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The Euler like operators on tuples of Lagrangians and functions on
total spaces

Wlodzimierz M. Mikulski?

Institute of Mathematics, Jagiellonian University, ul. Lojasiewicza 6, Cracow, Poland

Abstract. We describe all Euler like operators C, i.e. natural operators transforming tuples (4, g) of
Lagrangians A : 'Y — A" T°M on a fibred manifold Y — M and functions g : Y — R into Euler maps
CA,g): J*Y > V'Y® A" T"M on Y — M, where m is the dimension of M. The most important example of
such operators is the Euler operator E (from the variational calculus) being the one in question depending
only on Lagrangians. We describe all formal Euler like operators, too.

1. Introduction

All manifolds and maps between manifolds considered in this paper are assumed to be smooth (i.e.
c™).

Let ¥ M, » be the category of fibred manifolds with m-dimensional bases and n-dimensional fibres and
their fibred diffeomorphisms onto open images.

Given a ¥ M, ,-object Y — M, we have the s-jet prolongation J°Y of ¥ — M and the jet projection
72 J®Y — J°Y for any positive integer s. If f : Y — Y!is a ¥ M,, ,-map with the base map f : M — M;,
then we have the map J°f : ’Y — J°Y; given by [*f(j5 0) = jj[(x )(f ooof™), Jn0€3,Y, xo € M.

Given a fibred manifold Y — M, we have the vertical bundle VY — Y and its dual bundle V*Y — Y and
the cotangent bundle T*M of M and its m-th inner product A" T*M.

Given fibred manifolds Z; — M and Z, — M with the same basis M, let C3;(Z1,Z>) denotes the
space of all base preserving fibred maps of Z; into Z,. Given a ¥ M, ,-object Y — M, elements from

the space Cy;(J°Y, A" T*M) are called (s-th order) Lagrangians on Y — M. Elements from the space
CyJry,vye A" T*M) are called Euler maps on Y — M.

We inform that the concept of natural operators can be found in [3].
By Proposition 49.3 of [3], any s-th order Lagrangian A : Y — A" T*M on an ¥ M,, ,-object Y — M
induces the Euler map E(A) : J*Y — V*Y ® A" T*M. So, we have the ¥ M, ,-natural operator

E:C3(PY, A M) - C3(*Y, V'Y ® A M) .
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It is called the Euler operator.

In [2] (see, [4]), I. KolaF proved that given integers m > 2 and n > 1 and s > 1, any regular and 7*-local
and M, ,-natural operator Cg(J°Y, \" T*M) — CY(J¥Y, V'Y ® \" T*M) is of the form cE, ¢ € R, where E
is the Euler operator.

In [5] we generalized the result of [2]. Namely, in [5], if m > 2, we described all regular and n25-local
and ¥ M,, ,-natural operators

CuPY, \ T'M) x C*(M,R) = CY(*Y, V'Y ® /\ T'M)

transforming a tuple of a s-th order Lagrangian on a ¥ M,, ,-object Y — M and a real valued map on the
basis M of Y — M into a Euler map on Y — M. A reformulation of the mentioned description of [5] will be
presented in Theorem 7.3.

In the present paper, if m > 2, we describe all Euler like operators, i.e. regular and 72*-local and
F Mm,n—natural operators

C:Cy(FY, \T'M)xC™(Y,R) = CY (Y, V'Y ® /\ T'M)

transforming a tuple (A, g) of a Lagrangian A € C3(J°Y, A" T'M) on a ¥ M, ,-object Y — M and a real
valued map g € C(Y, R) on the total space Y of Y — M into a Euler map C(A, g) € CY(J*Y, V'Y ® A" T*M).
We describe all formal Euler like operators, too.

