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The Euler like operators on tuples of Lagrangians and functions on
total spaces

Wlodzimierz M. Mikulskia

aInstitute of Mathematics, Jagiellonian University, ul. Lojasiewicza 6, Cracow, Poland

Abstract. We describe all Euler like operators C, i.e. natural operators transforming tuples (λ, 1) of
Lagrangians λ : JsY →

∧m T∗M on a fibred manifold Y → M and functions 1 : Y → R into Euler maps
C(λ, 1) : J2sY→ V∗Y ⊗

∧m T∗M on Y→M, where m is the dimension of M. The most important example of
such operators is the Euler operator E (from the variational calculus) being the one in question depending
only on Lagrangians. We describe all formal Euler like operators, too.

1. Introduction

All manifolds and maps between manifolds considered in this paper are assumed to be smooth (i.e.
C
∞).

Let FMm,n be the category of fibred manifolds with m-dimensional bases and n-dimensional fibres and
their fibred diffeomorphisms onto open images.

Given a FMm,n-object Y → M, we have the s-jet prolongation JsY of Y → M and the jet projection
π2s

s : J2sY → JsY for any positive integer s. If f : Y → Y1 is a FMm,n-map with the base map f : M → M1,

then we have the map Js f : JsY→ JsY1 given by Js f ( jsxo
σ) = jsf (xo)( f ◦ σ ◦ f−1), jsxo

σ ∈ Js
xo

Y, xo ∈M.

Given a fibred manifold Y→M, we have the vertical bundle VY→ Y and its dual bundle V∗Y→ Y and
the cotangent bundle T∗M of M and its m-th inner product

∧m T∗M.
Given fibred manifolds Z1 → M and Z2 → M with the same basis M, let C∞M(Z1,Z2) denotes the

space of all base preserving fibred maps of Z1 into Z2. Given a FMm,n-object Y → M, elements from
the space C∞M(JsY,

∧m T∗M) are called (s-th order) Lagrangians on Y → M. Elements from the space
C
∞

Y (JqY,V∗Y ⊗
∧m T∗M) are called Euler maps on Y→M.

We inform that the concept of natural operators can be found in [3].
By Proposition 49.3 of [3], any s-th order Lagrangian λ : JsY →

∧m T∗M on an FMm,n-object Y → M
induces the Euler map E(λ) : J2sY→ V∗Y ⊗

∧m T∗M. So, we have the FMm,n-natural operator

E : C∞M(JsY,
m∧

T∗M)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M) .
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It is called the Euler operator.
In [2] (see, [4]), I. Kolář proved that given integers m ≥ 2 and n ≥ 1 and s ≥ 1, any regular and π2s

s -local
and FMm,n-natural operator C∞M(JsY,

∧m T∗M)→ C∞Y (J2sY,V∗Y ⊗
∧m T∗M) is of the form cE, c ∈ R, where E

is the Euler operator.
In [5] we generalized the result of [2]. Namely, in [5], if m ≥ 2, we described all regular and π2s

s -local
and FMm,n-natural operators

C
∞

M(JsY,
m∧

T∗M) × C∞(M,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

transforming a tuple of a s-th order Lagrangian on a FMm,n-object Y → M and a real valued map on the
basis M of Y→M into a Euler map on Y→M. A reformulation of the mentioned description of [5] will be
presented in Theorem 7.3.

In the present paper, if m ≥ 2, we describe all Euler like operators, i.e. regular and π2s
s -local and

FMm,n-natural operators

C : C∞M(JsY,
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

transforming a tuple (λ, 1) of a Lagrangian λ ∈ C∞M(JsY,
∧m T∗M) on a FMm,n-object Y → M and a real

valued map 1 ∈ C∞(Y,R) on the total space Y of Y→M into a Euler map C(λ, 1) ∈ C∞Y (J2sY,V∗Y ⊗
∧m T∗M).

We describe all formal Euler like operators, too.

2. The Euler like operators

Example 2.1. Let l = 0, 1, ..., s. We define E(l)(λ, 1) : J2sY→ V∗Y ⊗
∧m T∗M by

E(l)(λ, 1)| j2s
xoσ

:=
1
l!

