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Abstract. Pth moment stability and approximate controllability of neutral differential equations (NDEs)
with delayed impulse and time-varying delays driven by fractional Brownian motion (fBm) with H € (0, 1/2)
are studied. Unlike the fBm with Hurst parameter H € (1/2,1) in most of the literature, the fBm with Hurst
parameter H € (0,1/2) in this work. The delayed impulse here means time delay in impulse, and the
delay is no more than the minimum value of impulsive intervals. Based on Lyapunov stability theory and
analytic semigroup theory, combined with stochastic analysis methods and impulse integral inequalities,
some conditions guaranteeing the pth moment stability of the mild solution are established. Afterward,
approximate controllability conditions of the system are acquired by the Lebesgue-dominated convergence
theorem. At last, the validity of secured results is verified by an example.

1. Introdution

FBm as a central Gaussian stochastic process is proposed by Benoit Mandelbrot and Van Ness, which can
model systems with self-similarity, non-smoothness and long dependence!'l. FBm significantly relies on
Hurst parameter H with values that lie in the range (0, 1), denoted by Bg = {Bg (t),t = 0}. Furthermore, the
Hurst parameter not only affects the roughness of the process but also determines the long-range correlation
of the time series. When H € (0, 1/2), fBm is considered a process of short-term memory; when H € (1/2,1),
fBm is described as a process of long-term memory; fBm degenerates into the standard Brown motion when
H = 1/2. Compared with standard Brown motion, it is long-term dependence and non-Markovian, and
the classical stochastic analysis theory cannot be directly applied. Currently, random differential equations
driven by fBm are widely used in control engineering!?!, option pricing!®!, environmental sciencel¥], etc.

NDEs are equations whose state vectors are related not only to current and past state vectors but also
to rates of change of past state vectors, which was first proposed by Hale and Meyer®.. NDEs driven by
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fBm with H € (1/2,1) have key resultsl®'!l. For example, In [6], Arthi et al. delved into the exponential
stability of NDEs with integrodifferential terms and impulses driven by fBm. Based on [6], the mixed fBm
was considered in [7-9], where global attractiveness and quasi-invariant sets of systems were examined
in [7] and the existence and exponential stability of systems were investigated in [8, 9]. In [10], Xu et al.
investigated the stabilization of Markovian jumping neutral systems with fBm, however, impulse effects
were not taken into account in systems. Dung et al. discussed the existence, uniqueness and asymptotic
stability of neutral impulsive differential equations driven by fBm with finite and infinite time delays,
respectively!l. However, literatures for the stability of NDEs driven by fBm with H € (0,1/2) have not
been retrieved.

The theories and applications of impulsive differential equations have been rapidly developed because
many practical systems abruptly change in evolution. Impulsive differential equations driven by fBm can
be better described as phenomena characterized by some features such as nonlinearity, nonsmoothness,
long memory, and suddenness. For example, in [6-9, 11-14], the impulsive differential equations driven
by fBm with H € (1/2,1) were discussed, however, the impulses in the equations were instantaneous
impulses. Nevertheless, impulsive transients are contingent upon both the current and the historical
states of the system in practice, which are described as delayed impulses. Delayed impulses allow more
accurate modeling of dynamical systems, are widely applied in many fields, such as chaotic systems!'®!,
neural networks!'®!, multiagent systems!'”], etc. In the past, many scholars considered delayed impulsive
effects on deterministic systems!'>8l. Delayed impulsive differential equations driven by random terms
have been gradually paid close attention to by scholars, for example, random terms are considered as
standard Brownian motion in [19, 20] and fBm in [21-23]. Pth moment exponentially stable for delayed
impulsive differential equations was investigated in [19], the time delays of the impulses are less-than the
minimum value of impulsive intervals. Input-state stability for delayed impulsive differential equations
was researched in [20], the size of the time delays were not restricted like in [19]. Zhou et al. provided the
existence and uniqueness conditions of mild solution for stochastic Volterra integrodifferential equations
with linear delayed impulses and fBm in [21]. Based on the [21], the mean-square asymptotic stability of
such system was further investigated in [22]. What’s more, the boundedness and exponential stability of
differential equations with delayed impulses exposed to additive fBm and multiplicative fBm interference
were examined in [23]. In [21-23], delayed impulsive differential equations driven by fBm with Hurst
parameter taking values in (1/2, 1) were studied. Delayed impulsive differential equations driven by fBm
with H € (0,1/2) have not been studied systematically.

Stability problems are one of the topical issues for deterministic and stochastic differential equations,
some references therein [6, 8-11, 1420, 22-28]. The exponential stability, the finite-time stability, and the
asymptotic stability of deterministic equations were explored in [15], [17], and [18], respectively. The mean
square stability, the Mittag-Leffler string stability, the exponential stability, stochastic stability, and input-
to-state stability of differential equations driven by standard Brownian motion were explored in [25], [26],
[19, 27], [28], and [20], respectively. The stability of differential equations driven by fBm was examined in
[6, 8-11, 14, 22-24]. The stability of impulsive NDEs driven by fBm was studied in [6, 8, 9, 14]. The stability
of differential equations with delayed impulses driven by fBm was studied in [22, 23].

Controllability implies that there exists at least one sequence of control inputs that can drive the state
of the system from any arbitrary initial state to any desired final state within a finite amount of time.
Controllability is an important index to evaluate the system’s stability, and it is the core element of whether
the system can be guided and managed by human beings. Approximate controllability means that the
system can reach or approach the desired state within a certain error range by control. Approximate
controllability is more popular because it is possible to steer the system to an arbitrarily small domain of
the target statel?*%’]. Because of existing random noise in the dynamic system, most scholars in the field
have directed their research toward differential equations suffering from fBm (H € (1/2, 1)) noise, revealing
the approximate controllability problem®-32l. However, as fBm with the Hurst parameter H in the range
(0,1/2) exhibits more irregular and singular properties, the study of approximate controllability problems
in differential equations driven by fBm presents unique challenges. Zhao et al. investigated fractional-
order differential equations incorporated by multiple delay controls and Poisson jumps driven by fBm
(H € (0,1/2)), and established approximate controllability conditions for these equations!®®!. Liu et al.
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explored the issue of approximate controllability of systems with fBm (H € (0, 1/2)) and non-instantaneous
impulses!®”]. Nevertheless, impulses were not considered in [36], the impulses were not delayed impulses
in [37], and the equations are non-neutral in [36, 37]. Approximate controllability of NDEs with delayed
impulses driven by fBm (H € (0, 1/2)) has not been surveyed.

