) and n € IN. Then the following statements are true and equivalent
to each other:
(i) The inequality

Vg (X) Ygm2 () > 974 (1) (14)

holds for x > 0.
(ii) The sequence {41/ Pyntnen is strictly increasing for each fixed x > 0.
(iii) The function x = g 41 (X) /g (x) is strictly decreasing on (0, 00).
(iv) The function x = 1, (x) is log-convex on (0, o).
(v) The function x + 41 © gb;/; (x) is convex on (0, o).

Proof. (i) Using the series representation (5) we obtain

qu,n (X) qu,n+2 (X) - 1#;,,1_,_1 (x)
(_ In q)2n+4

Ll n 4kx O 1n X X n X 2
_ Z K qk Z K +2qk ~ Z k +1qk
Fl-T)\g 1) (F1-0
]nkn+2 n+1kn+1

¥3 (k). 15
- Ll ma -

Since the indices k and j are symmetric, interchanging them yields

Uq,n (x)

O 1n n+2 kn+1 m+1

Uy (x) = 22 TaaHT (16)

k=1 j=1

An addition of (15) and (16) gives

SR Ao (k#)x
2U, = ] 0 17
q, (x) ;‘ ; (1 qk) (1 q]) Y > ( )

for x > 0, which proves the inequality (14).
(ii) The inequality (14) implies that g u12/Vyn+1 > Ygnr1/Py for n € N, which is the required increasing

property.
(iii) Since 1;)’,”, = =1y 41, Wwe have

2
(lpq,n+1 ), _ l)b,;,n+1¢q/n - ¢ﬂr”+1¢;,n _ _q)q,n‘*'zl:bq," + llqu,n+1 <

¢q,n %,n Qbsn

that is, the third assertion is true.
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(iv) Differentiation gives

4 lnb/,n IP n+ ’” ll) i+ !
o = 52 =2 (mio) == >0

(v) Differentiation yields

Voot (W74 0)) g2 ()

oy} ' = =y !
[ o 12 0] v (@i @) By Y Va9
o -1 7 1Pq,n+2 (]/) ], 1 _ |:17l)q,n+2 (]/) ], 1
[¢q,n+1 11bq,n (x)] [l/’q,nﬂ ) l/}[;n ) = T~ ) Yot ) >0,

which completes the proof. [

Remark 2.4. From the relation (17), we have

. e N K G= 0P (ke + )"
2(-1)" U (@) = (~Ing)" y J S (i) 5,
(-1) q, (x) = (=Ingq) - (1- qk) (1-¢)) >

for x > 0 and m € Ny, which implies that the function x — g, (X) Yg 42 (x) — l/)s 141 (X) is completely monotonic

on (0, 00). Some completely monotonic functions involving the g-gamma and g-polygamma functions can be found in
[12,13, 16-18, 33-36] and recent papers [1, 38].

Remark 2.5. The function {,,, has another interesting property proved in [26], which states that the functions

2
x e [yb; (x) — lnq] +¢7 (x) forq€(0,1),
2
x e [U @] ey () forge 1, )
are completely monotonic on (0, c0). Clearly, this is a generalization of the complete monotonicity of the function
x [y (x)]2 + 9" (x) on (0, co)(see [27].
3. Two classes of completely monotonic functions

To prove Theorem 4.1 below, we have to determine the values of the parameter « such that the function

x 1

g (50) = T () = (14 ag) i () (18)
is positive or negative for x > 0. In fact, we can find the sufficient conditions under which the function
X = *g,, (x; @) are completely monotonic on (0, ) for all g € (0,1) and n € IN, which reads as follows.

Lemma 3.1. Let q € (0,1) and n € IN. The following statements are valid:
() Ifa <ay(n,q)=n-2q/(q+1), then the function x +— g, , (x; a) is completely monotonic on (0, o).
(i) Ifa > ar (n,q9) = (2" + g — 1) / (9 + 1) then the function x > —g,, (x; @) is completely monotonic on (0, co).

Remark 3.2. Letting g — 1~ yields
In (G @) 1= 91,0 (@) = Xty (%) = (L + ) Py ().

Qi and his coauthors [28] proved that the function +g, (x;«) is completely monotonic on (0,00) if and only if
0<1+a<n(l+az=n+1). Obviously, Lemma 3.1 is a generalization of Qi et al.’s result, and the proof of Lemma
3.1 is more difficult than the case of g — 17.
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The following corollary is a direct consequence of Lemma 3.1.
Corollary 3.3. Let g € (0,1) and n € IN. The double inequality

qx -1 l,bq,n+1 (x)
Ing 1y, (x)

holds for x > 0, where a1 = aq (n, ) and ay = ap (n,q) are as in Lemma 3.1.

