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Some remarks on ϕ-Dedekind rings and ϕ-Prüfer rings
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Abstract. In this paper, we introduce and study the concepts of nonnil-injective modules and nonnil-
FP-injective modules. Specifically, we show that a ϕ-ring R is an integral domain if and only if every
nonnil-injective (resp., nonnil-FP-injective) R-module is injective (resp., FP-injective). Furthermore, we
provide new characterizations of ϕ-von Neumann regular rings, nonnil-Noetherian rings, and nonnil-
coherent rings. Lastly, we characterize ϕ-Dedekind rings and ϕ-Prüfer rings in terms of ϕ-flat modules,
nonnil-injective modules, and nonnil-FP-injective modules.

1. Introduction

Recall from [5] that a commutative ring R is called an NP-ring if its nilpotent radical Nil(R) is a prime
ideal, and a ZN-ring if Z(R) = Nil(R), where Z(R) denotes the set of all zero-divisors of R. A prime ideal P
of R is termed a divided prime if P ⊊ (x) for every x ∈ R \ P. Let

H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}.

A ring R is referred to as a ϕ-ring if R ∈ H . Moreover, a ZN ϕ-ring is called a strong ϕ-ring. Denote by
T(R) the localization of R at the set of all regular elements. For a ϕ-ring R, there is a ring homomorphism
ϕ : T(R)→ RNil(R) defined by ϕ(a/b) = a/b. The image of ϕ restricted to R is denoted by ϕ(R).

In 2001, Badawi [6] investigated ϕ-chained rings (abbreviated as ϕ-CRs), which are ϕ-rings R such that
for every x, y ∈ R \Nil(R), either x divides y or y divides x. In 2004, Anderson and Badawi [1] extended the
notion of Prüfer domains to ϕ-Prüfer rings, which are ϕ-rings R such that every finitely generated nonnil
ideal is ϕ-invertible. The authors in [1] provided several characterizations of ϕ-Prüfer rings, stating that
a ϕ-ring R is ϕ-Prüfer if and only if Rm is a ϕ-chained ring for every maximal ideal m of R, if and only if
R/Nil(R) is a Prüfer domain, if and only if ϕ(R) is Prüfer.

Later, in 2005, the authors in [2] generalized the concept of Dedekind domains to the context of rings
in the class H . A ϕ-ring is called a ϕ-Dedekind ring if every nonnil ideal is ϕ-invertible. They also proved
that a ϕ-ring R is ϕ-Dedekind if and only if R is nonnil-Noetherian and Rm is a discrete ϕ-chained ring
for every maximal ideal m of R, if and only if R is nonnil-Noetherian, ϕ-integrally closed, and has Krull
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dimension ≤ 1, if and only if R/Nil(R) is a Dedekind domain. Generalizations of Noetherian domains,
coherent domains, Bézout domains, and Krull domains to the context of rings in H were also introduced
and studied (see [1, 2, 4, 7, 8]).

The module-theoretic study of rings in H began over a decade ago. In 2006, Yang [19] introduced
nonnil-injective modules by replacing the ideals in Baer’s criterion for injective modules with nonnil ideals.
He showed that a ϕ-ring R is nonnil-Noetherian if and only if any direct sum of nonnil-injective modules
is nonnil-injective. In 2013, Zhao et al. [23] introduced and studied the concept of ϕ-von Neumann rings,
which can be characterized as follows: a ϕ-ring R is ϕ-von Neumann if and only if its Krull dimension is
0, if and only if every R-module is ϕ-flat, if and only if R/Nil(R) is a von Neumann regular ring. In 2018,
Zhao [22] provided a homological characterization of ϕ-Prüfer rings: a strong ϕ-ring R is ϕ-Prüfer if and
only if every submodule of a ϕ-flat module is ϕ-flat, if and only if every nonnil ideal of R is ϕ-flat.