E((−1)l(1 − 1(σ(xo)))l
· λ)| j2s

xoσ

for anyλ ∈ C∞M(JsY,
∧m T∗M) on aFMm,n-object Y→M and any 1 ∈ C∞(Y,R) and any j2s

xo
σ ∈ J2s

xo
Y and any xo ∈M,

where E is the Euler operator. So, we have the FMm,n-natural (i.e. invariant with respect to FMm,n-morphisms)
operator

E(l) : C∞M(JsY,
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M) .

One can easily see that E(l) is π2s
s -local, i.e. E(l)(λ, 1)ρ depends on germπ2s

s (ρ)(λ, 1) for any ρ ∈ J2sY and λ ∈
C
∞

M(JsY,
∧m T∗M) and any 1 ∈ C∞(Y,R). One can also see that E(l) is regular, i.e. it sends smoothly parametrized

families of tuples of Lagrangians and maps into smoothly parametrized families of Euler maps.

Example 2.2. We define D(λ, 1) : J2sY→ V∗Y ⊗
∧m T∗M by

D(λ, 1)| j2s
xoσ

:= dσ(xo)1|Vσ(xo Y ⊗ λ( jsxo
σ)

for any λ ∈ C∞M(JsY,
∧m T∗M) on a FMm,n-object Y → M and any 1 ∈ C∞(Y,R) and any j2s

xo
σ ∈ J2s

xo
Y and any

xo ∈M. So, we have the FMm,n-natural operator

D : C∞M(JsY,
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M) .

It is regular and π2s
s -local.

We have the following
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Theorem 2.3. Let m,n, s be positive integers. If m ≥ 2, then any regular and π2s
s -local and FMm,n-natural operator

C : C∞M(JsY,
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

is of the form C = h ·D+
∑s

l=0 hl ·E(l) for some (uniquely determined by C) maps h, hl : R→ R, l = 0, ..., s, where h ·C
is defined by (h · C)(λ, 1)| j2s

xoσ
= h(1(σ(xo))) · C(λ, 1)| j2s

xoσ
for any h : R → R and any C in question and any λ, 1, j2s

xo
σ

as above.

So, the space Cm,n,s of all C (as in Theorem 2.3) is the free (s + 2)-dimensional C∞(R)-module and the
operators D,E(l) for l = 0, 1, ..., s form the basis in this module.

The proof of Theorem 2.3 will be given in Section 4.

3. A preparatory lemma

Let N be the set of non-negative integers and let Rm,n be the trivial FMm,n-object Rm
×Rn

→ Rm and let
x1, ..., xm, y1, ..., yn be the usual coordinates on Rm,n. Given i = 1, ...,m let 1i := (0, ..., 0, 1, 0, ..., 0) ∈ Nm, 1 in
i-th position.

We have the induced coordinates ((xi), (y j
α)) on Js(Rm,n), where i = 1, ...,m and j = 1, ...,n and α =

(α1, ...αm) ∈ Nm are such that |α| = α1 + ... + αm ≤ s. They are given by

xi( jsxo
σ) = xi

o and y j
α( jsxo

σ) = (∂ασ j)(xo)

for any jsxo
σ = jsxo

(σ1, ..., σn) ∈ Js
xo

(Rm,n) = Js
xo

(Rm,Rn), xo ∈ Rm, where ∂α is the iterated partial derivative as
indicated multiplied by 1

α! .

Lemma 3.1. ([5]) Let i = 1, ...,m and j = 1, ...,n and α = (α1, ..., αm) ∈ Nm be such that |α| ≤ s.
(i) For any τ = (τ1, ..., τn) ∈ (R \ {0})n, we have

(Jsψτ)∗y
j
α = τ

jy j
α ,

where ψτ = (x1, ..., xm, 1
τ1 y1, ..., 1

τn yn) is the FMm,n-map.
(ii) For any t ∈ R \ {0}, we have

(Jsφi
t)∗y

j
α = t−αi y j

α ,

where φi
t = (x1, ..., 1

t xi, ..., xm, y1, ..., yn) is the FMm,n-map.
(iii) If αi , 0, we have

(Jsψ(i))∗y1
α = y1

α + xiy1
α + y1

α−1i
,

where ψ(i) = (x1, ..., xm, y1 + xiy1, y2, ..., yn)−1 is the FMm,n-map (defined over 0 ∈ Rm).
(iv) If α1 , 0, we have

(Jsχt)∗y1
α−11+12

= y1
α−11+12

+ c1ty1
α + ... + cα2+1tα2+1y1

(α1+α2,0,α3,...,αm)

for some c1, ... ∈ R with c1 , 0, where χt = (x1 + tx2, x2, ..., xm, y1, ..., yn) is the FMm,n-map (defined if m ≥ 2).