Based on the above discussion, the issues of the pth moment stability and approximate controllability of
NDEs driven by fBm (H € (0, 1/2)) with delayed impulses and time-varying delays have not been reported.
This problem will be addressed, and the following are the key contributions.

(1) NDEs with time-varying delays and delayed impulses driven by fBm (H € (0, 1/2)) are investigated
as a new try, and the conditions for pth moment stability and approximate controllability of the systems
are provided.

(2) Unlike literatures [21-23], the Hurst parameter H of fBm in this paper takes the value range (0, 1/2)
instead of (1/2,1). In addition, the integral estimates for fBm with H € (0, 1/2) presented in this paper are
better due to the inhomogeneity and singularity of fBm.

(3) Compared with literatures [6, 8-11, 13, 14, 24], the impulses in this paper contain time delay, while
the impulses studied in the above paper are instantaneous.

The structure of this paper is summarised below. In Section 2, several notations, lemmas, and concepts
will be presented. In Section 3, pth moment stability conditions of mild solution will be provided. In
Section 4, approximate controllability of the systems will be demonstrated. In Section 5, the validity of the
results will be verified by an example. Finally, conclusions will be drawn.

2. Preliminaries

In this paper, pth moment stability and approximate controllability problems are considered for delayed
impulsive NDEs with time-varying delays driven by fBm with H € (0, 1/2) of the form

dly(t) - G(t, y(t — k()] = L7 y(t) + b(t, y(1), y(t = (1)) + Bu(B)]dt + FH)ABS(1),t > to, t # t,

Ay(t) = y(t7) - y(&) = Lky(k —@),r €N, (1)

yto +1) =), 1 € [-¢,0],
where y(t) is the state variable, G : [ty, 00) x X — X, Xis a Hilbert space. The delays «x(t), (1) : [to, o0) — [0, 7]
(t > 0) are continuous. &/ is an infinitesimal generator of the (S(1))»t,, (S())i>t, represents an analytic
semigroup defined in X. b : [ty, o0) X B; X X — X, phase space By = {y : [-¢,o0) — X: y(1) is continuous
everywhere besides y(tf) and y(t;), v =1,2,--- .}, y(t{) and y(t;) correspond to the right-hand and the left-
hand limits, respectively, of y(t) att = t;. The operator # is a bounded linear transformation mapping U into
X, and ||4|| £ Mg, where Mz is a constant and U represents a Hilbert space comprising admissible control
functions. The control function, denoted as u(-), is confined to take values within the space .Zf([to, 00), 1).
T : [tg,0) — .,S”ZO(Y, X) are suitable functions, .,?EO(Y, X) is the space containing all Q-Hilbert-Schmidt
Y — X, Y is a real, separable Hilbert space. Bg (t) is designated as a fBm with H € (0,1/2) which is defined
onY. Ay(t;) = y(t}) — y(t7) quantifies the instantaneous change in the state due to the impulse at time
t.. I; is positive real number, v = 1,2,---. Denote y=max{t, — t,-1} and y=min{t, — t,_1}, @ is the constant
delay in the impulses satisfying 0 < @ < y. The set N is defined to include all positive integers. The
sequence of impulse moments is ordered such that 0 < tp<thi<th<---<ty<---,re Nand limt, = oco.

r—00
For ¢ € By, [[Yllg, =sup, . ||1/;(17)|| < oo. The space .Z*(Q, %,,,,X) denotes a Hilbert space comprising
all random variables that are .7 -measurable, take values in X and are square-integrable. .#*(Q,X) is
the Hilbert space consisting of square-integrable random variables that are measurable of the probability
space and take values in X. f;((tt,trﬁ],,,?fzo(&’, X)) is a Hilbert space, of which all square-integrable and
Fi-measurable processes take values in 92”20 (Y, X).
Ku(t, s) is the kernel operator, and

+17

Dul(r)> ™ + (172 = H)s'2H [ (0 =9 20Hd0], >,

0, t<s,

(](H(tr S) = {
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where Dy = \/H/(]B(l —2H,H +1/2)(1 — 2H)), B(;, -) represents the Beta function. Referring [39], for deter-
ministic function u € #?([to, ©)), the Wiener integral of u with regard to Bg (t) is established as

t t
| s = [ o e,

where B(t) is a Wiener process and (‘Kl’;,ty)(s) = Kul(t, s)u(s) + fs t(/J(v) - ‘u(s))agff (v,s)dv. Denote by Z(Y, X)
the space of all bounded linear operators that map from Y into X. Define Q in .Z(Y,Y) as a nonnegative
self-adjoint operator with Qx,, = A,x,,, where real number A,, > 0 (m = 1,2,---), {Xy}mx1 is identified as
constituting a complete set of orthonormal basis vectors in Y. The identification of infinite-dimensional
fBm is achieved by

BA() = Y | VAwxnBI(®),t > to,
m=1

where {BH(1)},,en represents collections with independent fBm. Consider %O(Y, X) to be the space of

all N € Z(Y,X) of the form 8+/Q, where 8 V/Q is characterized as a Hilbert-Schmidt operator, with an
associated norm such that

NI 0,5 = i [ \/AmN(s)me; — tr(NON") < oo.
m=1

Definition 2.1. A stochastic process taking values in X, denoted by {y(t),t € [—c, o)}, is referred to as a mild
solution of Eq.(1), when y(ty + 1) = Y(n) on [—¢, 0] and the underneath conditions are fulfilled.