2. The Euler like operators

Example 2.1. Let [ =0,1,...,s. Wedefine EO(A,g): J*Y > V'Y® \" T*M by

1
EOQ, g)pso = RE(D' (9 = 90@)) - D)z
forany A € Cy(PY, A" T*M) on a F My, n-object Y — Mand any g € C*(Y,R) and any j¥o € J¥Y and any x, € M,

where E is the Euler operator. So, we have the ¥ M, ,-natural (i.e. invariant with respect to F M,y ,-morphisms)
operator

EO: CH(PY, [\ T'M) x C¥(Y,R) - CR (=Y, V'Y & \ T'M) .

One can easily see that E© is niZ*-local, i.e. EV(A,g), depends on germ .., (A,g) for any p € J*Y and A €

Cu(FY, A" T*M) and any g € C*(Y,R). One can also see that EV) is regular, i.e. it sends smoothly parametrized
families of tuples of Lagrangians and maps into smoothly parametrized families of Euler maps.

Example 2.2. We define D(A,g) : J*Y - V'Y ® A" T"M by
DA, 9z = o) IV, Y ® A(J,0)

for any A € CL(PY, A" T"M) on a F My, -object Y — M and any g € C*(Y,R) and any 2o € J2Y and any
X, € M. So, we have the F M,, ,-natural operator

m m
D:Cy(FY, \ TM)xC*(Y,R) - CY(PY,V'Y® /\ T'M).
It is reqular and 7*-local.

We have the following
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Theorem 2.3. Let m, n, s be positive integers. If m > 2, then any reqular and r25-local and F M, ,-natural operator

C:Cy(FY, \ TM)xC*(Y,R) - CY(PY, V'Y ® /\ T'M)

is of the form C = h-D+Y._y hy- E for some (uniquely determined by C) maps h,h; : R - R, 1 =0, ...,s, where h-C
is defined by (h - C)(A, 9)j: = h(g(0(x0))) - C(A, 9)yz2, for any h : R — Rand any C in question and any A, g, Zo
as above.

So, the space Cy, ;s of all C (as in Theorem 2.3) is the free (s + 2)-dimensional C*(R)-module and the
operators D, EY for I = 0,1, ...,s form the basis in this module.
The proof of Theorem 2.3 will be given in Section 4.

3. A preparatory lemma

Let N be the set of non-negative integers and let R”" be the trivial # M,, ,-object R” X R” — R™ and let
xl, ..., x™,y!, ..., y" be the usual coordinates on R™". Giveni = 1,..,mlet1; := (0,...,0,1,0,..,0) € N", 1 in
i-th position.

We have the induced coordinates ((x'), (v})) on JS(R™"), where i = 1,..,m and j = 1,..,n and & =
(a1, ...a,) € N™ are such that a| = a1 + ... + a,, < 5. They are given by

¥(j5,0) = 2 and y(f5,0) = (a0’ (x)

for any 5 0 = 5 (d%,..,0") € J5 (R™") = J5 (R",R"), x, € R™, where d, is the iterated partial derivative as
indicated multiplied by ;.

Lemma3.1. ([5]) Leti=1,..,mand j=1,..,nand a = (a1, ..., &) € N™ be such that |a| < s.
(i) For any t = (7%, ..., 7") € (R \ {0})", we have
Pk = Ty,
where P, = (x!, ..., x™, %yl, s T Y") i the F My, -map.
(ii) For any t € R\ {0}, we have
FPheya =t""ye,
where ot = (x', ..., 1x', ., x™, Y1, ., y") is the F My, -map.
(iii) If o; # 0, we have
FY)ya = o+ Xya + Yoy,
where YO = (1, ..., x", yt + x'yt, 2, ..., y") L is the F M, ,-map (defined over 0 € R™).
(iv) If ay # 0, we have

S 1 1 1 ar+1, .1
(] Xt)*yaflﬁlz - ya711+12 + Cltya +.+ C"‘2+1t y(a1+a2,0,a3,...,a,,,)

for some cy, ... € Rwith ¢y # 0, where x; = (x! + tx2,x%, ..., x™, y', ..., y") is the F My, n-map (defined if m > 2).

