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Some remarks on ¢-Dedekind rings and ¢-Priifer rings

Wei Qi? Xiaolei Zhang™*

#School of Mathematics and Statistics, Shandong University of Technology, Zibo 255000, China

Abstract. In this paper, we introduce and study the concepts of nonnil-injective modules and nonnil-
FP-injective modules. Specifically, we show that a ¢-ring R is an integral domain if and only if every
nonnil-injective (resp., nonnil-FP-injective) R-module is injective (resp., FP-injective). Furthermore, we
provide new characterizations of ¢-von Neumann regular rings, nonnil-Noetherian rings, and nonnil-

coherent rings. Lastly, we characterize ¢-Dedekind rings and ¢-Priifer rings in terms of ¢-flat modules,
nonnil-injective modules, and nonnil-FP-injective modules.

1. Introduction

Recall from [5] that a commutative ring R is called an NP-ring if its nilpotent radical Nil(R) is a prime

ideal, and a ZN-ring if Z(R) = Nil(R), where Z(R) denotes the set of all zero-divisors of R. A prime ideal P
of R is termed a divided prime if P C (x) for every x € R\ P. Let

‘H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}.

A ring R is referred to as a ¢-ring if R € H. Moreover, a ZN ¢-ring is called a strong ¢-ring. Denote by
T(R) the localization of R at the set of all regular elements. For a ¢-ring R, there is a ring homomorphism
¢ : T(R) — Rniir) defined by ¢(a/b) = a/b. The image of ¢ restricted to R is denoted by ¢(R).

In 2001, Badawi [6] investigated ¢-chained rings (abbreviated as ¢-CRs), which are ¢-rings R such that
for every x, y € R\ Nil(R), either x divides y or y divides x. In 2004, Anderson and Badawi [1] extended the
notion of Priifer domains to ¢-Priifer rings, which are ¢-rings R such that every finitely generated nonnil
ideal is ¢-invertible. The authors in [1] provided several characterizations of ¢-Priifer rings, stating that
a ¢-ring R is ¢-Priifer if and only if R,; is a ¢-chained ring for every maximal ideal m of R, if and only if
R/Nil(R) is a Priifer domain, if and only if ¢(R) is Priifer.

Later, in 2005, the authors in [2] generalized the concept of Dedekind domains to the context of rings
in the class H. A ¢-ring is called a ¢-Dedekind ring if every nonnil ideal is ¢-invertible. They also proved
that a ¢-ring R is ¢-Dedekind if and only if R is nonnil-Noetherian and R, is a discrete ¢-chained ring
for every maximal ideal m of R, if and only if R is nonnil-Noetherian, ¢-integrally closed, and has Krull
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dimension < 1, if and only if R/Nil(R) is a Dedekind domain. Generalizations of Noetherian domains,
coherent domains, Bézout domains, and Krull domains to the context of rings in H were also introduced
and studied (see [1, 2, 4, 7, 8]).

The module-theoretic study of rings in H began over a decade ago. In 2006, Yang [19] introduced
nonnil-injective modules by replacing the ideals in Baer’s criterion for injective modules with nonnil ideals.
He showed that a ¢-ring R is nonnil-Noetherian if and only if any direct sum of nonnil-injective modules
is nonnil-injective. In 2013, Zhao et al. [23] introduced and studied the concept of ¢-von Neumann rings,
which can be characterized as follows: a ¢-ring R is ¢-von Neumann if and only if its Krull dimension is
0, if and only if every R-module is ¢-flat, if and only if R/Nil(R) is a von Neumann regular ring. In 2018,
Zhao [22] provided a homological characterization of ¢-Priifer rings: a strong ¢-ring R is ¢-Priifer if and
only if every submodule of a ¢-flat module is ¢-flat, if and only if every nonnil ideal of R is ¢-flat.

The main motivation of this paper is to provide characterizations of ¢-Dedekind rings and ¢-Priifer
rings in terms of new versions of injective modules and FP-injective modules. We first introduce and
study the notions of nonnil-injective modules and nonnil-FP-injective modules, and show that a ¢-ring R
is an integral domain if and only if every nonnil-injective R-module is injective, and if and only if every
nonnil-FP-injective R-module is FP-injective (see Theorem 2.6). Additionally, new characterizations of ¢-
von Neumann regular rings, nonnil-Noetherian rings, and nonnil-coherent rings in terms of ¢-flat modules,
nonnil-injective modules, and nonnil-FP-injective modules are given (see Theorem 2.7, Proposition 2.8, and
Proposition 2.9 respectively).