(a) y(-) exhibits continuity over the interval [to, t1] and maintains this continuity across each subsequent interval
(tr/ tt+1]/ r= 1/ 2/ Tty

(b) for arbitrary v, y(t) and y(t;) are well-defined, and it holds that y(t7) = y(t.),

(c) for each t > to,

S(t = t0) (¥(0) = Glto, y(=x(to)))) + G(t, y(t = (1))
+ Ji, St = 9)[b(s, y(s), y(s = 3(s))) + Bu(s)lds + [, S(t — )T (s)dBg(s), t € [to, 1],

PO= 5= 1 (08) = Gt vt = k(0 + Lyt = @) + G0, y(t = (1) @
+ [, St = 9)[b(s, (), y(s = 9(5))) + Bu(s)lds + [ S(t —5)I(s)dB(s),
te (bt t=1,2---.

Lemma 2.2 ([37]). Given any yi,,, € £*(Q, F4,,,,X), there exists a corresponding . € £ ((tr,tm],.fzo(Y, X))
that makes

tre1

Ytq = ]Eytm + 1Pr(S)dB(S)~

v

Similar to [32], the controllability operator is defined by

T

tr+l
EIM — ‘ft S(tyy1 — ) B BS* (141 — s)ds,

ot

where 5" and #" individually represent the adjoint of S and Z. Evidently, it can be ascertained that ;' is
a bounded linear operator.
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Inspired by Ref.[37], for any a > 0 and y,,, € £*(Q, %,,,X), the control function is constructed as
follows

u'(t,y) = #'S (1 — )(al + Eﬁj“)‘l [Eyt,,, — S(teer — 1) (y(t7) — Gk, y(t: — k(1))
+ Iry(tr - CD)) _g(trﬂ/ ]/(tr+1 - K(tr+1)))]

— B (tr — 1) f @ B St — 9005, 405, s — S(EN)ds
— S (e — 1) [ " (@ +E5) ' S(tr = 9)3(5)dBI(S)
+ BS (e — 1) I " (I +E5) " u(s)dB(s),

where y;,, = Eyy,, + f:ﬁl P:(s)dB(s).

3. Pth moment Stability of Mild Solution

To guarantee the pth moment stability of the mild solution, some assumptions are established.
(H1) V t > to, S(t) is compact. Under this circumstance, there are positive constants A and M ensuring
that
ISOI < Me™.
(H2) V t > 1, there exists a nonnegative real number R;, both y(t) and y(t — v(t)) belong to X such that
1Bt Y1), y(t = SN < RulllyOIF + lly(t = SANIP), p > 2.
(H3) There exist nonnegative real numbers Cy, Ry, V¥ t € [ty, o), y(t — x(t)) € X such that

G (1, y(t = k)P < Cre™ + Rolly(t — (@), p = 2.

(H4) The function J: [to, o0) = Z)(Y, X) satisfies

As 12
AIRIG] ds <oo,p>2.
ft‘o LYY, X)

(H5) The impulses satisfy

ImT < oo,

T—00
where

_ v _ _ -1 _ _ _
T=v(C)" L BV @pt gy LI el
6H=1 O=16>0

1 2 r
- PP P —Apl-t)y—(-1)@]
ST (6523 VD IRTERD DM (0 YRR AN L ),
01=1 >0, O>0

with binomial coefficient C{ = ({), ji=12,---,1
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Remark 3.1. Regarding (H5), two examples are given here. If I;, = 0,v € N, thenI' = 0. If I;; = 7, one gains

I= rp—l((crl)p 1 Z If “Ape=t)y (CZ)p 1 Z Z Ipl IZ o Ple=t)y-0]

6=16>6

n ”+(C:)p—1z Z 2 A A it 1)@1)
1 t2 r

01=1 (>0 0>

)
<v((cly! Z + (2! Z Z )
=1 =106>0
P
+(Crplzz Z r2><t )
6=10>0 >l
Simplification of the above equation gives
revtY (O
j=1
<vi(Y cl) @)
j=1

By Taylor’s Formula, one gets

1

limT < lim (a+2) 1o

r—00 r—00 rlfp

=0.
Consequently, im I' = 0.
r—00

Lemma 3.2 ([6]). For certain positive constants A>0&>0(k=1,273),and Y : [-¢,00) — [0, o), it follows
that

e+ & sup P(t+)+& [ oM sup Yt +n)ds t2 o,
P(t) < nel-c,0] nel=<0l
Ele_/\trt € [ C, 1:0]

If& + 3—3 < 1, then there are positive constants o and A ensuring that
P(t) < ae‘Xt vVt > —c.

Lemma 3.3 ([39]). Since for arbitrary t > 1, f S(t— s)S(s)dB (s) is a central Gaussian random variable, let Cy
be a positive constant which allows
2\P/2

Lemma 3.4 ([40]). There exist two positive constants Cp, C3 > 0, depending only on H € (0,1/2), a € (2

6e(3-H-1,1), a)e(O mm{l,‘;ag})such that

t
f S(t - s)ﬁ(s)dB (s)

to

t
f S(t - s)ﬁ(s)dB (s)

to

 T3m);

2

t
E f S(t - 5)3(s)dB (s)

to

t
< (Co+ Gyt — )20 2vi2e0) f eI ||3@)|[0ds
to
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Lemma 3.5 ([38]). For any stochastic variable x. such that

For convenience, one denotes h(t, y(t), y(t — S(1))) = E(t), Gyt —«x@1)) = é(t).

Theorem 3.6. Assume that conditions (H1) to (H5) hold. Further, the mild solution of Eq.(1) is pth moment stability

if
p-1 _ 2R MPYN
KPR, + (i) N1+ AN, (14 Ry + 1) + NiRy + —2 11
1-k ()\q)p
)
4 1
+ 2(m) MPA7PR1 <1
—1 A (20 AP

holds, where Ny = %,ke 0,1), ;1—7 + }] =1(p=22,1<g<2).