The main motivation of this paper is to provide characterizations of ϕ-Dedekind rings and ϕ-Prüfer
rings in terms of new versions of injective modules and FP-injective modules. We first introduce and
study the notions of nonnil-injective modules and nonnil-FP-injective modules, and show that a ϕ-ring R
is an integral domain if and only if every nonnil-injective R-module is injective, and if and only if every
nonnil-FP-injective R-module is FP-injective (see Theorem 2.6). Additionally, new characterizations of ϕ-
von Neumann regular rings, nonnil-Noetherian rings, and nonnil-coherent rings in terms ofϕ-flat modules,
nonnil-injective modules, and nonnil-FP-injective modules are given (see Theorem 2.7, Proposition 2.8, and
Proposition 2.9 respectively).

We further prove that a strong ϕ-ring R is a ϕ-Dedekind ring if and only if every divisible module is
nonnil-injective, if and only if every h-divisible module is nonnil-injective, and if and only if every nonnil
ideal of R is projective (see Theorem 3.8). Additionally, we show that a strong ϕ-ring R is ϕ-Prüfer if and
only if every divisible module is nonnil-FP-injective, if and only if every finitely generated nonnil ideal of
R is projective, if and only if every ideal of R is ϕ-flat, and if and only if every R-module has an epimorphic
ϕ-flat envelope (see Theorem 3.13).

2. Nonnil-injective modules and nonnil-FP-injective modules

Throughout this paper, R denotes an NP-ring with identity, and all modules are unitary. We say that an
ideal I of R is nonnil if there exists a non-nilpotent element in I. Denote by NN(R) the set of all nonnil ideals
of R. It is easy to verify that NN(R) forms a multiplicative system of ideals, i.e., R ∈ NN(R) and IJ ∈ NN(R)
for any I, J ∈ NN(R).

Let M be an R-module. Define

ϕ-tor(M) = {x ∈M | Ix = 0 for some I ∈ NN(R)}.

An R-module M is said to beϕ-torsion (resp.,ϕ-torsion free) provided thatϕ-tor(M) =M (resp.,ϕ-tor(M) = 0).
Clearly, the class ofϕ-torsion modules is closed under submodules, quotients, direct sums, and direct limits.
Thus, an NP-ring R is ϕ-torsion free if and only if every flat module is ϕ-torsion free, and if and only if R is a
ZN-ring (see [22, Proposition 2.2]). The classes of ϕ-torsion modules and ϕ-torsion free modules constitute
a hereditary torsion theory of finite type. Recall that an ideal I of R is regular if there exists a regular element
(i.e., a non-zero-divisor) in I.

Lemma 2.1. Let R be a ϕ-ring, and let I be an ideal of R. Then the following assertions are equivalent:
1. I is a nonnil ideal of R;
2. I/Nil(R) is a nonzero ideal of R/Nil(R);
3. ϕ(I) is a regular ideal of ϕ(R).

Proof. (1)⇔ (2): Obvious.
(1) ⇒ (3): Let s be a non-nilpotent element in I. Then s

1 ∈ ϕ(I) is regular in ϕ(R). Indeed, suppose
s
1

t
1 = 0 in ϕ(R). Then there exists a non-nilpotent element u ∈ R such that ust = 0. Since R is a ϕ-ring, us is

non-nilpotent. Thus, t
1 = 0 in ϕ(R).

(3) ⇒ (1): Let s
1 be a regular element in ϕ(I) with s ∈ I. Then s is non-nilpotent. Indeed, if sn = 0 in R,

then ( s
1 )n = sn

1 = 0 in ϕ(R), which implies that s
1 is not regular in ϕ(R).
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Recall that an R-module M is injective (resp., FP-injective) if Ext1
R(N,M) = 0 for any (resp., finitely

presented) R-module N. We now investigate the notions of nonnil-injective modules and nonnil-FP-injective
modules using ϕ-torsion modules.

Definition 2.2. Let R be an NP-ring, and let M be an R-module.