4. Proof of Theorem

We will use the notations as in the previous sections. Additionally, let dxµ := dx1
∧ ... ∧ dxm and let

xα := (x1)α1 · ... · (xm)αm for any α = (α1, ..., αm) ∈ Nm. We are now in position to prove Theorem 2.3.
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Proof. Clearly, C is determined by the collection of values

< C(λ, 1)ρ, v >∈
m∧

T∗0Rm

for all λ ∈ C∞Rm (Js(Rm,n),
∧m T∗Rm) and v ∈ T0Rn = V(0,0)Rm,n and ρ = j2s

0 (σ) ∈ J2s
0 (Rm,Rn) = J2s

0 (Rm,n) and
1 : Rm,n

→ R. It means that if C′ is an another such operator giving the same as C collection of values in
question then C = C′. This fact follows from the invariance of C with respect to FMm,n-charts.

We can additionally assume ρ = θ := j2s
0 (0). Indeed, for any element ρ = j2s

0 (σ) ∈ J2s
0 (Rm,Rn) = J2s

0 (Rm,n),
there exists a FMm,n-map ν : Rm,n

→ Rm,n transforming j2s
0 (σ) into θ := j2s

0 (0) ∈ J2s
0 (Rm,Rn) = J2s

0 (Rm,n). (For
example, we can use ν := (x, y − σ(x)), where x = (x1, ..., xm) and y = (y1, ..., yn).)

Because of the regularity of C, we can additionally assume that ∂
∂y1 1(0, 0) , 0. Then by the invariance of

C with respect to FMm,n-map

(x1, ..., xm, 1(x1, ..., xm, y1, ..., yn) − 1(x1, ..., xm, 0, ..., 0), y2, ..., yn)−1

(it preserves θ) we may additionally assume 1 = y1 + h(x1, ..., xm), where h : Rm
→ R is a map.

Similarly, because of the regularity of C, we can additionally assume d(0,0)y1(v) , 0. Then using the
invariance of C with respect to an FMm,n-map idRm ×ϕ for a respective linear isomorphism ϕ : Rn

→ Rn (it
preserves θ), we can additionally assume v = ∂

∂y1
|(0,0)

.

Similarly, because of the regularity of C, we can additionally assume ∂
∂xm h(0) , 0. Then using the

invariance of C with respect to FMm,n-map

(x1, ..., xm−1, h(x1, ..., xm) − h(0, ..., 0), y1, ..., yn)−1 ,

we may additionally assume h = xm + c, where c is a real number.
Summing up, we see that C is determined by the collection of values

< C(λ, xm + y1 + c)θ,
∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for all λ ∈ C∞Rm (Js(Rm,n),
∧m T∗Rm) and all c ∈ R, where θ := j2s

0 (0).

Next, we can write λ = L((xi), (y j
α))dxµ + f (x1, ..., xm)dxµ, where L and f are arbitrary real valued maps

with L((xi), (0)) = 0, and by the regularity of C we can assume f (0) , 0. Then, using the invariance of C with
respect to FMm,n-map b = (F(x1, .., xm), x2, ..., xm, y1, ..., yn)−1 , where ∂

∂x1 F = f and F(0, x2, ..., xm) = 0, we may
additionally assume f = 1 because b preserves θ and xm + y1 + c (as m ≥ 2) and ∂

∂y1
|(0,0)

and it sends dxµ into

f dxµ. Consequently, we can write λ = L((xi), (y j
α))dxµ + dxµ, where L is a arbitrary real valued map with

L((xi), (0)) = 0.
Next, because of the π2s

s -locality of C, using the main result of [7], we may additionally assume that L is
a arbitrary polynomial in ((xi), (y j

α)) of degree ≤ q, where q is an arbitrary positive integer.
Next, by the invariance of C with respect to ψτ = (x1, ..., xm, 1