Proof. Define the space %= {y(t,O) : [-¢,0) X Q — X: y(1) satisfies y(to + 1) = P(n) for n € [-¢,0],
complies with conditions (a)-(b) as per Definition 2.1, and satisfies the criterion that tlim ]E” y(t)”p = 0}. Next,

for all y(t) € .Z, E|ly(t)|I’ as t — oo will be estimated.
For t € [ty, t1], one has

— — t . t
y(t) = S(t - t0)(¥(0) - G(to)) + G(t) + ft S(t = $)[b(s) + Bu’(s, y)lds+ ft S(t - 5)3(s)dB{y(s), (6)

denote Q = 1(0) — G(to).
For t € (13, 2], by Definition 2.1 one obtains

y(#) = St — 1) (y(hi ") — G(t) + Liy(h - @) + G(H) + f ' S(t - 9 + Bus, lds
t
+ [ S(t - 5)3(s)dBg(s).
By (6), (7) and y(t;) = y(t), for t € (t1, 1],
y() = S(t = t)(Sth - t)Q+ G(tr) + ft " S(ts — 9ibls) + 16, Plds
+ fta " St —9)F()ABE(s)) - St - t)G(h) + St — 1)L (St - to — ©)Q+ Gt — )
al " St - 0 - 3B + | St — 0 - 956 + F0s, ds) + GO

t t
AN Y a _ H
+jt: S(t —s)[b(s) + Bu (s,y)]ds+ftl S(t s)ﬁ(s)dBQ(s). (8)
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Using semigroup theory and properties of integrals, for t € (11, 2], one gets
t t
yd) =S¢t -1t)Q + f St - s)[b(s) + Bu'(s, y)lds+ f S(t- s)S(s)ng(s)
to to
+LS(t— @ —t0)Q + L1IS¢t — 1)G(h — @)
t1—@ .
+1 f St — @ —s)[b(s) + Bu(s, y)lds
t
Ofl—(D .
+1 f S(t - @ - 5)I(s)dB{y(s) + G(D). 9)
to
For t € (15, 3], utilizing Definition 2.1, one acquires
y() = S(t - t)(y(ty) - Glt) + Ly(t — @) + G(t)
t t
+ f S(t = s)[b(s) + Bu'(s, y)]ds+f S(t— s)ﬁ(s)ng(s). (10)
tz tZ
Combining (9) with (10), for t € (t,, 13], one receives

y(®) = Q(S(t — to) + (I + R)S(t — to — @) + LLS(t -ty — 20)) + L1S(t — 1)G(h — @)
+ LS(t = 1)G(t2 — @) + hLS(t — i — @)G(h — @) + G(1)

t t—@ .
+ f S(t - s)[g(s) + Bu(s, y)lds + I f St — @ - s)[b(s) + Bu'(s, y)lds
to to

fz—(D . t

+1 f St — @ —s)[b(s) + Bu'(s, y)lds + f St - s)ﬁ(s)ng(s)
to to

t1—@ t—@

+1 ft S(t - @ - 5)3(s)dB{(s) + L ft S(t - @ — 5)I(s)dBg (s)

t1—@ ~ t1—@
+ I, j; St - 2@ —s)[b(s) + Bu'(s, y)lds + 1, ft‘ St -2 — s)ﬁ(s)ng(s). (11)

Similarly to the calculation method of (10) and (11), for t € (t3, 4], one attains
yt) = Q(S(t —to) + (1 + L + 3)S(t — to — @) + (112 + [113 + I I3)S(t — 1o — 20)
+LLIS( — to - 30)) + 1S(t - 1)G(t — @) + LS(t — )G (t - @) + LS(t - t3)G(ts — @)
+LLS(t -t - @)G(t — @) + IS¢t~ t - @)G(t — @) + LISt~ t — @)G(t2 — @) + G (1)

+ [ LI3S(t -t — 2@)6(11 - @)+ \ftt St - S)[g(s) + Bu‘(s, y)lds

+h ft S @ - ibe) + Bu(s, s + ft "S- 0 - ) + Fus,)1ds
on | " St @ - ) + Fuls, plds + ] 5 - 95BLE)

+1 ft " S(t— @ - 5)I(s)dB{(s) + I» ft o S(t - @ — 5)I(s)dB (s)

t3—@ t—@ .
+ 13 f St—o - S)S(s)ng(s) + I, f St - 2@ - s)[b(s) + Bu'(s, y)lds
to to
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t—@ ~
+ L3 f S - 2@ —s)[b(s) + Bu'(s, y)lds
t
sz @ ~
+ I3 f St — 2@ —s)[b(s) + Bu'(s, y)]ds
t
0 tl N
+ 1113 f St — 3@ — s)[b(s) + Bu'(s, y)lds
to

t—@ t—
+ I, ft St—-20 - s)S(s)dB (s) + 113 f St -2 - S)S(s)dB (s)

to

t—@ t—@
+ LI f S(t — 2 — 5)3(s)dB{(s) + L1 1215 f S(t — 3 — 5)3(s)dB{(s).
to to

V¥delN,te (t,ty11], one has

y(t) =

Q(S(t - to) +ZI€15(t—t0—@)+Z 2151152 (t—to — 2) + -

01=1 >0
1 2 _
+ Z Z Z e Ie, -+ 16, S(t = to = b@)) + Z I1,S(t - t,)G(tr, — @)
01=1 >0, Oo>Ch—1 61=1

-1 b
)Y I S(t — ty, — @)G(ty, — @) + -+

6=16>0

1 2
2 Z Z Iele, - 16,5t =t = (0= DG (ty, - @) +G(1)
1=16>0

>0y

t
f (t- s)[b s) + Bu'(s, y)]ds+f St - s)S(s)ng(s)
to

t[ -® .
+ Zizgl ft S(t — @ — s)[b(s) + Bu(s, y)]ds

6=

D t[l -®
+ Z I, ft S(t — @ —5)I(s)dBL(s)

t, —® _
T Z Z I I, f S(t - 2@ — s)[B(s) + Bu(s, y)lds

=16>6;

te, @
+ Z Z In I, f S(t — 2@ — )I(s)dBA(s) + - -

=1 (’2>f1

1 (H—@ —
" Z Z Z Inde, Iy, ft‘t S(t = d@ — s)[H(s) + Bu’(s, y)lds

=16>6; Co>0h 1
2

1 t[lftD
+ Z Z Iply, -1y, fto S(t - b@ — ) (s)dBE(s).