1. M is called nonnil-injective if Ext1
R(T,M) = 0 for any ϕ-torsion module T.

2. M is called nonnil-FP-injective if Ext1
R(T,M) = 0 for any finitely presented ϕ-torsion module T.

Certainly, an R-module M is nonnil-injective if and only if Ext1
R(R/I,M) = 0 for any nonnil ideal I of

R (see [24, Theorem 1.7]). The class of nonnil-injective modules is closed under direct summands, direct
products, and extensions, while the class of nonnil-FP-injective modules is closed under pure submodules,
direct sums, direct products, and extensions.

Recall from [23] that an R-module M is ϕ-flat if TorR
1 (T,M) = 0 for any ϕ-torsion module T. It is well-

known that an R-module M is ϕ-flat if and only if TorR
1 (R/I,M) = 0 for any (finitely generated) nonnil ideal

I of R (see [23, Theorem 3.2]).

Proposition 2.3. Let R be an NP-ring. The following assertions are equivalent:

1. M is ϕ-flat;
2. HomR(M,E) is nonnil-injective for any injective module E;
3. HomR(M,E) is nonnil-FP-injective for any injective module E;
4. If E is an injective cogenerator, then HomR(M,E) is nonnil-injective;
5. If E is an injective cogenerator, then HomR(M,E) is nonnil-FP-injective.

Proof. (1) ⇒ (2): Let T be a ϕ-torsion R-module and E an injective R-module. Since M is ϕ-flat, we have
Ext1

R(T,HomR(M,E)) � HomR(TorR
1 (T,M),E) = 0. Thus, HomR(M,E) is nonnil-injective.

(2)⇒ (3)⇒ (5): Trivial.
(2)⇒ (4)⇒ (5): Trivial.
(5)⇒ (1): Let I be a finitely generated nonnil ideal of R and E an injective cogenerator. Since HomR(M,E)

is nonnil-FP-injective, we have HomR(TorR
1 (R/I,M),E) � Ext1

R(R/I,HomR(M,E)) = 0. Since E is an injective
cogenerator, it follows that TorR

1 (R/I,M) = 0. Therefore, M is ϕ-flat.

Proposition 2.4. Let R be a ϕ-ring, and let E be an R/Nil(R)-module. Then E is injective over R/Nil(R) if and only
if E is nonnil-injective over R.

Proof. Let I be a nonnil ideal of R. Set R = R/Nil(R) and I = I/Nil(R). Let E be an R-module. The short exact
sequence 0→ I→ R→ R/I→ 0 induces the long exact sequence of R-modules:

0→ HomR(R/I,E)→ HomR(R,E)→ HomR(I,E)→ Ext1
R(R/I,E)→ 0. (a)

The short exact sequence 0→ I→ R→ R/I→ 0 induces the long exact sequence of R-modules:

0→ HomR(R/I,E)→ HomR(R,E)→ HomR(I,E)→ Ext1
R

(R/I,E)→ 0. (b)

By [21, Lemma 1.6], INil(R) = Nil(R). Thus, I ⊗R R � I/INil(R) � I. Consequently, we have

HomR(I,E) � HomR(I ⊗R R,E) � HomR(I,HomR(R,E)) � HomR(I,E)

by the Adjoint Isomorphism Theorem (see [18, Theorem 2.2.16]). Combining (a) and (b), we conclude that E
is injective over R/Nil(R) if and only if E is nonnil-injective over R (see Lemma 2.1 and [1, Lemma 2.4]).

Proposition 2.5. Let R be a ϕ-ring, and let M be an FP-injective R/Nil(R)-module. Then M is nonnil-FP-injective
over R.
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Proof. Let T be a finitely presented ϕ-torsion module over R. Then there exists a short exact sequence
0→ K→ F→ T→ 0, where F is a finitely generated free R-module and K is a finitely generated R-module.
Set R = R/Nil(R). By tensoring R over R, we obtain the following long exact sequence over R:

TorR
1 (T,R)→ K ⊗R R→ F ⊗R R→ T ⊗R R→ 0.