4. Proof of Theorem

We will use the notations as in the previous sections. Additionally, let dx* := dx' A ... A dx™ and let
x® = (xh - - (™) for any @ = (ay, ..., &) € N™. We are now in position to prove Theorem 2.3.
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Proof. Clearly, C is determined by the collection of values

m
C(A, 9)p, v >€ A T;R"

for all A € Cq, (F(R™"), A" T'R™) and v € ToR" = V(oqR™" and p = j&(0) € J3*(R",R") = JF*(R™") and
g : R™" — R. It means that if C’ is an another such operator giving the same as C collection of values in
question then C = C’. This fact follows from the invariance of C with respect to ¥ M, ,-charts.

We can additionally assume p = 6 := j2(0). Indeed, for any element p = j%(0) € J*(R™,R") = JX(R"™"),
there exists a 7 M, ,-map v : R™" — R™" transforming j2*(0) into 0 := j%(0) € J3(R™,R") = J2*(R™"). (For
example, we can use v := (x, y — 0(x)), where x = (x!,..,x™) and y = (4%, ..., y").)

Because of the regularity of C, we can additionally assume that % 9(0,0) # 0. Then by the invariance of
C with respect to ¥ M, ,-map

(!, .., x", g(xl, v, XM, yl, e Y - g(xl, ., x",0,..,0), yz, e y”)’1
(it preserves 6) we may additionally assume g = y! + h(x!, ..., x™), where i : R” — R is a map.

Similarly, because of the regularity of C, we can additionally assume d(o)y'(v) # 0. Then using the
invariance of C with respect to an # M, ,-map idr~ X ¢ for a respective linear isomorphism ¢ : R* — R" (it

preserves 0), we can additionally assume v = %I(O o

Similarly, because of the regularity of C, we can additionally assume axmh(O) # 0. Then using the
invariance of C with respect to ¥ M,, ,-map

(Y, o, ™ h(xt, L, x™) = (O, ..., 0), yl, . y”)‘1 ,

we may additionally assume & = x™ + ¢, where c is a real number.
Summing up, we see that C is determined by the collection of values

>e/\TRm

for all A € Cg, (F(R™"), A" T"R™) and all ¢ € R, where 6 := j(0).

Next, we can write A = L((x' ), (ya) )dx# + f(x!, ..., x™)dxt, where L and f are arbitrary real valued maps
with L((x"), (0)) = 0, and by the regularity of C we can assume f(0) # 0. Then, using the invariance of C with
respect to ¥ My, ,-map b = (F(x!, .., x™),x%, ..., x", v}, ..., y")"! , where %F = fand F(0,%2, ...,x™) = 0, we may

< C(A, 2™ +y +0o, 57
8 Y 100

additionally assume f = 1 because b preserves 0 and x" + y! + ¢ (as m > 2) and Biy]uo 0 and it sends dx* into

fdxt. Consequently, we can write A = L((x), (yé))dx” + dx*, where L is a arbitrary real valued map with
L((x), (0)) =

Next, because of the 72 *-locality of C, using the main result of [7], we may additionally assume that L is
a arbitrary polynomial in ((x"), (y.)) of degree < g, where g is an arbitrary positive integer.

Next, by the invariance of C with respect to r = (x!,..,x™, Ly', .., 2 y") being F M, ,-map for any
(t!, .., ") € (R\ {0})", we get the homogeneity condition

C(L((x, (TIylh))dxt + edx®, bx™ + T'ay" + ), o

10,0)

= 1! < C(L((x), (ya))dx“ +edx*, bx™ + ay' + c)g, — J
‘93/ 1(0,0)

see Lemma 3.1 (i), where a and b and ¢ and e are arbitrary real numbers.