=16>0, Oo>Ch—1

763

(12)

(13)
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For t € (ty+1, tv+2], by (2) one gains

y(t) = S(t = trs1) (y(t5,1) = Gltsn) + Iy y(torr — @) + G(t)

t (14)
+ f S(t =) [(s) + 2u’(s, y)]ds + f S(t - )T (s)dBH (s).
tw] tb+1
According to (13), (14), using semigroup theory and integral methods, for t € (ty+1, th+2], one obtains
d+1 b b+l
y(t) = Q( t— 1) + Zlgls(t —ty— @)+ Z Z Ip, 15, S(t — to — 20) + -
(1=1 4>,
b+1 d+1 _
v Z Y o 3 bl S -0 @) + Y 16,56 - )6t - @)
=16>0 los1>0y 61=1
b b+l _
+ Z Y 11 S(t — ty, - @)G(t, — @) + -+
=16>6
b+1 _
+ Z Z Y Iale, g, St -t - d@)Glt, - @)
=16>0; Oy >0y
+G) + f S(t- s)S(s)ng(s) + f S(t = s)[b(s) + Bu(s, y)Ids
to to
d+1 t[l - ~
+ Z I, f S(t— @ — s)[D(s) + Bu'(s, y)lds
=1 to
b+1 t"'l —-@
+ Y I f S(t - @ — 5)J(s)dBL(s)
f=1 to
d+1 t[l —-@ .
+ Z Y I, f S(t — 2@ - 9)[D(s) + Bu(s, y)lds
=16>0;
d+1 tﬁ —-@
+ Z Z I I, f S(t - 20 — 5)I(s)dBL(s) + - -
=16>6;
b+1 tfl —-® _
+ Z Z Y Inle -, f S(t— (0 + Do — 9)[b(s) + Zu'(s, y)]ds
=1 €2>€1 lor>by to
d+1 t(l_@
+ Z Y o ¥ it i, [ st-e+no-996aBie. (15)
=16>0  la>b to

By mathematical induction, V r € IN, t € (1, t;41], one gets

y() = Q(S(t - to) + Z‘Igls(t —ty-@) + Z Z Ip15,S(t — tg — 20) + -

1=1 52>[]
1 2 r ~
Y Y Tl 1S -t — x@)) + Zlgls(t — )Gk, — @)
01=1 >0, 6> 0=1
-1 v

+ 3 Inle St~ ty — )Gty — @)+

51=1 €2>51
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+2 Z Z Iodp, 10, S(t— 1, — (t — D@)G(t, — @)

=16>0 6>l

+G(t) + ft S(t- s)ﬁ(s)ng(s) + I St = s)[b(s) + Bu(s, y)Ids

te, —@ .
+ Z I, f S(t— @ — s)[D(s) + Bu'(s, y)lds
=1 to

r t[l —-®
+ Z I, ft S(t - @ — 5)J(s)dBH(s)

b= 0

t, @ _
+ Z Z In I, f S(t — 2@ — s)[B(s) + Bu'(s, y)lds

=16>0,

; Z 3 I (- 20 - 930 +

=16>0

t[l —@ —
+ Z Z Z Indg, 1y, ftc S(t — 1 — s)[B(s) + Bu(s, y)lds

=1 €2>€1 O>0

+Z Z Z Indy, -le, ft o S(t - 1@ — 5)I(s)dBE(s)

=16>0 0>l
4

=Y e
=1
By Lemma 3.5, Vr € N, t € (t,, t11], one acquires
4
Elyo| =47 ) Eled.
=1

<
k-

+ L (k € (0,1)), one has

By fundamental inequality |C + of’ < T

_ t _ ¢
E|l©4F = IEHQS(t —t) +G(t) + ft S(t —s)[b(s) + Bu’(s, y)lds + jt‘ S(t— S)S(s)ng(s)

< vEfGo) + (Epr(iase-wir + B

t
f S(t — s)h(s)ds
to

|

p

t
S(t - 5)3(s)dBg(s)
to

t
E f St —s)PBu'(s, y)ds
to

By (H1), one gets
IQS(t - to)|I” < @ MPe (=) = Cye

By Lemma 3.3 and Lemma 3.4, one secures

S P
IEH ft S(trs1 — 5)3(s)dBG(s)

p

p

765

(16)

(17)

(18)

(19)
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aszs-2+2 20\ 5[ [ _aa 2 :

< C(Ca + Caftuan — t112072+5-200) ( f e ““‘““‘)||5<S>Hg;d8)
te

» ts 5
< CH(CZ +C37—/2H+26—2+i—2m6)§e—/\t(f 16/\5”5(5)“;0(13) )
t, 2

According to (H4), there is a positive constant Cs ensuring that

1E| < C5€_/\t

1 p
f S(trs1 — 5)3(s)dB(s)
te

By (H2), (H3), and Holder inequality, one gains

Ellu'ct,
< 7p-1 M%MF’ e_pw”l_t)]E) Ve, p
a
+ 7}7—1 —Mp'%pMp e_p/\(twl _t)e_p/\(twl _tr)Mp]E”y(tt_)“p
a
P
471 M prp Pt =) p=pA e —t) A qp <C1 e M 4 R,IE ” Yt — K(fr))”p)
+ 7p—1 Mp%’pMpe p/\(twl t)e p/\(tr+1—t )MPIPIE ||y(t _ (D)”p
a
p
+ 777! —pr” g PAtn=h (Cle_M’” + RE ||]/(fr+1 - K(fm))”p)
P
+ 7?*1‘25;;917 “PAtin-h (Ij\“)\;l (]E ly@)|" +E |y -t )ds
+ 7p—1 Zé’pMp €_p/\(t”1_t)C5€_At.
a
After collating (22),
Ellu'ct,

P
< 2 iy t>{ sup Efutnlf UM sup B+
c

+e PUMP (C e M+ Ry sup ]E”y t+ fl)”p] L e PAMPP sup ]E||y t+n)|’
ne[—c

+ Ce M 4 R, sup ElJy(t + n)”p 2R MP f sup IE|y(s + 17)||pds +Cse”
T 1

nel—c,0] gyt nel—<,0]