τ1 y1, ..., 1
τn yn) being FMm,n-map for any

(τ1, ..., τn) ∈ (R \ {0})n, we get the homogeneity condition

< C(L((xi), (τ jy j
α))dxµ + edxµ, bxm + τ1ay1 + c)θ,

∂

∂y1
|(0,0)

>

= τ1 < C(L((xi), (y j
α))dxµ + edxµ, bxm + ay1 + c)θ,

∂

∂y1
|(0,0)

> ,

see Lemma 3.1 (i), where a and b and c and e are arbitrary real numbers.
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Then using the homogeneous function theorem ([3]), we derive that the value

< C(Ldxµ + edxµ, bxm + c)θ,
∂

∂y1
|(0,0)

>

is linear in L (for L satisfying the additional conditions) for any real numbers b and c and e, and that C is
determined by the collection of values

< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm and < C(dxµ, xm + y1 + c)θ,
∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for α, β ∈ Nm with |β| ≤ q and |α| ≤ s and c ∈ R.
Now, using Lemma 4.1, we derive that C is determined by the collection of values

< C(dxµ, xm + y1 + c)θ,
∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm and < C(y1
(0,...,0,k)dxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for all c ∈ R and k = 0, 1, ..., s.
So, C is determined by the collection of (smooth as C is regular) maps C(o),C<k> : R → R for k = 0, ..., s

defined by

C<k>(c)dxµ
|0 :=< C(y1

(0,...,0,k)dxµ + dxµ, xm + c)θ,
∂

∂y1
|(0,0)

> , c ∈ R ,

C(o)(c)dxµ
|0 :=< C(dxµ, xm + y1 + c)θ,

∂

∂y1
|(0,0)

> , c ∈ R .

It means that if C′ is an another such operator with C<k> = (C′)<k> for k = 0, ..., s and C(o) = (C′)(o), then
C = C′.

Conversely, using the coordinate expression of the Euler map E(λ) from [3] one can verify that given a
collection of maps hl, h : R→ R we have

(h ·D +
s∑

l=0

hl · E(l))<k> = hk and (h ·D +
s∑

l=0

hl · E(l))(o) = h

for k = 0, ..., s.
The proof of the theorem is complete.

Lemma 4.1. The collection of values

< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for α, β ∈ Nm with |β| ≤ q and |α| ≤ s and c ∈ R is determined by the one of values

< C(y1
(0,...,0,k)dxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for all c ∈ R and k = 0, 1, ..., s.

Proof. We will proceed quite similarly as in the respective part of the proof of the main result of [5].
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By the invariance of C with respect toφi
t = (x1, ..., 1

t xi, ..., xm, y1, ..., ym) beingFMm,n-map for any t ∈ R\{0}
and any i = 1, ...,m and using the fact that < C(Ldxµ + edxµ, bxm + c)θ, ∂

∂y1
|(0,0)

> depends linearly in L (as

above) for any real numbers b and c and e, we get the condition

tβi−αi < C(xβy1
αdxµ + tdxµ, tδim xm + c)θ,

∂

∂y1
|(0,0)

>=< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>

because φi
t preserves C and θ and ∂

∂y1
|(0,0)

and it sends xβ into tβi xβ and it sends xm into tδim xm (the Kronecker

delta) and it sends y1
α into t−αi y1

α and it sends dxµ into tdxµ, see Lemma 3.1 (ii). Then putting t→ 0, we get

< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>= 0

for any β, α ∈ Nm with both |α| ≤ s and βi > αi for some i = 1, ...,m.
So, our collection is determined by the one of values

< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for all c ∈ R and all α, β ∈ Nm with |α| ≤ s and β1 ≤ α1 and...and βm ≤ αm.
Now, consider α, β ∈ Nm with |α| ≤ s and β1 ≤ α1 and ...and βm ≤ αm. Assume β , (0). For example, let

βi , 0 for some i = 1, ...,m. Using the invariance of C with respect to

ψ(i) = (x1, ..., xm, y1 + xiy1, y2, ..., yn)−1

(being FMm,n-map defined over some neighborhood of 0 ∈ Rm), we get

< C(xβ−1i (y1
α + xiy1

α + y1
α−1i

)dxµ + dxµ, xm + c)θ,
∂

∂y1
|(0,0)

>=< C(xβ−1i y1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>

because ψ(i) preserves C and xβ−1i and θ and ∂
∂y1
|(0,0)

and dxµ and xm + c and it sends y1
α into y1

α + xiy1
α + y1

α−1i
,

see Lemma 3.1 (iii). Then

< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>= − < C(xβ−1i y1
α−1i

dxµ + dxµ, xm + c)θ,
∂

∂y1
|(0,0)

>

because < C(Ldxµ + dxµ)θ, xm + c)θ, ∂
∂y1
|(0,0)

> depends linearly in L. Repeating,

< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>= (−1)|β| < C(y1
(α−β)dxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

> .