1+a4" < <1+ ayg" (19)

Proof of Lemma 3.1. Using the representation (4) yields

Jan (x,- a) °° kn+lqu ) knqu

— = (1-9) —(1+aq")

(~Ing)™"! kz 1-¢ ;Hk
Z"’: N (Vi N e VR >~
= 1- qk 1-— qk—l 1-— qk—l 1- qk

_ v (k-1"
= ; () = 0) 354
where
Kt _ qk—l
uy (n) = -(k-1)
S -y I

Then, for m € N,

(o)

m . (m) _ m+n+2 (k — 1)11 k™ kx
(1" (94n (@) = (~Ing) k; (e (n) — ) EETEN
Note that
n 1-— k—1
u(n+1)—u(n) = k 7__ L ! = A (n),

k-1"1-g  A-1/0"" Jec1(L,9)

where Ji_1 (1, 9) is the one-parameter mean of 1 and 4.
By Lemma 2.1 we see that the sequence {Jx_1 (1, 7)}, is positive and increasing; the sequence {(1 ~1/k)"! }k>2
is clearly positive and increasing; these yield that the sequence {A (1)}, is decreasing, and therefore, B

n

+1°

1= ]}im Ac) <u(m+1)—ur(n) <Ay(n) = (20)

The first inequality of (20) implies that

uk(n+1)—(n+1—%)Zuk(n)—(n—%)

for all n € N, that is, the sequence {uy (1) — (n — 2q/ (q + 1))},,5, is increasing, and hence,

Mk(”)—(ﬂ—z—q) > uk(l)—(l—qz—q)

g+1 +1
kl_qk—l_ +2_q
- 1-g~ g+1
kgt 2
= —(-pr—+ L

F e
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where the second inequality holds due to the fact that sequence {qu‘l/ (1 - qk)}k>2 is decreasing. Then

we(n) —a > ug(n)— (n—2q9/(g+1)) > 0if @ < n—2q/(q+ 1) = a1 (n,9), and we thus conclude that g, , (x; @)
is completely monotonic on (0, o) for a < a3 (1, q).
The second inequality of (20) implies that

2l 4 g -1 2"+g-1

u(n+1)— P

for all n € N, that is, the sequence {uy (1) — (2" + g —1) / (9 + 1)}, is decreasing, and therefore,

2" +g-1 24+g-1
uk(”l)—qT < uy(1)- g+ 1
1—g~1 1-
= k—1 k-1 -1=-k'—T <.
1-¢~ 1-g*
This yields that

wem-—a<uym)-Q2"+9-1)/@+1)<0

ifa>(2"+q-1)/(g+1) = az(n,q),and we conclude that —g, , (x; @) is completely monotonic on (0, o) for
a > ay (n,q). This completes the proof. [

To prove Theorem 4.6 below, we need to determine the positivity or negativity of the function

[0 @) Py (x + Byt
ﬁwwm

hgn (xB) = — Yo (x+p) (21)

on (—min{a, b, B}, o). The following lemma offers the necessary and sufficient conditions for the function

x + xhy, (x; B) to be completely monotonic on (0, o) for g € (0,1) and n € Np.

Lemma 3.4. Letq € (0,1),n € No,a,b € Rwitha # band p > min {a, b}. The function x + hy,, (x; p) is completely
monotonic on (—min {a, b}, o0) if and only if

{f:w(t)qtdt]
R

B> pa=log M\ (a,b) =log, | =~
[ w(t)dt

qtw

; (22)

while the function x = —hg, (x; B) is completely monotonic on (—min {a, b}, o) if and only if f = 1 = min {a, b}.
Remark 3.5. The above lemma for w (t) = 1 was proved by Tian and Yang in [38, Corollary 3].