By [21, Proposition 1.7], R is ϕ-flat over R, thus TorR
1 (T,R) = 0. It follows that T ⊗R R is a finitely presented

R-module. We now have the following commutative diagram with exact rows:

HomR(F,M) //

�

��

HomR(K,M) //

�

��

Ext1
R(T,M) //

f
��

0

HomR(F ⊗R R,M) // HomR(K ⊗R R,M) // Ext1
R

(T ⊗R R,M) // 0.

By the Adjoint Isomorphism Theorem, the first two vertical homomorphisms are isomorphisms. By the five
Lemma, it follows that f is also an isomorphism. Since M is FP-injective over R, we have Ext1

R
(T⊗R R,M) = 0.

Thus, Ext1
R(T,M) = 0, and hence M is nonnil-FP-injective over R.

Obviously, any FP-injective module is nonnil-FP-injective, and any injective module is nonnil-injective.
However, the converses characterize integral domains.

Theorem 2.6. Let R be a ϕ-ring. Then the following assertions are equivalent:

1. R is an integral domain;
2. Any nonnil-injective module is injective;
3. Any nonnil-FP-injective module is FP-injective.

Proof. (1)⇒ (2) and (1)⇒ (3): Trivial.
(2) ⇒ (1): By [9, Theorem 3.1.6], HomZ(R/Nil(R),Q/Z) is an injective R/Nil(R)-module. Thus, by

Proposition 2.4, HomZ(R/Nil(R),Q/Z) is a nonnil-injective R-module, and therefore an injective R-module.
By [9, Theorem 3.2.10], R/Nil(R) is a flat R-module. Let K be a finitely generated nilpotent ideal. Then
K ⊆ Nil(R) ⊆ Rad(R). Thus, K/KNil(R) = K∩Nil(R)

KNil(R) = TorR
1 (R/K,R/Nil(R)) = 0. It follows from Nakayama’s

Lemma that K = 0. Therefore, Nil(R) = 0, and thus R is an integral domain.
(3)⇒ (1): Similar to (2)⇒ (1).

Recall from [23] that a ϕ-ring R is said to be ϕ-von Neumann if the Krull dimension of R is 0. It is well
known that a ϕ-ring R is ϕ-von Neumann if and only if R/Nil(R) is a von Neumann ring, and if and only if
any R-module is ϕ-flat (see [23, Theorem 4.1]).

Theorem 2.7. Let R be a ϕ-ring. Then the following assertions are equivalent:

1. R is a ϕ-von Neumann regular ring;
2. R/Nil(R) is a field;
3. Any non-nilpotent element in R is invertible;
4. Any R-module is ϕ-flat;
5. Any R-module is nonnil-FP-injective;
6. Any R-module is nonnil-injective.

Proof. (1)⇔ (4): See [23, Theorem 4.1].
(1)⇒ (2): Since Nil(R) is a prime ideal of R, R/Nil(R) is a 0-dimensional domain, and thus a field by [12,

Theorem 3.1].
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(2) ⇒ (3): Let a be a non-nilpotent element in R. Since R/Nil(R) is a field, there exists b ∈ R such that
1 − ab ∈ Nil(R). That is, (1 − ab)n = 0 for some n. It is easy to verify that a is invertible.

(3)⇒ (2)⇒ (1): Trivial.
(3) ⇒ (5): It follows from (3) that the only nonnil ideal of R is R itself. Let T be a finitely presented ϕ-

torsion module. Then T = ϕ-tor(T) = {x ∈ T | Ix = 0 for some nonnil ideal I of R} = 0. Hence, Ext1
R(T,M) =

0. Consequently, M is nonnil-FP-injective.
(5) ⇒ (1): Let I be a finitely generated nonnil ideal of R. Since, for any R-module M, Ext1

R(R/I,M) = 0
by (5), R/I is projective. Thus, I is an idempotent ideal of R. By [10, Proposition 1.10], I is generated by an
idempotent e ∈ R. Therefore, R is a ϕ-von Neumann regular ring by [23, Theorem 4.1].