7
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Then using the homogeneous function theorem ([3]), we derive that the value

< C(Ldx" + edxt, bx™ + ¢)g, — 3 >
Y 100

is linear in L (for L satisfying the additional conditions) for any real numbers b and c and ¢, and that C is
determined by the collection of values

< C(xPyldx* +dx*, x™ + c)g, —  >€ /\ TyR™ and < C(dx",x™ + y' +c) 0057 >€ /\ T,R"
00

d
Iyt Y 100
fora,p € N" with || < gand |a| < sand c € R.
Now, using Lemma 4.1, we derive that C is determined by the collection of values

m

d
< C(dxt, x" +y' +c)g, — T;R" and < C(y(0 opdxt +dxt, x™ + ) 0057 >€ /\ T,R™
00

1
Iy Y 10, 0)

.....

forallceRand k=0,1,..,s
So, C is determined by the collection of (smooth as C is regular) maps C©,C<*> : R — R fork =0, ..., s
defined by

0
C<k>(c)dx =< C(yo Lo pdxt +dxt, XM + c)o, >, ceR,
) ' (00)

C(O)(c)dx“ =< C(dx*, x™ +y +C)g, =— J

>, ceR.
&3/1 1(0,0)

It means that if C’ is an another such operator with C* = (C)* fork = 0,...,s and C© = (C")©, then
c=C.

Conversely, using the coordinate expression of the Euler map E(A) from [3] one can verify that given a
collection of maps hj, h : R — R we have

s s
(h-D+ Z - EMY*> =y and (h- D + Z hy - E0)© = 1
1=0 1=0

fork=0,..,s
The proof of the theorem is complete. [

Lemma 4.1. The collection of values
< C(Pyldxt + dxt, x™ + C)@, >e /\ T;R™
I(0 0)

for a, p € N"™ with |B| < g and |a| < s and ¢ € R is determined by the one of values

< C(y%o,.“,o,k)dxy +dxt, X"+ C)a, |(0 ) >€ /\ T;R"

forallce Randk=0,1,...,s

Proof. We will proceed quite similarly as in the respective part of the proof of the main result of [5].
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By the invariance of C withrespectto ¢! = (x!, ..., 1x/, .., x™, !, ..., y") being F M, ,-map for any t € R\{0}

and any i = 1,..,m and using the fact that < C(de“ + edx“, bx™ + ¢)g, 331 ©0) > depends linearly in L (as

above) for any real numbers b and c and e, we get the condition

im0 < C(xPyldxt + tdx*, omx™ + ¢)g, —  >=< C(xPyldx* + dx", x™ + ¢)g, —

>
Y (00 Y00

because ¢! preserves C and 6 and #I(O 0 and it sends x? into t#ixf and it sends x™ into % x™ (the Kronecker

delta) and it sends y} into ~%y! and it sends dx* into tdx*, see Lemma 3.1 (ii). Then putting t — 0, we get

< C(xﬁy dx* + dx*, x™ + ¢)g, &j >=0
1(0,0)

for any 8, a € N with both |a| < s and §; > a; for somei=1,...,m
So, our collection is determined by the one of values

< C(Pytdxt + dx*, x™ + c)g, 8iy1|(0 ) >e /\ T,R™

forallc e Rand all o, f € N with |a| < sand f; < a3 and...and B, < ay,.
Now, consider a, f € N" with |a| < s and 1 < a7 and ...and S, < a;,. Assume  # (0). For example, let
Bi # 0 for some i = 1, ..., m. Using the invariance of C with respect to

41(") =, 2", yl + xiyl, yz, ey y”)_1

(being ¥ M, ,-map defined over some neighborhood of 0 € R™), we get

< C(xﬁ‘lf(y}x + xiya + ya 1 )dxt + dxt, "+ C0)g, — T >=< C(xP1i Y, Laxt 4 dxt, x™ + ¢)g, — T >
" 0,0) " (0,0

because ') preserves C and x*~% and 0 and 5% and dx* and x" + c and it sends y}, into y}, + x'yL + v},