766

(20)

(21)

(22)

(23)

M}:zm.
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Employing the Holder inequality together with (23), one gets

P

t
E f S(t —s)Bu’(s, y)ds
to

- Nl( sup Elytt+nlf’ +e "M sup Ellyi+nf
nel

nel-
+ MPCre M + e Y MPR, sup ]EHy(H TI)”
nel-c,0
+e pMMpIp sup lE‘”y(t +1) |
nel—¢,0

+ Ry sup IE”y(t +1) Hp + Cle‘M

nel-¢

2R M”
+ = 71)/ sup ]E”y(t + 17)”;: + C5e"“),
A" net-c01

-1 A28 AP
MM,
p/\PqV’]aP °

Utilizing (H1), one obtains

E ft S(t - $)b(s) ( f Me M9 ||’(5)Hds).

From the above equation by the Holder inequality and (H2), one has

where N; =

p

t
E f S(t —s)Bu’(s, y)ds
to

' ~A(t-s) o “At-s) b
< M”(ftu e Sds) (fto e S]EHB-(S)H ds)

t
<IMPATPR, f A SuP ]E||y(5+’7)|| ds.
nel

to

By Lemma 3.3 and Lemma 3.4, there exists an arbitrarily small ¢ > 0 such that 1 = A — ¢,

| st - )36)dBEsGs)|
< CH(Cz +Calt— t0)2H+26—2+%—2w6)§(ﬁ; oAE=s) ||5(S)H;Uds)i

P
_ CH(Cz +Calt - t0)2H+26—2+%—2w6)ge—gte—f\t(ﬁ; oA ”5(5))‘;0(‘15)2-

By (H4), a particular constant C¢ > 0 can be found such that
, t 5
CH(CZ +Calt— t0)2H+ze>—2+§—2mo)ze—gt(f o “5(5)”;0(18) <G,
to 2
By (27) and (28), one obtains

< Cée_/\t.

t
f S(t- s)S(s)dB (s)
to

767

(24)

(25)

(26)

(27)

(28)

(29)
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Combining (18), (19), (24), (25), (29), and (H3), one can infer that
E||©]

p-1 -
< [(%{) (C4+C6+C1MPN1 + N1C +N1C5)+k1‘pC1]e‘M

4 !
1-p
{k R+( k)

p-1 t
+ 2(1 fk) MPAPR, f e M9 sup ]E”y(s + n)”pds.
nel=¢,0]

to

Ni+e P IMNy (14 Ry + 1) + iR +

2Ry MPYN; ]
(Ag)!

ne[—¢,0]

Hence, applying Lemma 3.2, positive constants N and A can be determined such that

E|[@;|F < Ne ™, Vt > t,.

By Lemma 3.5, one obtains

[CHIE S(t 1o ‘@*Z Z In1,S(t ~ to — 20) +-

61 1 fz>f1

Z Z Z Ir g, -1, S(t = to — t@)

=16>0 O>0

< Q! [(Z I, IS(t — to - (a)||] {Z Y el ISt - to - 2m)||]

6=1 16>4

+(>i }i Z 151152---15\_"5(t—t0—ua)”) ]

61=1 >0 O>0

p

From (H1), the above equation can be calculated as follows

@I < @MP 1((@)” ' Z P e =l 4 2y 12 Z I e -0-20) 4

=
IS
+(Chy ! Ip I” P et rm))
01=1 >0, 6>l
By means of (H5), one gets
lim [|®,|" = 0
T—00

By (H1), Holder inequality and Lemma 3.5, one derives

p

T

tfl —® .
Z I, f S(t — @ — s)[b(s) + Bu(t, y))ds
1 to

0=

.
< (Cly! Z I'E

61=1

E||®x|F" = E

p

t[I —@ .
[ stt-0-90m + 2, s
to

T tr, ~@ t p-1 ) » p
< (Cht Z I M”(I e M “D‘s)ds) j; e (“D‘S)]E”E(s) + Bu'(t, y)” ds.
61=1 0 0

sup IE”y(t +1) '

768

‘P (30)

(81)

(32)

(33)

(34)



X. Zhou et al. / Filomat 39:3 (2025), 755-776 769
By (H2), (34) and Lemma 3.5, one obtains
E||©z1]/"

r
< oyt Z I MPAT P2 om0l (] mAltn —to-alyp-
[1=1

[ e el el ol o

r
< il Z I MPAL Pt
[1=1

t[l -® A
x f e =0 [Ry (E||y()||” + E[|y(s — 96)|) + M, M]ds. (35)

to

Doing the same calculation as (34)~(35), one acquires

Z Z Ip I, f o S(t — 20 — s)[B(s) + Bu(t, y)]ds

=16>0

P
E||®s|" =

<2yt Z Z P I MPA Pttt =)

0=10>0

tr, @ -
[ e [y (ol + Bl - ) + A A . oo

to

Similar ways as (36), one gains

E|©xl" =

ffl—(D P
Z I, I, '“If*f St—r@ —s) [B(s) h@u“(t,y)] ds
to

=16>0 Oy >[r 1

T
< zp—l(q)ﬂ—l Z Z Z [fl Ifz ...IfrMP/\l—Pe—Ap(t—tzl—(r—lm)

(1=10>0 0>l

te, —@ ~
< [ e R (Bl + s - s+ M A as. @)

to
By (35)~(37), one gets
E||©s] = E||@31 + O3 + - - - + O3’
T
< P~ L= AP A TP [(C})P—l Z If e~ Apt=ty)

=1

tr —@ \
o f oAty ~0-9) [R1 (]EHy(S)“p + lE”y(S - S(s))”’”) + M’;@M] ds

to

+(C2)- 12 Z IP IP ~Ap(t—te, —@)