(3)⇒ (6) and (6)⇒ (5): Obvious.

Recall from [7] that a ϕ-ring R is called nonnil-Noetherian if any nonnil ideal of R is finitely generated.

Proposition 2.8. Let R be a ϕ-ring. Then R is nonnil-Noetherian if and only if any nonnil-FP-injective module is
nonnil-injective.

Proof. Suppose R is a nonnil-Noetherian ring. Let I be a nonnil ideal of R and M a nonnil-FP-injective
module. Then I is finitely generated, and thus R/I is a finitely presented ϕ-torsion module. It follows that
Ext1

R(R/I,M) = 0. Consequently, M is nonnil-injective by [24, Theorem 1.7].
Conversely, since the class of nonnil-FP-injective modules is closed under direct sums, R is a nonnil-

Noetherian ring by [19, Theorem 1.9].

Recall from [4] that aϕ-ring R is called nonnil-coherent if any finitely generated nonnil ideal of R is finitely
presented. A ϕ-ring R is nonnil-coherent if and only if any direct product of ϕ-flat modules is ϕ-flat, and if
and only if RI is ϕ-flat for any indexing set I (see [4, Theorem 2.4]). Now we give a new characterization of
nonnil-coherent rings using the preenveloping properties of ϕ-flat modules.

Proposition 2.9. Let R be a ϕ-ring. Then R is nonnil-coherent if and only if the class of ϕ-flat modules is preen-
veloping.

Proof. Suppose R is a nonnil-coherent ring. By [4, Theorem 2.4], the class of ϕ-flat modules is closed under
direct products. Note that any pure submodule of aϕ-flat module isϕ-flat. Thus, the class ofϕ-flat modules
is preenveloping by [9, Lemma 5.3.12, Corollary 6.2.2].

Conversely, let {Fi}i∈I be a family ofϕ-flat modules. Let
∏

i∈I Fi → F be aϕ-flat preenvelope. Then there is
a factorization

∏
i∈I Fi → F→ Fi for each i ∈ I. Consequently, the natural composition

∏
i∈I Fi → F→

∏
i∈I Fi

is the identity. Thus,
∏

i∈I Fi is a direct summand of F, and hence
∏

i∈I Fi isϕ-flat. It follows from [4, Theorem
2.4] that R is nonnil-coherent.

The following corollary follows from Theorem 3.8 and [9, Corollary 6.3.5].

Corollary 2.10. Let R be a nonnil-coherent ring. If the class of ϕ-flat modules is closed under inverse limits, then
the class of ϕ-flat modules is enveloping.

3. ϕ-Dedekind rings and ϕ-Prüfer rings

Recall that an R-module E is said to be divisible if sM =M for any regular element s ∈ R, and an R-module
M is said to be h-divisible provided that M is a quotient of an injective module. Evidently, any injective
module is h-divisible and any h-divisible module is divisible. It is well known that an integral domain R
is a Dedekind domain if and only if any h-divisible module is injective, and if and only if any divisible
module is injective (see [18, Theorem 5.2.15], for example).

Definition 3.1. Let R be an NP-ring. An R-module E is called nonnil-divisible provided that for any m ∈ E
and any non-nilpotent element a ∈ R, there exists x ∈ E such that ax = m.
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Lemma 3.2. Let R be an NP-ring and E an R-module. Consider the following statements:

1. E is nonnil-divisible;
2. E is divisible;
3. Ext1

R(R/⟨a⟩,E) = 0 for any a < Nil(R).

Then we have (1)⇒ (2) and (1)⇒ (3). Moreover, if R is a ZN-ring, all statements are equivalent.