We further prove that a strong ¢-ring R is a ¢-Dedekind ring if and only if every divisible module is
nonnil-injective, if and only if every h-divisible module is nonnil-injective, and if and only if every nonnil
ideal of R is projective (see Theorem 3.8). Additionally, we show that a strong ¢-ring R is ¢-Priifer if and
only if every divisible module is nonnil-FP-injective, if and only if every finitely generated nonnil ideal of
R is projective, if and only if every ideal of R is ¢-flat, and if and only if every R-module has an epimorphic
¢-flat envelope (see Theorem 3.13).

2. Nonnil-injective modules and nonnil-FP-injective modules

Throughout this paper, R denotes an NP-ring with identity, and all modules are unitary. We say that an
ideal I of R is nonnil if there exists a non-nilpotent element in I. Denote by NN(R) the set of all nonnil ideals
of R. It is easy to verify that NN(R) forms a multiplicative system of ideals, i.e., R € NN(R) and I] € NN(R)
for any I, ] € NN(R).

Let M be an R-module. Define

¢-tor(M) = {x € M | Ix = 0 for some I € NN(R)}.

An R-module M is said to be ¢-torsion (resp., ¢-torsion free) provided that ¢p-tor(M) = M (resp., ¢-tor(M) = 0).
Clearly, the class of ¢-torsion modules is closed under submodules, quotients, direct sums, and direct limits.
Thus, an NP-ring R is ¢-torsion free if and only if every flat module is ¢-torsion free, and if and only if Ris a
ZN-ring (see [22, Proposition 2.2]). The classes of ¢-torsion modules and ¢-torsion free modules constitute
a hereditary torsion theory of finite type. Recall that an ideal I of R is regular if there exists a regular element
(i.e., a non-zero-divisor) in I.

Lemma 2.1. Let R be a ¢-ring, and let I be an ideal of R. Then the following assertions are equivalent:

1. I'is a nonnil ideal of R;
2. I/Nil(R) is a nonzero ideal of R/Nil(R);
3. ¢(I) is a regular ideal of p(R).

Proof. (1) & (2): Obvious.

(1) = (3): Let s be a non-nilpotent element in I. Then { € ¢(I) is regular in ¢(R). Indeed, suppose
2L = 0in ¢(R). Then there exists a non-nilpotent element u € R such that ust = 0. Since R is a ¢-ring, us is
non-nilpotent. Thus, £ = 0 in ¢(R).

(3) = (1): Let § be a regular element in ¢(I) with s € I. Then s is non-nilpotent. Indeed, if s” = 0in R,
then (£)" = £ = 01in ¢(R), which implies that $ is not regular in ¢(R). [
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Recall that an R-module M is injective (resp., FP-injective) if Exty(N,M) = 0 for any (resp., finitely
presented) R-module N. We now investigate the notions of nonnil-injective modules and nonnil-FP-injective
modules using ¢-torsion modules.

Definition 2.2. Let R be an NP-ring, and let M be an R-module.

1. M is called nonnil-injective if Exty(T, M) = 0 for any ¢-torsion module T.
2. M is called nonnil-FP-injective if Exty(T, M) = 0 for any finitely presented ¢-torsion module T.

Certainly, an R-module M is nonnil-injective if and only if Extllz(R/ I,M) = 0 for any nonnil ideal I of
R (see [24, Theorem 1.7]). The class of nonnil-injective modules is closed under direct summands, direct
products, and extensions, while the class of nonnil-FP-injective modules is closed under pure submodules,
direct sums, direct products, and extensions.

Recall from [23] that an R-module M is ¢-flat if TorX(T, M) = 0 for any ¢-torsion module T. Tt is well-
known that an R-module M is ¢-flat if and only if Tor]f (R/I, M) = 0 for any (finitely generated) nonnil ideal
I of R (see [23, Theorem 3.2]).

Proposition 2.3. Let R be an NP-ring. The following assertions are equivalent:
1. Mis ¢-flat;

Homg(M, E) is nonnil-injective for any injective module E;

Homg (M, E) is nonnil-FP-injective for any injective module E;

If E is an injective cogenerator, then Homg (M, E) is nonnil-injective;

If E is an injective cogenerator, then Homg(M, E) is nonnil-FP-injective.