(1=1 >0,

t(l @ \
% f oMty —0-9) [R1 (]EHy(s)”I[7 + ]E”y(s - \9(5))||p) + MP%M] ds
to

1 2 r
n ..+(C§)p—1z Z Z i S R

6=16>0 6>l
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t[l -® A
< [ e R ol + Bl - o) + A as) o

to
By (H5), one concludes that
lim E||@s])" = 0.
r—00
According to Lemma 3.5, one has

r f(l -@
Z I, f S(t - @ - 5)I(s)dBL(s)
=1 to

p
E||®u|f = E

p—l r t[l - H P
<(cY) Z I'E S(t - @ - 5)I(s)dBH(s) (39)
6=1
Based on Lemma 3.3 and Lemma 3.4, the aforementioned equation can be computed as follows
|4
1E||®41”p < (Cl CHZIP CZ + (:'?)(JL.E1 —@-t )2H+2?) 2+——2a)b)2
=1
T 5
X ( f e AMt=o- ds) . (40)
to

In conformity with (H1) and the Holder inequality, the preceding equation can be calculated as follows

14
]E||®41”P < (Cl CH Z IP Cy + Cg(tgl t0)2H+2672+%72m6)2

6=1
t[l_(D
( f gA(t-0-) ||S(s)H;0ds). (41)
to 2

t(l —®
X (f e—/\(t—@—s)ds)
to

After simplifying, one gains

[NTaSY

-1

E||©4u]F

(C1 CHZIP Cz + Ca(ty, — @ — to)™1*%" 2+“2“’b) Al5 g (5Dl
=1

t
x (1 — oMy —to—m));*l ([ o~ Mt=a=s) ”S(S)“’j%o ds)
0

14
2

(C1 CHZ Ip C2 + Calty, — @ —t )2H+25—2+§—2m5) oAt ~to—@)
4=1
t
x A7 3 f e/‘SHS(s)”f_;Z0 ds. (42)
to

Utilizing the same calculation methods as (41) and (42), one gets

E[©4]

L 4
Cz CH Z Z Ip Ip C2 +Calty, — )2H+26 2+7—2w5)2 oMty ~t-0)
0O=16>6
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t

x 1753t ~a) f et ||3 (s)”;; ds. (43)
to

Using the same calculation approach as (41) and (42), one receives

E||©4]

<Cy Z Z Z ﬂ’ 15’2 15’ (C2 +Calty, — @ — t0)2H+26—2+%—2wé)g

=16>6; O>6

Xe/\(t,ltgo)/\lzeg/\(ttfl(rl)m)f AS“S(S)Hfo (44)

0

By (41) ~ (44), one obtains that
E||@4]f = E||®4 + O + -+ + O/’

t
4
<ol [ o, ds
2

to

Z ~LAt—tey)

Alte, ~to—@)

r
% (C2 +Cslty, — @ — t0)2H+26—2+;—2m6)2 e

-1 v
2\P~1 P LAt —o)
Ay § 5 e
01=1 0>,

4
242 2 _ —ty—
X (C2 + C3(t[l - - t )2H+26 2+a 2(1)(5)26 /\(t{l to—@)

- Z Z Z rr. 2 At—te, ~(-1))

(=1 6>0 O>0q

4
2

X (Ca + Calty, — @t 3 20) oty -fo-m] . (45)

Thus, by (H5), it follows that

lim [E||@4]fF = 0.
r—00
Finally, for all y(t) € % hm IE“y(t)”p = 0. The Theorem 3.6 is confirmed.

Remark 3.7. In [6, 8, 9, 14], the stability of NDEs driven by fBm with H € (1/2,1) was examined, however,
the impulses considered were transient impulses rather than delayed impulses. In [22, 23], the stability of delayed

impulsive differential equations driven by fBm with H € (1/2,1) was investigated, however, the equations were
non-neutral type.

Remark 3.8. There are little literatures on stability of NDEs with time-vary delays and delayed impulses driven by
fBm (H € (0,1/2)). When delayed impulses items Ly(t. — @) = 0, v € IN, then the Eq.(1) reduces to NDEs with
time-varying delays and fBm (H € (0,1/2)), which was investigated in [41]. When G(t, y(t — x(1))) = O, then the
Eq.(1) reduces to differential equation with time-vary delays driven by fBm (H € (0,1/2)), which was studied in
[36, 37], in [36], impulses were not considered and the impulses in [37] were not delayed impulses.
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4. Approximate Controllability of Mild Solution

In this segment, the time interval of Eq.(1) is finite. Then, Eq.(1) reduces to the following form,

dly(t) - G, y(t — x)))] = [Zy(t) + b(t, y(), y(t = (1)) + Bu(t)]dt
+ S(t)dB (t),te[0,T],t#t,
Ay(t) = y(&)) —y(t;) = Ly(t - @), t =t,r = 1,2,--
y(to) = ¥(0),
where u(-) takes values in .32@2?([0, T71,U),and0<t;<t; <7 (0<i<j<m).

The state value of Eq.(46) at the terminal moment 7, denoted y(7; y(to), u), is determined by the initial
value y(tp) and the control input u. Let R(T, y(to)) = {y(T; y(to), u) : u € £*([0, 7], U)} denote the reachable

set of states by Eq.(46) at the terminal moment 7. The closure of this set is represented by R(7", y(to)).

(46)

Definition 4.1 ([37]). The Eq.(46) is deemed to exhibit approximate controllability within the interval [0,7 ] when
R(T, y(to)) = L%(Q, X).

Lemma 4.2 ([30]). Approximate controllability for the deterministic equation given of Eq.(46) on [0,7 ] is achieved
if and only if a(al + Ei:*l)_l — 0 whena — 0.

Theorem 4.3. Assume that there is a mild solution of Eq.(46) on [0,7 1, and the function V) is uniformly bounded,
then Eq.(46) can be characterized as approximately controllable on [0,7 ].