Taking B = p1, B2 in Lemma 3.4 we have the following corollary.
Corollary 3.6. Let q € (0,1), n € Ny and a,b € R with a # b. The double inequality

A w(t) You(x + t)dt
‘Lbzu(t)dt

Ygn (X +B2) < < Pgn (x +B1) (23)

holds for x > —min {a, b} with the best constants p; = min {a, b} and B, given in (22).
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Proof of Lemma 3.4. First, we prove sufficiency. Using the series representation (5) we obtain that, for
n €N,

j;b w(t) (%,n(x + 1) = Py (x+ ﬁ)) dt

h M (X,‘ ) =
ol [ w () dt
= d
— (_ In q)n+1 Z 1k__@<knqu, (24)
P
where
kt d
di (p) = LoOdd 79 =M @b -4, (25)

and MEI]W (a,b) is defined by (13). Clearly, the relation(24) is also true for n = 0. Then, for m € Ny,

m m+n dk( ) m+n kx
W) 3B) = gy Y BB e

H1-g
Since
MY (a,b)" - Gk
& (B) = ’ ( MH (@b —In )
+(6) InMY (0,5 ~Ingis "0 1

L (Mgf]w (a,b)* ,qkﬁ) X (kIng) (,8 —log, M% (a, b))

qtw

where L (x, y) = (x —y) / (Inx — In y) is the logarithmic mean of x, y > 0 with x # y, we see that
sgndi = sgn (ﬁ —log, Mgf]w (a, b)) .

By Lemma 2.2 we see that the sequence {M[k] (a, b)} is increasing with
k>1

q w
. [k] _ [1]
aeltion) = e
wﬂwﬂ@w}zlmM%y@=mMWﬂ}
keN ’ koo ’

dueto thatt — 4’ is decreasing on R. Consequently, dx > 0 forallk € Nifand only if g > log, M;}]w (a,b) = Ba;

dy <0 forall k € N if and only if § < log, (max {q“,ab}) = min {4, b}. This proves sufficiency.

Second, we prove the necessity. Suppose thatx +— —h, , (x; f) is completely monotonic on (— min {a, b} , o).
We prove that § = min {a,b}. In view of the symmetry of a and b, we let b > a. Then 1 = min {a,b} = a. If
B # a, thatis, p > a, then lim,, 4+ 1, (x + ) = Y, (B — a) is a constant. If we prove that

[0 ) g (x+ 1) dt
m =
xo-at I\ " w () dt

(26)

then lim,_, 4+ K, (x; B) = oo, which yields a contradiction, and the necessity follows. In fact, since w (t) is
positive and integrable on [4, b], we have

b
fw(t)llbq,n(x+t)dt > mm w(t)fl,bq,,(x+t)dt

€la,b]

= min (@O} (Ygn1 0+ 0) = Py (4 1),
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which, by (6), clearly tends to infinity as x — —a*. This proves the necessary condition for x +— —h,, (x; f)
to be completely monotonic on (— min {g, b}, o0) is that: f = min {a, b}.

The necessary condition for x + hy, (x; f) to be completely monotonic on (- min {a, b}, c0) follows from
the limit relation

h n (X;
lim -2~ ;: P =

X—00

(~Ing)"*'d; >0,
which implies that § > log, M{[;]w (a,b) = By, thereby completing the proof. [J

4. Main results

4.1. Bounds for Ly, (a,b)

In this subsection, we establish the lower and upper bounds for the mean

b
[0 @ g @) dx] | 27)

1¢Wdum,b>=1p;2[ [P w () dx

Theorem 4.1. For g € (0,1), r € R, n € Ng and a,b > 0 with a # b, let MEf]w (a,b) be defined by (13), where
f(x) =1—g" and w (x) is positive and integrable on [min {a, b}, max {a, b}]. The double inequality

1ogq (1 - M[f”ul (a, b)) <ly,,w(ab) < logq (1 - MEZ}J (a, b)) (28)

holds if
2n+1 +a-1

n<-—an+l,q) = _q-i-—ql

and
1-—

rnz-ai(n+1,9)=-n- M—Z
In particular, we have

lim Iy, , - (a,b) = min {a, b} . (29)

Proof. Let f,(x) = f () = (1= ¢*)' (r < 0) and g (x) = 1, (x). Then £ (x) = log, (1 - x”"). Since

f&)==ng g (1-g)7" <0,

the desired inequalities are equivalent to

; og_l[ffw(x)g(x)dx < [ 0@ f, (x)dx
' [ dx [ow@de
b b
b0t £ @e@d) @@ S 9
’ [ wdx [owdx
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which suffice to check that the function f, o 7! is convex if r = r; and is concave if r = r,. Differentiation
yields

( fr (g‘l (x))), = fgﬁ—gg, where y = g‘l (x),
RNV YWy W-£ g (y)  D(y)

r (%) = = .
) 7 ) 7 )