Ol W N

Proof. (1) = (2): Let T be a ¢-torsion R-module and E an injective R-module. Since M is ¢-flat, we have
ExtllQ(T, Homg(M, E)) = HomR(Torlf(T, M), E) = 0. Thus, Homgr(M, E) is nonnil-injective.

(2) = (3) = (5): Trivial.

(2) = 4) = (5): Trivial.

(5) = (1): Let I be a finitely generated nonnil ideal of R and E an injective cogenerator. Since Homg (M, E)
is nonnil-FP-injective, we have HomR(Torlf(R/I, M),E) = Ext}{(R/I, Homg(M, E)) = 0. Since E is an injective
cogenerator, it follows that Torlf(R /I, M) = 0. Therefore, M is ¢p-flat. [J

Proposition 2.4. Let R be a ¢-ring, and let E be an R/Nil(R)-module. Then E is injective over R/Nil(R) if and only
if E is nonnil-injective over R.

Proof. LetIbe anonnil ideal of R. Set R = R/Nil(R) and I = I/Nil(R). Let E be an R-module. The short exact
sequence 0 = I —» R — R/I — 0 induces the long exact sequence of R-modules:

0 — Homg(R/I,E) - Homg(R, E) —» Homg(I,E) — Extllz(R/I, E)— 0. (a)

The short exact sequence 0 — [ — R — R/I — 0 induces the long exact sequence of R-modules:
0 — Homz(R/I, E) — Homg(R, E) » Homg(I, E) — Extlﬁ(R/I, E)—0. (b

By [21, Lemma 1.6], INil(R) = Nil(R). Thus, I ®& R = I/INil(R) = I. Consequently, we have
Homg(I, E) = Homg(I ® R, E) = Homg(I, Homg(R, E)) = Homg(1, E)

by the Adjoint Isomorphism Theorem (see [18, Theorem 2.2.16]). Combining (2) and (b), we conclude that E
is injective over R/Nil(R) if and only if E is nonnil-injective over R (see Lemma 2.1 and [1, Lemma 2.4]). O

Proposition 2.5. Let R be a ¢-ring, and let M be an FP-injective R/Nil(R)-module. Then M is nonnil-FP-injective
over R.



W. Qi, X. Zhang / Filomat 39:3 (2025), 809-818 812

Proof. Let T be a finitely presented ¢-torsion module over R. Then there exists a short exact sequence
0 - K— F — T — 0, where F is a finitely generated free R-module and K is a finitely generated R-module.

Set R = R/Nil(R). By tensoring R over R, we obtain the following long exact sequence over R:

Torllz(T/E)—)K(@RE_’F@RE—)T®RE—)O_

By [21, Proposition 1.7], Ris ¢-flat over R, thus Torf(T, R) = 0. It follows that T ®g R is a finitely presented
R-module. We now have the following commutative diagram with exact rows:

Homg (E, M) Homg (K, M) Exty(T, M) ——0

Homg(F ®x R, M) — Homg(K ® R, M) — Exti(T ® R, M) — 0.

By the Adjoint Isomorphism Theorem, the first two vertical homomorphisms are isomorphisms. By the five
Lemma, it follows that f is also an isomorphism. Since M is FP-injective over R, we have Ext%(T@R R,M) = 0.

Thus, Extlla(T, M) =0, and hence M is nonnil-FP-injective over R. [J

Obviously, any FP-injective module is nonnil-FP-injective, and any injective module is nonnil-injective.
However, the converses characterize integral domains.

Theorem 2.6. Let R be a ¢-ring. Then the following assertions are equivalent:

1. R s an integral domain;
2. Any nonnil-injective module is injective;
3. Any nonnil-FP-injective module is FP-injective.

Proof. (1) = (2) and (1) = (3): Trivial.

(2) = (1): By [9, Theorem 3.1.6], Homz(R/Nil(R), Q/Z) is an injective R/Nil(R)-module. Thus, by
Proposition 2.4, Homz(R/Nil(R), Q/Z) is a nonnil-injective R-module, and therefore an injective R-module.
By [9, Theorem 3.2.10], R/Nil(R) is a flat R-module. Let K be a finitely generated nilpotent ideal. Then

K € Nil(R) € Rad(R). Thus, K/KNil(R) = Sqq = Torf (R/K, R/Nil(R)) = 0. It follows from Nakayama’s

Lemma that K = 0. Therefore, Nil(R) = 0, and thus R is an integral domain.
(3) = (1): Similarto (2) = (1). O

Recall from [23] that a ¢-ring R is said to be ¢-von Neumann if the Krull dimension of R is 0. It is well
known that a ¢-ring R is ¢-von Neumann if and only if R/Nil(R) is a von Neumann ring, and if and only if
any R-module is ¢-flat (see [23, Theorem 4.1]).