W |00
see Lemma 3.1 (iii). Then
J 1 !
< C(xﬁy dx* + dx*, x™ + ¢)g, =— T >=— < C(xF~ _p,dxt + dxt, "+ C)g, —
Iy 1(0,0) dy! 10, 0)
because < C(Ldx* + dx*)g, x™ + ¢)g, 937|(0 0 > depends linearly in L. Repeating,
J Il L
< C(xPyldx* + dx*, xX™ + ¢)g, = : >= (-1 < C( dx” +dx*, x™ + )g, —
dy 1(0,0) dy 1(0,0)

Consequently, our collection is determined by the one of values
ClyLdxt + dx#, x™ o T;R™
< C(ydxt +dxt, x +C)3,F >e/\ 0

for all c € R and all @ € N™ with |a| < s.
Now, let @ € N™, where |a| < s, and assume that a; # 0 for some i = 1, ...,m — 1. For example, let a; # 0.

For any t € R, the ¥ M,, ,-map

1 2 .2 1
Xe= @ +tx5,x%, X"y, Ly
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defined if m > 2) preserves dx* and 0 and -2 and x™ + c and it sends y! into
p Y
ay |( 44 11

+1,

0,0)

1 1 el 1
Ya1,41, + ety + o+ Caprat y(a1+az,0,a3,...,am)

for some cy, ... € Rwith ¢; # 0, see Lemma 3.1 (iv). Then using the invariance of C with respect to x; we get

d
< C((ytly_11+12 + iyl + L)dxt + dxt, XM+ ¢)g, a_yl >=< C(y;_llﬂzdx“ +dx", x™ + ¢)g, &_]/1 >
1(0,0) 1(0,0)

for any t € R. Then since < C(Ldx" + dx!,x™ + ¢)g, 9;;1|(0 0> depends linearly in L, we get
1 L, J
< Cy,dxt + dx*, x™ + c)g, o >=0.
W (00
That is why, our collection is determined by the collection of values

3 m
1 1%
< C(]/(o,...,o,k)dx!l +dxt, x™ + ¢)g, _8]/1 o0 >e /\ T,R"

forallce Rand k=0,1,...,s.
The proof of the lemma is complete. [J

Remark 4.2. In the proof of the main result of [5], we used true but non-correctly justified formula

| 9 J
0 < CPyldat + tdxt, tmx™ + €)g, —  >=< C(xPyldx* +dxt,x" + c)g, —

dyt 1(0,0) Iy 1(0,0)

In [5], we suggested that this formula follows from the fact that < C(Ldx* + dx", x™ + ¢)g, f’iyluo 0> depends linearly

in L for any real number c. However, it is not true. Now, in the proof of Lemma 4.1, we observed that this formula
follows from the fact that < C(Ldx* + edx", bx™ + ¢)g, 9%’1|(0 0 > depends linearly in L for any real numberse, b, c. So,

we have eliminated this gap from the proof of the main result of [5].

5. The formal Euler like operators

In [1] (see, [4]), I. Kolaf introduced the so called formal Euler operator

E:CRLVFYe \TM) - CRU*Y,viye /\ TM)

for all ¥ M, ,-objects Y — M.
In this section, we describe all regular and 7i**-local and F M,,, ,-natural operators

C:CR(PYVFY® /\ TM)XC*(V,R) - C3(PY, V'Y ® \ T'M).
Example 5.1. Let [ =0,1,...,s. Wedefine EO(A,g): J*Y - V'Y® \" T*M by

B )0 = TE(DG - glot)) - iz,

forany A € CL(PY, V' Y @ A" T*"M) on a F My p-object Y — M and any g € C*(Y,R) and any jZo € J&Y and
any x, € M, where E is the formal Euler operator. So, we have the ¥ M,, ,-natural operator

EDCS(PL VY ® A T*M) X C™(Y,R) - CX(*Y, V'Y ® A T*M).