A direct computation gives

D (x)
~r(Ing)* g (1 - %) "
where g, (x;a) is as in (18). Using Lemma 3.1 we see that g, ,+1 (x; =) < (>)0if =r > a, (n +1,4) (0 < —r <
a1 (n+1,q)), where a; (n,4q) and a3 (1,q) are as in Lemma 3.1. This together with g’ (y) = —tg11 (x) < 0
yields that (f, (g‘l (x))),/ > (<)0ifr < —ap(n+1,9) (—a1(n+1,q) < r < 0), which proves the double
inequality (28)if 1 < —ap (n+1,g9) and —a; (n + 1,9) < r, <0. The right hand side inequality in (28) if r, > 0
follows from the increasing property of the function r — M[fr]w (a,b) given by Lemma 2.2.

- —Inqq Bbq,n+2 @) - (- rqx) ¢q,n+1 (x) = Jqn+1 (x;=1),

Taking 1 = —ax (n+1,9) and r, = —a1 (n + 1,9) in (28) and letting n — oo, then we see that 1,7, — —oo.
Since f (x) = 1 — ¢ is increasing on (0, o), an application of Lemma 2.2 yields

lim MU (a,b) = lim ijzl (a,b) = min{l —q,1- qb}, i=1,2,

n—oo f’

then

lim log, (1 _ Mt (g, b)) = lim (1 - M (a, b)) — min {a, b},

n—oo fw
which implies the limit relation (29), and the proof is done. O

The double inequality (28) is equivalent to

. w0 () g ()
fa ’ w (x) dx

Taking n = 0 and w (x) = 1 in Theorem 4.1, and noting that

b b
1_
f d_x:b_a_iln_q/
o 1-q Ing 1-¢°

we obtain the following corollary.

Yo (logq (1 - M, b))) <Py (logq (1 ~MIl, b))) .

Corollary 4.2. Let q € (0,1) and a,b > 0 with a # b. The double inequality

rq (b) 1/(b-a)
Iy (’1)]

holds ifri < =land r, = (g —1) /(g + 1), where

[a-gy dx]w

¥, (logq (1 - M, b))) <In <y, (logq (1 - M (g, b))) (30)

[r] -
Mf,l(a,b)—[ —
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In particular, when (r1, r2) = (=1,0), we have

In(1-¢")-In(1-4% | InT, () -InT, ()
¥a [Iogq n@?-1)-In@g7 -1 b—a
(31)

f: In(1- q")dx]]

<y [logq [1 —exp A
Remark 4.3. Since 1 —¢* =1 —e*"7 ~ —xIngas g — 17, we have

fab aQ-q) dx]l/r e lnq)[f“b xdx

1/r

] = (_ IHQ) Lr+1 (ﬂ, b)/

{r] _
Mf'l(a'b)_[ b-a b—a

In(1-(-Ing) L1 (a,b))
Ing

1ogq (1 - M[fr]1 (a, b)) ~ — L1(a,b),

as q — 17, where L, (a, b) is the generalized logarithmic mean of a and b defined by (10). Then the double inequality
(30) is reduced to

b
n(x)d

Lr1+1 (El, b) < Il,bn (a/ b) = '1[’;;1 [
ifri £ =2"and ry > —n. This lower bound for Iy, (a, b) is weaker than Qi’s in (9).
Remark 4.4. Letting g — 17 in the double inequality (31) gives

pLeh) < OO @, 62)

where L(a,b) = (b—a) / (Inb —Ina) and

binb-alna 1)

I(a,b)zexp( -

are the logarithmic and exponential means of a and b. Inequalities (32) can also be deduced by taking (p1,p2) =
(—n+1,-n)and n = 0in (9).

4.2. Monotonicity of the sequence {Iy, , « (a, b)}ns0

Using Lemma 2.3 (v) and Theorem 4.1 we easily prove the monotonicity of the sequence {I, , « (@, b)}20,
where Iy, » (a,b) is explicitly given by (27).

Theorem 4.5. For a,b > 0 with a # b, the sequence {I%,,,,w(a, b)}uso is strictly decreasing with

lim Iy, (a,b) = min {a, b} .