Theorem 2.7. Let R be a ¢-ring. Then the following assertions are equivalent:

1. Ris a ¢p-von Neumann regular ring;
R/NIil(R) is a field;

Any non-nilpotent element in R is invertible;
Any R-module is ¢-flat;

Any R-module is nonnil-FP-injective;

Any R-module is nonnil-injective.

AN N

Proof. (1) & (4): See [23, Theorem 4.1].
(1) = (2): Since Nil(R) is a prime ideal of R, R/Nil(R) is a 0-dimensional domain, and thus a field by [12,
Theorem 3.1].
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(2) = (3): Let a be a non-nilpotent element in R. Since R/Nil(R) is a field, there exists b € R such that
1 —ab € Nil(R). That is, (1 —ab)" = 0 for some . It is easy to verify that a is invertible.

(B) = (2) = (1): Trivial.

(3) = (5): It follows from (3) that the only nonnil ideal of R is R itself. Let T be a finitely presented ¢-
torsion module. Then T = ¢-tor(T) = {x € T | Ix = 0 for some nonnil ideal I of R} = 0. Hence, Extllz(T, M) =
0. Consequently, M is nonnil-FP-injective.

(5) = (1): Let I be a finitely generated nonnil ideal of R. Since, for any R-module M, Ext}Q(R/ ILM)=0
by (5), R/I is projective. Thus, I is an idempotent ideal of R. By [10, Proposition 1.10], I is generated by an
idempotent e € R. Therefore, R is a ¢p-von Neumann regular ring by [23, Theorem 4.1].

(3) = (6) and (6) = (5): Obvious. [

Recall from [7] that a ¢-ring R is called nonnil-Noetherian if any nonnil ideal of R is finitely generated.

Proposition 2.8. Let R be a ¢-ring. Then R is nonnil-Noetherian if and only if any nonnil-FP-injective module is
nonnil-injective.

Proof. Suppose R is a nonnil-Noetherian ring. Let I be a nonnil ideal of R and M a nonnil-FP-injective
module. Then [ is finitely generated, and thus R/I is a finitely presented ¢-torsion module. It follows that
Extg(R/I, M) = 0. Consequently, M is nonnil-injective by [24, Theorem 1.7].

Conversely, since the class of nonnil-FP-injective modules is closed under direct sums, R is a nonnil-
Noetherian ring by [19, Theorem 1.9]. O

Recall from [4] that a ¢-ring R is called nonnil-coherent if any finitely generated nonnil ideal of R is finitely
presented. A ¢-ring R is nonnil-coherent if and only if any direct product of ¢-flat modules is ¢-flat, and if
and only if R! is ¢-flat for any indexing set I (see [4, Theorem 2.4]). Now we give a new characterization of
nonnil-coherent rings using the preenveloping properties of ¢-flat modules.

Proposition 2.9. Let R be a ¢-ring. Then R is nonnil-coherent if and only if the class of ¢-flat modules is preen-
veloping.

Proof. Suppose R is a nonnil-coherent ring. By [4, Theorem 2.4], the class of ¢-flat modules is closed under
direct products. Note that any pure submodule of a ¢-flat module is ¢-flat. Thus, the class of ¢-flat modules
is preenveloping by [9, Lemma 5.3.12, Corollary 6.2.2].

Conversely, let {Fi}ier be a family of ¢-flat modules. Let [],; Fi — F be a ¢-flat preenvelope. Then there is
a factorization [ [, F; — F — F; for each i € . Consequently, the natural composition [];.; Fi = F = []; Fi
is the identity. Thus, [];¢; F; is a direct summand of F, and hence [],; F; is ¢-flat. It follows from [4, Theorem
2.4] that R is nonnil-coherent. [

The following corollary follows from Theorem 3.8 and [9, Corollary 6.3.5].

Corollary 2.10. Let R be a nonnil-coherent ring. If the class of ¢-flat modules is closed under inverse limits, then
the class of ¢-flat modules is enveloping.