It is reqular and 7*-local.
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Theorem 5.2. Let m, n, s be positive integers. If m > 2, then any reqular and r25-local and F M, ,-natural operator

C:CS(PY,V'FY® A T*M) x C*(Y,R) - CX(J*Y, V'Y ® A T*M)

is of the form C = Y.5_, hy - EY for some (uniquely determined by C) mapsh; : R —» R, 1 =0, ..., s, where h-C is defined
by (h-C)(A, !7)|j§§a = h(g(o(x,))) - C(A, g)Uﬁafor any h : R — Rand any C in question and any A, g, j,zcjo as above.

So, the space F,, s of all C (as in Theorem 5.2) is the free (s + 1)-dimensional C**(R)-module and the E?
forl=0,1,...,s form the basis in this module.

6. Schema of the proof of Theorem 5.2
The proof of Theorem 5.2 is the following modification of the one of Theorem 2.3.

Proof. (Schema of the proof) Similarly as in the proof of Theorem 2.3, C is determined by the collection of
values

< C(A,9)p,v >€ A T R"

for all A € C‘]’me,,,(]SR’"'",V*]SR"”” ® A"T'R") and g € C*(R™",R) and v € ToR" = VooR"™" and p €

JE(R™,R") = J55(R™"). Moreover, we can assume that p = 6 = j5*(0) and g = x" + y" + cand v = %‘(0 o

Further we can write A = Y, Lf((xi), (yi))dNyl’; ® dx*, where Lf are real valued maps for k = 1,...,n and
all B € N with || < s and where dh denotes the restriction to VJ°Y of the differential dh of h : 'Y — R.
Moreover, quite similarly as in the proof of Theorem 2.3, we can assume that Li are polynomials in ((x'), (y2,))
of degree < g, where ¢ is an arbitrary positive integer.

Further, quite similarly as in the proof of Theorem 2.3, using the invariance of C with respect to ¢, =

L, XM %yl, .y %y”) and the homogeneous function theorem, we derive that < C(A, bx™ + c)g, 9;;1(0 0 > is

(!

linear in A for any real numbers b and c, and that C is determined by the collection of values

< C(xﬁrfyé ®dxt, x™ + ¢)g, % > and < C0,x™ +y" +¢)o, % >
Y 00 Y 100

for all o, € N with |a| < s and all real numbers c.
Further, using the invariance of C with respect to (tx1, 22, ..., x™, yl, ..., y") and the fact that m > 2, we get
m n J —
< CO,x™ +y" +c)g, 37 100) > O~
Then by Lemma 4.1 with x’dy} ® dx* instead of xfyldx* + dx* (the proof of such lemma is quite similar

to the one of Lemma 4.1) and using d(x'y}) = x'dy'a (being the consequence of di = 0 on VJ*Y for any
h: M — R), we derive that C is determined by the values

- J
1 m
< C(dy(o,...,o,k) ®dx*, x" + ¢)g, a_yl\(0,0)
forallce Rand k=0,1,...5s.

Consequently, C is determined by the collection of maps C<*> : R — R for k = 0, ..., s defined by

C(e)dxly =< Cdyfy o ® dx, 2" +c)9,i1 >, ceR.
o " 0,0)

Conversely, given maps /; : R = R, where | = 0, ...,s, we have (Y;_, i - E0)* = Iy fork = 0,1, ..., s.
The proof of Theorem 5.2 is complete. [
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7. A reformulation of the results of [5]

Example 7.1. Let w: Y — Mbe a & M,, ,-object and let

C:CS(PY, A T'M) x C*(Y,R) > CX(EY, V'Y ® A T"M)

be a regular and 1%*-local and F M, ,-natural operator. We have the inclusion C*(M,R) c C*(Y,R) given by
h — h o . Thus we have the 7i**-local and F M, ,-natural operator

m m
C:C(Y, [\ TM)xC*(MR) > C3 (Y, V'Y & \ T'M)
given by the restriction of C.