Consequently, our collection is determined by the one of values

< C(y1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for all c ∈ R and all α ∈ Nm with |α| ≤ s.
Now, let α ∈ Nm, where |α| ≤ s, and assume that αi , 0 for some i = 1, ...,m − 1. For example, let α1 , 0.

For any t ∈ R, the FMm,n-map
χt = (x1 + tx2, x2, ..., xm, y1, ..., yn)
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(defined if m ≥ 2) preserves dxµ and θ and ∂
∂y1
|(0,0)

and xm + c and it sends y1
α−11+12

into

y1
α−11+12

+ c1ty1
α + ... + cα2+1tα2+1y1

(α1+α2,0,α3,...,αm)

for some c1, ... ∈ R with c1 , 0, see Lemma 3.1 (iv). Then using the invariance of C with respect to χt we get

< C((y1
α−11+12

+ c1ty1
α + ...)dxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>=< C(y1
α−11+12

dxµ + dxµ, xm + c)θ,
∂

∂y1
|(0,0)

>

for any t ∈ R. Then since < C(Ldxµ + dxµ, xm + c)θ, ∂
∂y1
|(0,0)

> depends linearly in L, we get

< C(y1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>= 0 .

That is why, our collection is determined by the collection of values

< C(y1
(0,...,0,k)dxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>∈
m∧

T∗0Rm

for all c ∈ R and k = 0, 1, ..., s.
The proof of the lemma is complete.

Remark 4.2. In the proof of the main result of [5], we used true but non-correctly justified formula

tβi−αi < C(xβy1
αdxµ + tdxµ, tδim xm + c)θ,

∂

∂y1
|(0,0)

>=< C(xβy1
αdxµ + dxµ, xm + c)θ,

∂

∂y1
|(0,0)

> .

In [5], we suggested that this formula follows from the fact that < C(Ldxµ + dxµ, xm + c)θ, ∂
∂y1
|(0,0)

> depends linearly

in L for any real number c. However, it is not true. Now, in the proof of Lemma 4.1, we observed that this formula
follows from the fact that < C(Ldxµ + edxµ, bxm + c)θ, ∂

∂y1
|(0,0)

> depends linearly in L for any real numbers e, b, c. So,

we have eliminated this gap from the proof of the main result of [5].

5. The formal Euler like operators

In [1] (see, [4]), I. Kolář introduced the so called formal Euler operator

E : C∞JsY(JsY,V∗ JsY ⊗
m∧

T∗M)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

for all FMm,n-objects Y→M.
In this section, we describe all regular and π2s

s -local and FMm,n-natural operators

C : C∞JsY(JsY,V∗ JsY ⊗
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M) .

Example 5.1. Let l = 0, 1, ..., s. We define E(l)(λ, 1) : J2sY→ V∗Y ⊗
∧m T∗M by

E(l)(λ, 1)| j2s
xoσ

:=
1
l!

E((−1)l(1 − 1(σ(xo)))l
· λ)| j2s

xoσ

for any λ ∈ C∞M(JsY,V∗ JsY ⊗
∧m T∗M) on a FMm,n-object Y → M and any 1 ∈ C∞(Y,R) and any j2s

xo
σ ∈ J2s

xo
Y and

any xo ∈M, where E is the formal Euler operator. So, we have the FMm,n-natural operator

E(l) : C∞M(JsY,V∗ JsY ⊗
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M) .

It is regular and π2s
s -local.
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Theorem 5.2. Let m,n, s be positive integers. If m ≥ 2, then any regular and π2s
s -local and FMm,n-natural operator

C : C∞M(JsY,V∗ JsY ⊗
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

is of the form C =
∑s

l=0 hl ·E(l) for some (uniquely determined by C) maps hl : R→ R, l = 0, ..., s, where h ·C is defined
by (h · C)(λ, 1)| j2s

xoσ
= h(1(σ(xo))) · C(λ, 1)| j2s

xoσ
for any h : R→ R and any C in question and any λ, 1, j2s

xo
σ as above.