3. ¢-Dedekind rings and ¢-Priifer rings

Recall that an R-module E is said to be divisible if sM = M for any regular element s € R, and an R-module
M is said to be h-divisible provided that M is a quotient of an injective module. Evidently, any injective
module is h-divisible and any h-divisible module is divisible. It is well known that an integral domain R
is a Dedekind domain if and only if any h-divisible module is injective, and if and only if any divisible
module is injective (see [18, Theorem 5.2.15], for example).

Definition 3.1. Let R be an NP-ring. An R-module E is called nonnil-divisible provided that for any m € E
and any non-nilpotent element a € R, there exists x € E such that ax = m.
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Lemma 3.2. Let R be an NP-ring and E an R-module. Consider the following statements:

1. E is nonnil-divisible;
2. E is divisible;
3. Extg(R/{a),E) = 0 for any a ¢ Nil(R).

Then we have (1) = (2) and (1) = (3). Moreover, if R is a ZN-ring, all statements are equivalent.

Proof. (1) = (2) and (2) = (1) for ZN-rings: Trivial.

(1) = (3): Let a be a non-nilpotent element (then regular) in R and f : {(a) — E be an R-homomorphism.
Then there exists an element x € E such that f(a) = ax since E is nonnil-divisible. Set g(r) = rx for any r € R.
Then g is an extension of f to R. Thus Exty(R/(a), E) = 0.

(3) = (1) for ZN-rings: Let a be a non-nilpotent element in R and m an element in E. Set f(ra) = rm.
Then f is a well-defined R-homomorphism from (a) to E. Since Extllz(R/ (a),E) = 0, there exists an R-
homomorphism g : R — E such that gl = f. Let x = g(1). Then m = f(a) = g(a) = ag(1) = ax. Thus, E is
nonnil-divisible. [

The following result is an easy corollary of Lemma 3.2.

Corollary 3.3. Let R be a ZN-ring, and let E be a nonnil-FP-injective R-module. Then E is a nonnil-divisible
R-module.

Lemma 3.4. Let R be an NP-ring, and let E be a nonnil-divisible R-module. Then E,, is a nonnil-divisible R,-module
for any prime ideal p of R.

Proof. Suppose E is a nonnil-divisible R-module. Let % be an element in E, and 7 a non-nilpotent element
in R;. Then s, t, and r are non-nilpotent elements in R. Thus, there exists y € E such that tm = sry in R.
Therefore, & = %% It follows that E, is a nonnil-divisible R,-module. [

Recall from [1] that a ¢-ring R is called a ¢-chained ring if for every x € Rniyr) — P(R), we have xle P(R),
equivalently, if for any a,b € R — Nil(R), either a | b or b | 2 in R. Moreover, a ¢-ring R is said to be a discrete
¢-chained ring if R is a ¢-chained ring with at most one nonnil prime ideal and every nonnil ideal of R is
principal (see [2]).

Proposition 3.5. Let R be a discrete ¢p-chained ring, and let E be a nonnil-divisible R-module. Then E is a nonnil-
injective R-module.

Proof. Let I be a nonnil ideal of R. Since R is a discrete ¢-chained ring, I is generated by a non-nilpotent
elementa € R. Let f : I — E be an R-homomorphism. Then there exists x € E such that f(a) = ax as E is
divisible. Define g : R — E by g(r) = rx. Then g is an extension of f to R. Hence, E is a nonnil-injective
R-module. [

Recall that a regular ideal I of R is called invertible if II"* = R, where I"! = {x € T(R) | Ix C R}. It follows
from [12, Lemma 18.1] and [11, Lemma 5.3] that a regular ideal is invertible if and only if it is finitely
generated and locally principal, and if and only if it is projective. Recall from [1] that a nonnil ideal I of a
¢-ring R is said to be ¢-invertible provided that ¢(I) is an invertible ideal of ¢(R).

Proposition 3.6. Let R be a ¢-ring, and let I be a nonnil ideal of R. If I is projective over R, then I is ¢-invertible.

Proof. Since I is a projective R-ideal, I is a direct summand of a free R-module R™). Then ¢(I) is a direct
summand of a free (R)-module ¢(R)®). Thus, ¢(1) is a projective ¢(R)-ideal. Since I is a nonnil ideal of R,
¢(1) is a regular ideal of ¢(R) by Lemma 2.1. By [11, Lemma 5.3], ¢(I) is an invertible ideal of ¢(R). Thus, I
is ¢-invertible. [
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Recall that an integral domain R is a Dedekind domain if any nonzero ideal is invertible. Utilizing
the concept of ¢-invertibility, the authors in [2] introduced ¢-Dedekind rings, which generalize Dedekind
domains to the context of rings that are in the class H.