Proof. ForV q > 0,set D, = {y € By,

yHB g} € By. Consider the following operator @ on D, of the form

S(t — t0)((0) — Glto, P(—x(to)))) + G(t, y(t - (1))
+ [ S =906, Y(6), y(s = () + Bu()ds + [} S(t = 9)I()dBE() t € [to, 1],
(Py)() = (47)
S(t = t)(y(t) — Glte, Yt = x(t)) + Ly(t — @) + ﬁf S(t = 9)[b(s, y(s), y(s — 5(s)))
+G(t, y(t — k(1)) + Bu(s)]ds + ftf S(t - 5)3(s)dBY(s), t € (e, tesa], v = 1,2,..,m

Assume that y” is a fixed point of ®. Utilizing the stochastic Fubini theorem, one can observe

Yiten) = yt,, —a(al + “t‘“) [Eyt,, — St — t)(y(ty) — Gk, ' (te — k(1))
+ Ly (t = @)) = Gterr, Y (terr = k(tr)))]

t\+1
+ f a(al + Ht”l) S(tee1 = 8)b(s, ¥'(s), y' (s — 9(s)))ds
t (48)

t\+1
+ f a(al + H‘M) S(trs1 — 5)3(s)dBgi(s)
tr
tr+1
-~ f a(al + H‘M) ¥, dB(s).
tr
By (H2), a particular constant G > 0 can be found such that

||r><t, V), ¥t - s<t>>>)12 <G,
(s, y*(s), y*(s — 3(s)))} weakly converges to {h(s)} in X. From (48), one has

]E“]/g(tm) -yl
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< 9]E||a(a]+ ”t‘“) 11EI|yf

1+1 ”

+ 9E||a(aT + E) S (b1 — tr)]E||y(tr)||||2
+ 9E [|a(aZ + B8 S(ter — t)G (e 1 (b — k(e )))”2

+9E a(aZ + EE) 7 S(ter — toLy (te - @)H

+ 9 [laaZ + 20) " Gten, ¥t - it
2

t1+l
+98| [ ez + 2150 =) 1065, 9 s — S - b6
t,
i1 2
+9]Ef a(al + 2 ‘”) S(tr+1—s)b(s)ds
te

2

tx+1
+9E f a(al + ”*M) S(trs1 — 5)3(s)dBG(s)
tr

2
(49)

t1+l
+9E f a(af+~*f+l) 1, dB(s)|| .
tr

By Lemma 4.2, when a — 0%, then a(aZ + Ht‘“) 1 — 0. Besides,
Lebesgue-dominated convergence theorem, one deduces that

a(al + B “ <1, by (29) and the

(50)

-0

E||y" (tes1) = v ||

7

when a — 0. Based on Definition 4.1, this demonstration confirms the approximate controllability of the
Eq.(46) on [0,7].

Remark 4.4. The approximate controllability of impulsive differential equations driven by fBm was studied in
[30, 32, 371, however, the impulses considered in [30, 32, 37] were not delayed impulses and the equations were not
neutral type. In [29-32], the approximate controllability of differential equations driven by fBm was studied, but the
Hurst parameter considered takes values range in (1/2,1) instead of (0,1/2).

5. Example
Consider NDEs driven by fBm (H € (0, %)) with delayed impulses as follows

z(t-5 (1+cos 1))
1+[Z(t)] 1+[z(t- 2(1+cos‘[))]
+Bu(t)(Q)dt + e MdBA(1), t > to, t # 1,0 <L < m,

2(t,0) - pat )H] - [wz(t 0 +pilt)
_ (51)
Az(t,, Q) = Bz(t, —@),r € N,

z(t,0) = z(t, 1) = 0,t € [—¢, ),

Z(tO + 77/ C) = IP(T]/ C)r n € [_C, 0]/

where pi(1), p2(t) : [to, 0) — R* are bounded continuous functions, and sup pi(t) = p1 > 0, sup pa(t) =
te[to,00) te[to,00)

P2 > 0. Let constant p; > 0, and X = Y = #?[0,nt]. Let & = 862 denote the infinitesimal generator with
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domain D(&) := ]I—I(l)(O, ) N H2(0, ). ex(Q) = \/% sin(kC), k € IN are complete orthogonal set, which are
eigenvectors of &7. Afterward,

ox = —Zk2 (x,ex)er, x € D(),
k=1

and

(o8]

S(t)x = Z Rt e e, x € Xt > .
k=1

One defines the operator # from

oo (o]
U= {u = Zukek : ||u||IZU = Zui < oo}

k=2 k=2

to X:

(o]
PBu = 2uye; + Z UpCk.
k=2

Furthermore, one gets [|S(t)|| < e™*(t > t5), when choosing A = 72, M = 1 in (H1). Since

W
Gt Zo) = Pz(t)%/ oW, 20 = O m flzz

one chooses R = p1 in (H2), R, = p; in (H3) so that (H2) and (H3) hold. Choosing 3(t) = e~M, (H4) holds.
Further,

T — v 2
< r((cg)z (r%)z N (Cg)i Z (r%) -
6=1 =1 6>0 (52)

T

r@y Y Y (&)

[1=1 52>f1 fr>fr,1

By the Binomial Theorem, one gets

2
T i\2 v i N 2
y i y T A

l"Srl 1(Crr2j) Sr{,lcrrzf] —r((1+r2) 1).
j= j=

Thus, lim I' = 0, that is to say (H5) holds. Choose Mz =1,a=1,At,=1,®=0.1,k=1/2,p=2,9=2,and
r—00
Y =y = 1. Further, the pth moment stability of the mild solution for Eq.(1) is affirmed if the subsequent

inequality holds
— — — —
_ 14 14 _ p3 l6p; +14p;  14p;
2p2+¥+m(1+p2+r—4)+ o + o> <1.

6. Conclusion

Pth moment stability and approximate controllability of NDEs with delayed impulses and time-varying
delays driven by fBm with H € (0,1/2) have been investigated. By means of semigroup theory and
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impulsive integral inequality techniques, sufficient conditions have been secured to ensure pth moment
stability of the mild solution. Additionally, the result of approximate controllability of the system has been
obtained on the basis of Lebesgue dominated convergence theorem. The validity of the result has been
verified by an example.

Afterward, stability of NDEs incorporating mixed delays (discrete delays and distributed delays) and
delayed impulses driven by fBm with H € (0,1/2) will be focused. On the other hand, stability of neutral
delayed impulsive differential equations with Markovian jumps driven by fBm with H € (0,1/2) will also
be investigated.
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