Proof. (1)⇒ (2) and (2)⇒ (1) for ZN-rings: Trivial.
(1)⇒ (3): Let a be a non-nilpotent element (then regular) in R and f : ⟨a⟩ → E be an R-homomorphism.

Then there exists an element x ∈ E such that f (a) = ax since E is nonnil-divisible. Set 1(r) = rx for any r ∈ R.
Then 1 is an extension of f to R. Thus Ext1

R(R/⟨a⟩,E) = 0.
(3) ⇒ (1) for ZN-rings: Let a be a non-nilpotent element in R and m an element in E. Set f (ra) = rm.

Then f is a well-defined R-homomorphism from ⟨a⟩ to E. Since Ext1
R(R/⟨a⟩,E) = 0, there exists an R-

homomorphism 1 : R → E such that 1|⟨a⟩ = f . Let x = 1(1). Then m = f (a) = 1(a) = a1(1) = ax. Thus, E is
nonnil-divisible.

The following result is an easy corollary of Lemma 3.2.

Corollary 3.3. Let R be a ZN-ring, and let E be a nonnil-FP-injective R-module. Then E is a nonnil-divisible
R-module.

Lemma 3.4. Let R be an NP-ring, and let E be a nonnil-divisible R-module. Then Ep is a nonnil-divisible Rp-module
for any prime ideal p of R.

Proof. Suppose E is a nonnil-divisible R-module. Let m
s be an element in Ep and r

t a non-nilpotent element
in Rp. Then s, t, and r are non-nilpotent elements in R. Thus, there exists y ∈ E such that tm = sry in R.
Therefore, m

s =
r
t

y
1 . It follows that Ep is a nonnil-divisible Rp-module.

Recall from [1] that a ϕ-ring R is called a ϕ-chained ring if for every x ∈ RNil(R) −ϕ(R), we have x−1
∈ ϕ(R),

equivalently, if for any a, b ∈ R −Nil(R), either a | b or b | a in R. Moreover, a ϕ-ring R is said to be a discrete
ϕ-chained ring if R is a ϕ-chained ring with at most one nonnil prime ideal and every nonnil ideal of R is
principal (see [2]).

Proposition 3.5. Let R be a discrete ϕ-chained ring, and let E be a nonnil-divisible R-module. Then E is a nonnil-
injective R-module.

Proof. Let I be a nonnil ideal of R. Since R is a discrete ϕ-chained ring, I is generated by a non-nilpotent
element a ∈ R. Let f : I → E be an R-homomorphism. Then there exists x ∈ E such that f (a) = ax as E is
divisible. Define 1 : R → E by 1(r) = rx. Then 1 is an extension of f to R. Hence, E is a nonnil-injective
R-module.

Recall that a regular ideal I of R is called invertible if II−1 = R, where I−1 = {x ∈ T(R) | Ix ⊆ R}. It follows
from [12, Lemma 18.1] and [11, Lemma 5.3] that a regular ideal is invertible if and only if it is finitely
generated and locally principal, and if and only if it is projective. Recall from [1] that a nonnil ideal I of a
ϕ-ring R is said to be ϕ-invertible provided that ϕ(I) is an invertible ideal of ϕ(R).

Proposition 3.6. Let R be a ϕ-ring, and let I be a nonnil ideal of R. If I is projective over R, then I is ϕ-invertible.

Proof. Since I is a projective R-ideal, I is a direct summand of a free R-module R(κ). Then ϕ(I) is a direct
summand of a free ϕ(R)-module ϕ(R)(κ). Thus, ϕ(I) is a projective ϕ(R)-ideal. Since I is a nonnil ideal of R,
ϕ(I) is a regular ideal of ϕ(R) by Lemma 2.1. By [11, Lemma 5.3], ϕ(I) is an invertible ideal of ϕ(R). Thus, I
is ϕ-invertible.
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Recall that an integral domain R is a Dedekind domain if any nonzero ideal is invertible. Utilizing
the concept of ϕ-invertibility, the authors in [2] introduced ϕ-Dedekind rings, which generalize Dedekind
domains to the context of rings that are in the classH .