Proof. The inequality Iy, ,« (a,b) > Iy, ., » (a,D) is equivalent to

[0 () g (0 dx ) [0 () Pynr () dx
fﬂbw(x)dx fabw(x)dx I

which follows from the convexity of the function ¢ ;141 © 1,[1,1‘; on (0, ) (given by Lemma 2.3 (v)) and Jensen
inequality.
The limit relation lim,— Iy, (@, b) = min {a, b} follows from (29), which completes the proof. [

-1
¢q,n+l ° lubq,n (
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4.3. Monotonicity of the function Ay, ,  (x)
Theorem 4.6. Let g € (0,1), n € Ngand a,b € Rwith a # b. Then the function

A " w(t) Paulx+Bdt) .
[w®adt

X = AIP,M,ZU (x) = 1#,;}1 (

is strictly increasing from (— min {a, b}, 00) onto (B1, B2), where 1 = min{a, b} and B, is given in (22).

Proof. Let
b
[ w ) e + )t
Yo = Y (¥) = Y ; :
[ w(®at
Then
[ w (6 Yy nlx + Byt
Vg (Yn) = b .
[ w (b dt
Differentiation with respect to x yields
b
) [ w () Yguia(x + Dt
_lzbq,n+1 (]/n) Y=~ b = _¢q,n+1 (]/n+1) ’
[ w(®at
which implies that

y, _ 1!’q,n+1 (]/n+1)
" Vg1 (Yn) '

Since g141 © Py, is convex on (0, o) (given by Lemma 2.3 (v)), by Jensen inequality we have

f,,b W (£) Yo u(x + t)dt
[ "w(b)dt ]]

fub W (£) g a1 (x + t)dt
[ w () dt

Yane1 (Yn) = Pgne [1/’,;}1 [

= qu,nJrl (yn+1) ’

which leads to

]/, _ qu,nH (yn+1) S l/’q,wl (yml) _
4 qu,n+1 (]/n) ¢q,n+1 (]/n+1)

It follows that

A‘,Pq,n:w (x) = y;l (x) -1> 0,

1.

which proves the required monotonicity.

1063

(33)

It remains to compute the limit values of Ay, , . (x) when x — —min {a,b},c0. By the symmetry of a
and b, we assume that b > a. Then ; = min {a,b} = a. By (6) we see that 1, (0") = oo for n > 0, and so

qu_,ln (c00) = 0. Now, by (26) we see that

b
wt) Yy, (x+)dt
lim ¢y (yn) = lim f” h% =0
X——a X——a fﬂ w(t) dt
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and then

lim Ay, () = lir_m+ Yn(X)+a= ;,11 (0) +a=a.

By the double inequality (23) we see that
Vg (X +B2) < Vg (Yn),
which, due to 1,0;,,, = =ty 41 <0, implies that
Yn <X+ P2

for x > —a. On the other hand, by mean value theorem we have

l:l’q,n (yn) - l/’q,n (x + ,32)
Yn—X=p2

= Hb;,n &= _I/Jq,n+1 &,

where y, < & < x + 2. Noting that ¢y, (1) — P40 (X + 2) = hyn (x; f2) and using the series representations
(24) together with d; (82) = 0 and (5), we derive that

Yo (Yn) = Pan (X +B2) P (Yn) = Pgu (x + P2)
0 < x+ ‘82 - yn - l,bq,n+1 (5) < 1Pq,n+1 (x + 52)

n - dk( ) n X n - kn+1 kﬁZ X
= [(—lnq) +121_—€;kk 7 ]/((—lnq) +ZZ 1_qqk 7| -0
k=1 k=1

as x — oo, which proves that lim,_, (14 — x) = f2. This completes the proof. [

Taking w (t) = 1 in Theorem 4.6 and noting that

Y gtdt

a q a *
b =10gq[fb_a ]:1"qu(4 )= By

where L (q”, qb) is the logarithmic mean of 4" and ¢’, the following corollary is immediate.

Corollary 4.7. Let q € (0,1), n € Ny, a,b € Rwith a # b. Then the function

b
a(x + t)dt
x> Ay, (x) = gbq_i [%] —-x

is strictly increasing from (— min {a, b} , o) onto (min {a, b}, ,B;), where B, = log, L (q”, q ) Consequently, the double
inequality

b
W+ Bd
Yo (2 +B3) < W < Uy (x + min {a, b}) (34)

holds for x > —min {a, b} with the best constants min {a, b} and B. In particular, when n = 0, we have

I, (x+D)
I;(x+a)

1/(b-a)
exp (% (x + min {a, b})) < ( ) < exp (% (x + ﬁ;)) .
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Remark 4.8. Ismail and Muldoon [19] proved that, for 0 < s < 1, the inequality

I(x+1)

(1-s)1pq(x+(s+1)/2)
<e U
[, (x+5)

holds for x > 0. Alzer [2] proposed an open problem: let 0 < g # 1 and v € (0, 1) be real numbers. Determine the best
possible values 11 (q,v) and r, (g, v) such that the inequalities

x+r1(g,0 rq (x+1) Vo G (x+12(g,0
Hr(e4n(02) <(W) PR ) 35)

hold for all x > 0. This was solved by Gao in [14], and was resolved by Alzahrani, Salem and El-Shahed in [1,
Corollary 3.1]. Clearly, Alzer’s problem can be easily attacked by Corollary 4.7.