Definition 3.7. A ¢-ring R is called ¢-Dedekind provided that any nonnil ideal of R is ¢-invertible.

Theorem 3.8. Let R be a ¢-ring. Then the following statements are equivalent for R:

1. Ris a ¢-Dedekind ring and a strong ¢-ring;
2. Any divisible module is nonnil-injective;

3. Any h-divisible module is nonnil-injective;
4. Any nonnil ideal of R is projective.

Proof. (1) = (2): Let E be a divisible module, and let I be a nonnil ideal of R. By [2, Theorem 2.10], R is
nonnil-Noetherian. Hence, I is finitely generated, and thus R/I is finitely presented. Let m be a maximal
ideal of R. Then E,, is a divisible module over R,, by Lemma 3.2 and Lemma 3.4. By [2, Theorem 2.10]
again, Ry, is a discrete ¢-chained ring, so E,, is a nonnil-injective R,-module by Proposition 3.5. By [18,
Theorem 3.9.11], Ext}(R/I, E)w = Exty_(Rw/Im, Em) = 0. Thus, Extg(R/I,E) = 0, and E is nonnil-injective.

(2) = (3): Trivial.

(3) = (4): Let N be an R-module, and let I be a nonnil ideal of R. There is a long exact sequence as
follows:

0 = Extr(R, N) — Exty(I, N) — Extx(R/I,N) — Exth(R,N) = 0.

Let0 - N — E — K — 0 be an exact sequence where E is the injective envelope of N. There exists a long
exact sequence as follows:

0 = Exty(R/I, E) = Extk(R/I,K) — Exti(R/I,N) — Ext3(R/I,E) = 0.

Thus, Ext}Q(I, N) = Extf{(R/I, N) = Extllz(R/I, K) = 0 as K is nonnil-injective. It follows that I is a projective
ideal of R.

(4) = (1): It follows from Proposition 3.6 that we only need to show that R is a strong ¢-ring. Indeed,
let a be a non-nilpotent element in R. Then (a) is a projective ideal of R. By [13, Corollary 2.6], R is a strong
¢-ring. [

The next example shows that every divisible module is not necessarily nonnil-injective for ¢-Dedekind
rings. Thus, the condition that R is a strong ¢-ring in Theorem 3.8 cannot be removed.

Example 3.9. Let D be a non-field Dedekind domain and K its quotient field. Let R = D(+)K/D be the
idealization construction. Then Nil(R) = 0(+)K/D. Since D = R/Nil(R) is a Dedekind domain, R is a
¢-Dedekind ring by [2, Theorem 2.5]. Denote by U(R) and U(D) the sets of unit elements of R and D,
respectively. Since Z(R) = {(r,m) | r € Z(D) U Z(K/D)} = [R = U(D)]|(+)K/D = R — U(R) by [3, Theorem 3.5,
Theorem 3.7], R is a total ring of quotients. Thus, any R-module is divisible. However, since Nil(R) is not a
maximal ideal of R, there exists an R-module M that is not nonnil-injective by Theorem 2.7.

Recall that an integral domain R is a Priifer domain if any finitely generated nonzero ideal is invertible.
The following definition generalizes Priifer domains to the context of rings in the class H (see [1]).

Definition 3.10. A ¢-ring R is called ¢-Priifer provided that any finitely generated nonnil ideal of R is
¢-invertible.

Lemma 3.11. Let R be an NP-ring, p a prime ideal of R, and I an ideal of R. Then I is nonnil over R if and only if I,
is nonnil over R,,.
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Proof. Let I be nonnil over R, and let x be a non-nilpotent element in I. We will show that the element x/1 in
I, is non-nilpotent in R,. If (x/1)" = x*/1 = 0 in R, for some positive integer n, there is an s € R — p such that
sx" = 0in R. Since R is an NP-ring, Nil(R) is the minimal prime ideal of R. In the integral domain R/Nil(R),
we have 5¥" = 0, thus " = 0 since s ¢ Nil(R). So x € Nil(R), a contradiction.

Now, let x/s be a non-nilpotent element in I, where x € [ and s € R — p. Clearly, x is non-nilpotent in R,
and thus I is nonnil over R. [

Proposition 3.12. Let R be an NP-ring, p a prime ideal of R, and M an R-module. Then M is ¢-torsion over R if
and only if M, is ¢-torsion over R,.