Definition 3.7. A ϕ-ring R is called ϕ-Dedekind provided that any nonnil ideal of R is ϕ-invertible.

Theorem 3.8. Let R be a ϕ-ring. Then the following statements are equivalent for R:

1. R is a ϕ-Dedekind ring and a strong ϕ-ring;
2. Any divisible module is nonnil-injective;
3. Any h-divisible module is nonnil-injective;
4. Any nonnil ideal of R is projective.

Proof. (1) ⇒ (2): Let E be a divisible module, and let I be a nonnil ideal of R. By [2, Theorem 2.10], R is
nonnil-Noetherian. Hence, I is finitely generated, and thus R/I is finitely presented. Let m be a maximal
ideal of R. Then Em is a divisible module over Rm by Lemma 3.2 and Lemma 3.4. By [2, Theorem 2.10]
again, Rm is a discrete ϕ-chained ring, so Em is a nonnil-injective Rm-module by Proposition 3.5. By [18,
Theorem 3.9.11], Ext1

R(R/I,E)m = Ext1
Rm (Rm/Im,Em) = 0. Thus, Ext1

R(R/I,E) = 0, and E is nonnil-injective.
(2)⇒ (3): Trivial.
(3) ⇒ (4): Let N be an R-module, and let I be a nonnil ideal of R. There is a long exact sequence as

follows:

0 = Ext1
R(R,N)→ Ext1

R(I,N)→ Ext2
R(R/I,N)→ Ext2

R(R,N) = 0.

Let 0 → N → E → K → 0 be an exact sequence where E is the injective envelope of N. There exists a long
exact sequence as follows:

0 = Ext1
R(R/I,E)→ Ext1

R(R/I,K)→ Ext2
R(R/I,N)→ Ext2

R(R/I,E) = 0.

Thus, Ext1
R(I,N) � Ext2

R(R/I,N) � Ext1
R(R/I,K) = 0 as K is nonnil-injective. It follows that I is a projective

ideal of R.
(4) ⇒ (1): It follows from Proposition 3.6 that we only need to show that R is a strong ϕ-ring. Indeed,

let a be a non-nilpotent element in R. Then ⟨a⟩ is a projective ideal of R. By [13, Corollary 2.6], R is a strong
ϕ-ring.

The next example shows that every divisible module is not necessarily nonnil-injective for ϕ-Dedekind
rings. Thus, the condition that R is a strong ϕ-ring in Theorem 3.8 cannot be removed.

Example 3.9. Let D be a non-field Dedekind domain and K its quotient field. Let R = D(+)K/D be the
idealization construction. Then Nil(R) = 0(+)K/D. Since D � R/Nil(R) is a Dedekind domain, R is a
ϕ-Dedekind ring by [2, Theorem 2.5]. Denote by U(R) and U(D) the sets of unit elements of R and D,
respectively. Since Z(R) = {(r,m) | r ∈ Z(D) ∪ Z(K/D)} = [R − U(D)](+)K/D = R − U(R) by [3, Theorem 3.5,
Theorem 3.7], R is a total ring of quotients. Thus, any R-module is divisible. However, since Nil(R) is not a
maximal ideal of R, there exists an R-module M that is not nonnil-injective by Theorem 2.7.

Recall that an integral domain R is a Prüfer domain if any finitely generated nonzero ideal is invertible.
The following definition generalizes Prüfer domains to the context of rings in the classH (see [1]).

Definition 3.10. A ϕ-ring R is called ϕ-Prüfer provided that any finitely generated nonnil ideal of R is
ϕ-invertible.