So, the space Fm,n,s of all C (as in Theorem 5.2) is the free (s + 1)-dimensional C∞(R)-module and the E(l)

for l = 0, 1, ..., s form the basis in this module.

6. Schema of the proof of Theorem 5.2

The proof of Theorem 5.2 is the following modification of the one of Theorem 2.3.

Proof. (Schema of the proof) Similarly as in the proof of Theorem 2.3, C is determined by the collection of
values

< C(λ, 1)ρ, v >∈
m∧

T∗0Rm

for all λ ∈ C∞JsRm,n (JsRm,n,V∗ JsRm,n
⊗
∧m T∗Rm) and 1 ∈ C∞(Rm,n,R) and v ∈ T0Rn = V(0,0)Rm,n and ρ ∈

J2s
0 (Rm,Rn) = J2s

0 (Rm,n). Moreover, we can assume that ρ = θ = j2s
0 (0) and 1 = xm + yn + c and v = ∂

∂y1
|(0,0)

.

Further we can write λ =
∑

Lβk((xi), (y j
α))d̃yk

β ⊗ dxµ, where Lβk are real valued maps for k = 1, ...,n and

all β ∈ Nm with |β| ≤ s and where d̃h denotes the restriction to VJsY of the differential dh of h : JsY → R.
Moreover, quite similarly as in the proof of Theorem 2.3, we can assume that Lβk are polynomials in ((xi), (y j

α))
of degree ≤ q, where q is an arbitrary positive integer.

Further, quite similarly as in the proof of Theorem 2.3, using the invariance of C with respect to ψτ =
(x1, ..., xm, 1

τ1 y1, ..., 1
τn yn) and the homogeneous function theorem, we derive that < C(λ, bxm + c)θ, ∂

∂y1
(0,0)

> is

linear in λ for any real numbers b and c, and that C is determined by the collection of values

< C(xβd̃y1
α ⊗ dxµ, xm + c)θ,

∂

∂y1
|(0,0)

> and < C(0, xm + yn + c)θ,
∂

∂y1
|(0,0)

>

for all α, β ∈ Nm with |α| ≤ s and all real numbers c.
Further, using the invariance of C with respect to (tx1, x2, ..., xm, y1, ..., yn) and the fact that m ≥ 2, we get

< C(0, xm + yn + c)θ, ∂
∂y1
|(0,0)

>= 0.

Then by Lemma 4.1 with xβd̃y1
α ⊗ dxµ instead of xβy1

αdxµ + dxµ (the proof of such lemma is quite similar
to the one of Lemma 4.1) and using d̃(xiy1

α) = xid̃y1α (being the consequence of dh = 0 on VJsY for any
h : M→ R), we derive that C is determined by the values

< C(d̃y1
(0,...,0,k) ⊗ dxµ, xm + c)θ,

∂

∂y1
|(0,0)

>

for all c ∈ R and k = 0, 1, ..., s.
Consequently, C is determined by the collection of maps C<k> : R→ R for k = 0, ..., s defined by

C<k>(c)dxµ
|0 :=< C(d̃y1

(0,...,0,k) ⊗ dxµ, xm + c)θ,
∂

∂y1
|(0,0)

> , c ∈ R .

Conversely, given maps hl : R→ R, where l = 0, ..., s, we have (
∑s

l=0 hl · E(l))<k> = hk for k = 0, 1, ..., s.
The proof of Theorem 5.2 is complete.
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7. A reformulation of the results of [5]

Example 7.1. Let π : Y→M be a FMm,n-object and let

C : C∞M(JsY,
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

be a regular and π2s
s -local and FMm,n-natural operator. We have the inclusion C∞(M,R) ⊂ C∞(Y,R) given by

h→ h ◦ π. Thus we have the π2s
s -local and FMm,n-natural operator

C̃ : C∞M(JsY,
m∧

T∗M) × C∞(M,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

given by the restriction of C.