5. Conclusions

In this paper, we established the lower and upper bounds for the mean I, , »» (a,b) (Theorem 1), which

is a generalization of Qi’s inequalities (9); proved that the sequence {me,w (a, b)}n is decreasing with

>
limy, s e0 Iy, , 0 (a,b) = min {a, b} (Theorem 2); and presented that, fora, b € Rwitha # b, E%e function Ay, , « (%)
defined by (33) is strictly increasing from (—min {a, b}, c0) onto (min {g, b}, f,), where B, is given by (22)
(Theoem 3). It is emphasized that some known results are direct consequences of Theorem 3.

Moreover, we presented several interesting properties of the g-polygamma functions, and found the
conditions for which the functions +g,, (x;a) and +h,, (x;f) are completely monotonic on (0, c0) and
(—min {a, b}, ), respectively. As consequences, we established two double inequalities (19) and (23),
which are new.

Finally, we propose two problems. The first is inspired by the inequality (14) and the monotonicity of
XYy () /1Py (x) proved by Alzer [3, Lemma 2] (see also [4, Lemma 2.1], [45, Corollary 2], [40]), which is

stated as follows.
Problem 5.1. Let g € (0,1) and n € IN. Prove that the function

qx -1 l,bq,n+1 (x)
Ing ¢y (x)

is decreasing on (0, 00).

X =

The second is motivated by Lemma 3.4.

Problem 5.2. Let g € (0,1), n € Ny, a,b,c,d € R with (a—b)(c —d) # 0 and p = min{a,b,c,d}. What are the
conditions such that the function

[w@® @+t [0l Py e+ Dt
[w®at [fw®dr

is completely monotonic on (—p, c0)?

6. Appendix: lim,_, 1/;;”) @) = P (x)
Proposition 6.1. Let g € Rwith q # 1 and n € IN. For x > 0, we have

lim 7 () = ¢ ().
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Proof. First assume that g € (0, 1). By (3) we have, forn € IN,

= 4" ( Ing

(1) _

qn (x) = ; T (1 _qk+x —ll’lq).
-0

It thus suffices to prove that

ar Ing
1

im —
g—1- dx"

n!

_ —(_ n+l ™
lnq) (-1) (k+x)"+1'

— qk+x
To this end, we use the formula for the n-th derivative of a composite function:
fgE) 1
2/ _ Z ﬁf(]) (g () hj(x),

dxn A
j=1

where
N N .
hi() =) (-1 (;)g‘ (@)~ (),
i=0

see [15, No. 0.430.1]. Let f (y) = 1/ (1 — y) and g (x) = g***. Then

n! dan

" () = —2
f (y) (1 _ y)n+1 dxh

i A" (i) j~i)(k+2) (+ _ oy
g7 @ = @q(] k) = q(] )kt '(j-1)"In"g,

j-1 .
)= X 0 (200 G iy g = )5 0, ,
i=0

where

1 i il
N _ 2 1\~ N
is the Stirling number of the second kind (see [10, p. 624]), and then,

ar lnq _ - 1 j! (ln ‘1)n+1 jk+x) 34 .
dx" 1 —qk+x B Z(ﬁ (1 _qk+x)f+1q ]'S(n'])

=1
Ing \"'y¢ Kb\ i) :
= (7o) L-a=) s |
q =
lnq n+l n
= g ZFj,,,(k+x;q).
j=1

Clearly, for 1 < j <n—1, F;, (k + x;q) tends to zero when g — 17, and therefore,

g Ing . Ing b .
qlg{} den \1— gk Ing qlg{} 1 — gk+x Fun (k+:0)

_1\ntl _1yntl g
U CU
(k+x)"* (k+x)"*
where we have used the identity S (1, 1) = 1 (see [10, p. 624]).
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For g > 1, by (2) we have

Eln) (x) = (11’1 T, (x))(”"'l) 1 (

= 5 (=D E=2)""Ing+y{) ) - v @),

as g — 1%, thereby completing the proof. [
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