Example 7.2. Let m:Y — M bea & M, ,-object and let

C:CSUPYL VY A T'M) X C*(Y,R) - CY (Y, V'Y ® [\ T'M)

be a regular and 1*-local and F M, ,-natural operator. Thus similarly as in Example 7.1 we have the 7t**-local and
F M n-natural operator

m m
C:CSPYL VY ® A T*M) X C*(M,R) - CS(ZY, V'Y ® /\ T*M)
given by the restriction of C.
Thus the results of [5] can be rewritten as follows.

Theorem 7.3. Let m, n, s be positive integers. If m > 2, then any regular and r25-local and F M, ,-natural operator
m m
B:C(Y, A T*M) X C°(M,R) - CS(ZY, V'Y ® A T"M)

isof the form B = Y.)_ hy - EO for some (uniquely determined by B) mapsh; : R — R, 1 =0, ...,s, where h- B is defined
by (h- B)(A, 9)225 = W(g(x0)) - B(A, 9)yjs 5 for any b : R — R and any B in question and any A, g, j30 as required.

So, the space B, s of all such B as above (in Theorem 7.3) is the free (s + 1)-dimensional C*(R)-module
and the operators EO) for [ = 0, ..., s form the basis in this module.

Theorem 7.4. Let m,n, s be positive integers. If m > 2, then any reqular and r25-local and F My, ,-natural operator
m m
B:Cu(FYL, V' FY® /\ T*M) X C*(M,R) - CY(J*Y, V'Y ® /\ M)

is of the form B = Y,1_o - E(T)for some (uniquely determined by B) maps h; : R = R, 1 =0, ..., s, where h- B is defined
by (h- B)(A, 9)2:5 = W(9(x,)) - B(A, 9) s o for any b : R — R and any B in question and any A, g, %0 as required.

So, the space Gy s of all B as above (in Theorem 7.4) is the free (s + 1)-dimensional C*(R)-module and
the E® for 1 =0, 1, ..., s form the basis in this module.
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8. Corollaries
From Theorem 2.3 it follows the following result by I. Kola¥ [2] (see also [4]).

Corollary 8.1. Let m,n,s be positive integers. If m > 2, then any regular and 7*-local and F M, ,-natural operator

m m
C:C3(PY, /\ T"M) - CS(PY, V'Y ® /\ T*M)
is aE for some (uniquely determined by C) real number a, where E is the Euler operator.

Proof. Let C be a operator in question. By Theorem 2.3, we can write C = - D + Y.;_ i - E¥ for some
(uniquely determined by C) maps i, h; : R = R, =0, ...,s. Then C(A) = C(A,1) = ho(1)E(A), i.e. C = hy(1)E.
From Theorem 5.2 it follows the following result of [6].

Corollary 8.2. Let m,n,s be positive integers. If m > 2, then any regular and 7%*-local and F My, y-natural operator

C:CRIY,VFYe \TM) - C(*Y, V'Y /\ T'M)
is aE for some (uniquely determined by C) real number a, where E is the formal Euler operator.

Proof. The proof is (almost) the same as the one of Corollary 8.1. We use Theorem 5.2 instead of Theorem
23. O

Let B,,s and C,, s be the C®°(R)-modules described after Theorems 7.3 and 2.3, respectively. From
Theorems 2.3 and 7.3 it follows immediately

Corollflry 8.3. Let m,n,s be positive integers. If m > 2, then the correspondence (=) : Cuns = Buns given by
C — C (described in Example 7.1) is a epimorphism of C*(R)-modules. The kernel of this epimorphism is the
1-dimensional C*(R)-module spanned by the operator D from Example 2.2.

Let F,, s and Gy, s be the C*(R)-modules described after Theorems 5.2 and 7.4, respectively. From
Theorems 5.2 and 7.4 it follows immediately

Corollary 8.4. Let m,n,s be positive integers. If m > 2, then the correspondence (’:) : Funs = Guns given by
C — C (described in Example 7.2) is a isomorphism of C*°(R)-modules.
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