Proof. Let M be an R-module and x € M. If M, is ¢-torsion over R, there exists a nonnil ideal I, over R,
such that I,(x/1) = 0in R,. Let I be the preimage of I, in R. Then I is nonnil by Lemma 3.11. Thus, there is
a non-nilpotent element ¢ € I such that tkx = 0 for some k ¢ p. Let s = tk. Then we have (s) is nonnil and
(s)x = 0. Thus, M is ¢-torsion over R.

Conversely, suppose M is ¢-torsion over R. Let x/s be an element in M,. Then there exists a nonnil ideal
I'such that Ix = 0, and thus I;(x/s) = 0, with [, nonnil over R, by Lemma 3.11. It follows that M, is ¢-torsion
over R,. [

Theorem 3.13. Lef R be a ¢-ring. Then the following statements are equivalent for R:

—_

Ris a ¢-Prifer ring and a strong ¢-ring;

Any divisible module is nonnil-FP-injective;

Any h-divisible module is nonnil-FP-injective;

Any finitely generated nonnil ideal of R is projective;
Any (finitely generated) nonnil ideal of R is flat;

Any (finitely generated) ideal of R is ¢-flat;

Any submodule of a ¢-flat module is ¢p-flat;

Any R-module has an epimorphism ¢-flat preenvelope;
Any R-module has an epimorphism ¢-flat envelope.

O XN U WD

Proof. (1) = (2): Let T be a finitely presented ¢-torsion module, and let m be a maximal ideal of R. Then by
Proposition 3.12, T, is a finitely presented ¢-torsion R,-module. By [1, Corollary 2.10], Ry, is a ¢-chained
ring. Since R is a strong ¢-ring, R,, is also a strong ¢-ring. Thus, T), = @jzl Ry /Ruwx; for some regular
elements x; € R,, by [22, Theorem 4.1]. Let E be a divisible module. Then E,, is a divisible module over R,,
by Lemma 3.2 and Lemma 3.4. Thus,

n
Ethl{(T/ E)m = EXt112m (Tmr Em) = @ EthlQm (Rm/Rmxi/ Em) =0
i=1

by Lemma 3.2 and [18, Theorem 3.9.11]. It follows that Extllz(T, E) = 0. Therefore, E is nonnil-FP-injective.
(2) = (3): Trivial.
(3) = (4): Let N be an R-module, and let I be a finitely generated nonnil ideal of R. The short exact
sequence 0 — I - R — R/I — 0 induces a long exact sequence as follows:

0 = Exty(R, N) — Exty(I, N) — Extx(R/I,N) — Ext4(R,N) = 0.

Let0 - N — E — K — 0 be an exact sequence where E is the injective envelope of N. There exists a long
exact sequence as follows:

0 = Extr(R/I, E) — Extg(R/I, K) — Exti(R/I,N) — Ext4(R/I,E) = 0.

Thus, Extg (I, N) = Extz(R/I, N) = Extg(R/I,K) = 0 as K is nonnil-FP-injective. It follows that I is a projective
ideal of R.
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(4) = (1): It follows from Proposition 3.6 and Theorem 3.8.
(4) = (5): Let I be a nonnil ideal of R, and let a be a non-nilpotent element in I. Let {I;};cr be a family
of finitely generated subideals of I such that hmI =1 Set I/ =(I,a). Then I’ is a finitely generated nonnil

ideal of R such that hm I = 1. Since each I’ is pro]ectlve by (4), I is a flat ideal of R.

(5) © (6): Let1 be a (resp., finitely generated) nonnil ideal of R, and let | be a (resp., finitely generated)
ideal of R. Then we have

TorX(R/],T) = Tory(R/I,R/]) = Tor{(R/L, ]).

Thus, I is flat if and only if | is ¢-flat.

(5) = (1): It follows from [13, Corollary 2.6] that R is a strong ¢-ring. Let K and L be non-zero (resp.,
finitely generated) ideals of R/Nil(R) (denoted by E). Then K = I/Nil(R) and L = J/Nil(R) for some (resp.,
finitely generated) nonnil ideals I and | of R (see [1, Lemma 2.4]). By [21, Lemma 1.6], JNil(R) = Nil(R).
Thus, L = J/Nil(R) = ] ® R.

We claim that TorX(R/K, L) = 0. Indeed, by change of rings, the exact sequence of R-modules:

0 — TorX(R/K, ] @ R) — K & ® J®& R > R®; J&r R > R/K®; J&r R — 0
is naturally isomorphic to
0 — Tor"(R/K,] ® R) —» K®z ] = R® ] = R/K®g ] — 0.