Example 7.2. Let π : Y→M be a FMm,n-object and let

C : C∞M(JsY,V∗ JsY ⊗
m∧

T∗M) × C∞(Y,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

be a regular and π2s
s -local and FMm,n-natural operator. Thus similarly as in Example 7.1 we have the π2s

s -local and
FMm,n-natural operator

Ĉ : C∞M(JsY,V∗ JsY ⊗
m∧

T∗M) × C∞(M,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

given by the restriction of C.

Thus the results of [5] can be rewritten as follows.

Theorem 7.3. Let m,n, s be positive integers. If m ≥ 2, then any regular and π2s
s -local and FMm,n-natural operator

B : C∞M(JsY,
m∧

T∗M) × C∞(M,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

is of the form B =
∑s

l=0 hl · Ẽ(l) for some (uniquely determined by B) maps hl : R→ R, l = 0, ..., s, where h ·B is defined
by (h · B)(λ, 1)| j2s

xoσ
= h(1(xo)) · B(λ, 1)| j2s

xoσ
for any h : R→ R and any B in question and any λ, 1, j2s

xo
σ as required.

So, the space Bm,n,s of all such B as above (in Theorem 7.3) is the free (s + 1)-dimensional C∞(R)-module
and the operators Ẽ(l) for l = 0, ..., s form the basis in this module.

Theorem 7.4. Let m,n, s be positive integers. If m ≥ 2, then any regular and π2s
s -local and FMm,n-natural operator

B : C∞M(JsY,V∗ JsY ⊗
m∧

T∗M) × C∞(M,R)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

is of the form B =
∑s

l=0 hl · Ê(l) for some (uniquely determined by B) maps hl : R→ R, l = 0, ..., s, where h ·B is defined
by (h · B)(λ, 1)| j2s

xoσ
= h(1(xo)) · B(λ, 1)| j2s

xoσ
for any h : R→ R and any B in question and any λ, 1, j2s

xo
σ as required.

So, the space Gm,n,s of all B as above (in Theorem 7.4) is the free (s + 1)-dimensional C∞(R)-module and
the Ê(l) for l = 0, 1, ..., s form the basis in this module.
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8. Corollaries

From Theorem 2.3 it follows the following result by I. Kolář [2] (see also [4]).

Corollary 8.1. Let m,n, s be positive integers. If m ≥ 2, then any regular and π2s
s -local andFMm,n-natural operator

C : C∞M(JsY,
m∧

T∗M)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

is aE for some (uniquely determined by C) real number a, where E is the Euler operator.

Proof. Let C be a operator in question. By Theorem 2.3, we can write C = h · D +
∑s

l=0 hl · E(l) for some
(uniquely determined by C) maps h, hl : R→ R, l = 0, ..., s. Then C(λ) = C(λ, 1) = h0(1)E(λ), i.e. C = h0(1)E.

From Theorem 5.2 it follows the following result of [6].

Corollary 8.2. Let m,n, s be positive integers. If m ≥ 2, then any regular and π2s
s -local andFMm,n-natural operator

C : C∞M(JsY,V∗ JsY ⊗
m∧

T∗M)→ C∞Y (J2sY,V∗Y ⊗
m∧

T∗M)

is aE for some (uniquely determined by C) real number a, where E is the formal Euler operator.

Proof. The proof is (almost) the same as the one of Corollary 8.1. We use Theorem 5.2 instead of Theorem
2.3.

Let Bm,n,s and Cm,n,s be the C∞(R)-modules described after Theorems 7.3 and 2.3, respectively. From
Theorems 2.3 and 7.3 it follows immediately

Corollary 8.3. Let m,n, s be positive integers. If m ≥ 2, then the correspondence ˜(−) : Cm,n,s → Bm,n,s given by
C → C̃ (described in Example 7.1) is a epimorphism of C∞(R)-modules. The kernel of this epimorphism is the
1-dimensional C∞(R)-module spanned by the operator D from Example 2.2.

Let Fm,n,s and Gm,n,s be the C∞(R)-modules described after Theorems 5.2 and 7.4, respectively. From
Theorems 5.2 and 7.4 it follows immediately

Corollary 8.4. Let m,n, s be positive integers. If m ≥ 2, then the correspondence (̂−) : Fm,n,s → Gm,n,s given by
C→ Ĉ (described in Example 7.2) is a isomorphism of C∞(R)-modules.
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