Thus, there is a commutative diagram of R-modules:

0 —— TorX(R/L,]) I®r] Regr] R/I® ] —=0

(O D

0 —> TorR(R/K, ] ®x R) —= K ® | R®g]J R/K®g ] —=0.

I3

Since g and h are epimorphisms, f is also an epimorphism by the five Lemma (see [18, Theorem 1.9.9]). By
(5), ] is flat, then TorX(R/I, ) = 0. Thus, TorX(R/K, L) = TorX(R/K, ] ® R) = 0. Consequently, R = R/Nil(R)
is a Priifer domain. By [1, Corollary 2.10], R is a ¢-Priifer ring.

(5) = (7): Let M be a ¢-flat module and N a submodule of M. Let I be a nonnil ideal of R. Then [ is
flat by (6). Thus, fdr(R/I) < 1. By considering the long exact sequence Tor2 (R/I, M/N) — Tor1 (R/I,N) —
Tor1 (R/I, M), we have Tor1 (R/I,N) = 0 since Tor2 (R/I, M/N) = Tor1 (R/I,M) = 0. Thus, N is ¢-flat.

(7) = (6) and (9) = (8): Trivial.

(8) = (7): Let F be a ¢-flat module, i : K > F a monomorphism, and f : K - F’ an epimorphism ¢-flat
preenvelope. Then there exists a homomorphism g : F/ — F such that i = gf. Thus, f is a monomorphism.
Consequently, K = F’, and K is ¢-flat.

(1) + 4) + (7) = (9): Let R be a ¢-Priifer ring and I a finitely generated nonnil ideal of R. By (4), I is
projective and thus finitely presented. It follows that R is nonnil-coherent. Thus, the class of ¢-flat modules
is preenveloping by Proposition 2.9. Let {F; | i € I} be a family of ¢-flat modules. Then [];; F; is ¢-flat by
[4, Theorem 2.4]. By (7), the class of ¢-flat modules is closed under submodules. Thus, the class of ¢-flat
modules is closed under inverse limits. By Corollary 2.10, the class of ¢-flat modules is enveloping.

We claim that the ¢-flat envelope of any R-module M is an epimorphism. Indeed, suppose f : M — Fis
the ¢-flat envelope of M. Let f = ho g with g : M - Imf an epimorphism and / : Imf »— F the embedding
map. We will show that g is the ¢-flat envelope of M. For any f’ : M — F’ with F’ ¢-flat, there exists
[:F— F suchthatlo f = f’. Thengohol = f’, and thus g is a ¢-flat preenvelope of M as Imf is ¢-flat by
(7).
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Suppose a : Imf — Imf such that g = a o g. Then a is an epimorphism. Consider the following
commutative diagram:

M—L>Tmp—L > F
RR
Y

S Imf— > F

Since f = hogis a ¢-flat envelope, there exists b : F — Fsuch thatbo f =bohog=hoaog=hog= f. Since
g is an epimorphism, 1 o a = b o h. Then a is a monomorphism, and thus a is an isomorphism. It follows
that g is the ¢-flat envelope of M. O

Remark 3.14. Actually, Zhao [22, Theorem 4.3] showed that if R is a strong ¢-ring, then R is a ¢-Priifer ring
if and only if each submodule of a ¢-flat R-module is ¢-flat, if and only if each nonnil ideal of R is ¢-flat,
if and only if every finitely generated nonnil ideal of R is ¢-flat. In Theorem 3.13, we provide simplified
versions of [22, Theorem 4.3] and several new characterizations of ¢-Priifer rings using divisible modules,
nonnil-FP-injective modules, and the epimorphic enveloping properties of ¢-flat modules.

The following example demonstrates that not every divisible R-module is necessarily nonnil-FP-injective
for ¢-Priifer rings. Therefore, the condition that R is a strong ¢-ring in Theorem 3.13 cannot be omitted.

Example 3.15. Let D be a non-field Priifer domain and K its quotient field. Let R = D(+)K/D be the
idealization construction. As in Example 3.9, we can show that R is a ¢-Priifer ring and a total ring of
quotients. Hence, every R-module is divisible. However, since Nil(R) is not a maximal ideal of R, the
Krull dimension of R is greater than 1. Therefore, by Theorem 2.7, there exists an R-module M that is not
nonnil-FP-injective.
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