Lemma 3.11. Let R be an NP-ring, p a prime ideal of R, and I an ideal of R. Then I is nonnil over R if and only if Ip
is nonnil over Rp.
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Proof. Let I be nonnil over R, and let x be a non-nilpotent element in I. We will show that the element x/1 in
Ip is non-nilpotent in Rp. If (x/1)n = xn/1 = 0 in Rp for some positive integer n, there is an s ∈ R− p such that
sxn = 0 in R. Since R is an NP-ring, Nil(R) is the minimal prime ideal of R. In the integral domain R/Nil(R),
we have sxn = 0, thus xn = 0 since s < Nil(R). So x ∈ Nil(R), a contradiction.

Now, let x/s be a non-nilpotent element in Ip where x ∈ I and s ∈ R − p. Clearly, x is non-nilpotent in R,
and thus I is nonnil over R.

Proposition 3.12. Let R be an NP-ring, p a prime ideal of R, and M an R-module. Then M is ϕ-torsion over R if
and only if Mp is ϕ-torsion over Rp.

Proof. Let M be an R-module and x ∈ M. If Mp is ϕ-torsion over Rp, there exists a nonnil ideal Ip over Rp
such that Ip(x/1) = 0 in Rp. Let I be the preimage of Ip in R. Then I is nonnil by Lemma 3.11. Thus, there is
a non-nilpotent element t ∈ I such that tkx = 0 for some k < p. Let s = tk. Then we have ⟨s⟩ is nonnil and
⟨s⟩x = 0. Thus, M is ϕ-torsion over R.

Conversely, suppose M is ϕ-torsion over R. Let x/s be an element in Mp. Then there exists a nonnil ideal
I such that Ix = 0, and thus Ip(x/s) = 0, with Ip nonnil over Rp by Lemma 3.11. It follows that Mp is ϕ-torsion
over Rp.

Theorem 3.13. Let R be a ϕ-ring. Then the following statements are equivalent for R:

1. R is a ϕ-Prüfer ring and a strong ϕ-ring;
2. Any divisible module is nonnil-FP-injective;
3. Any h-divisible module is nonnil-FP-injective;
4. Any finitely generated nonnil ideal of R is projective;
5. Any (finitely generated) nonnil ideal of R is flat;
6. Any (finitely generated) ideal of R is ϕ-flat;
7. Any submodule of a ϕ-flat module is ϕ-flat;
8. Any R-module has an epimorphism ϕ-flat preenvelope;
9. Any R-module has an epimorphism ϕ-flat envelope.

Proof. (1)⇒ (2): Let T be a finitely presented ϕ-torsion module, and letm be a maximal ideal of R. Then by
Proposition 3.12, Tm is a finitely presented ϕ-torsion Rm-module. By [1, Corollary 2.10], Rm is a ϕ-chained
ring. Since R is a strong ϕ-ring, Rm is also a strong ϕ-ring. Thus, Tm �

⊕n
i=1 Rm/Rmxi for some regular

elements xi ∈ Rm by [22, Theorem 4.1]. Let E be a divisible module. Then Em is a divisible module over Rm
by Lemma 3.2 and Lemma 3.4. Thus,

Ext1
R(T,E)m = Ext1

Rm (Tm,Em) =
n⊕

i=1

Ext1
Rm (Rm/Rmxi,Em) = 0

by Lemma 3.2 and [18, Theorem 3.9.11]. It follows that Ext1
R(T,E) = 0. Therefore, E is nonnil-FP-injective.

(2)⇒ (3): Trivial.
(3) ⇒ (4): Let N be an R-module, and let I be a finitely generated nonnil ideal of R. The short exact

sequence 0→ I→ R→ R/I→ 0 induces a long exact sequence as follows:

0 = Ext1
R(R,N)→ Ext1

R(I,N)→ Ext2
R(R/I,N)→ Ext2

R(R,N) = 0.

Let 0 → N → E → K → 0 be an exact sequence where E is the injective envelope of N. There exists a long
exact sequence as follows:

0 = Ext1
R(R/I,E)→ Ext1

R(R/I,K)→ Ext2
R(R/I,N)→ Ext2

R(R/I,E) = 0.

Thus, Ext1
R(I,N) � Ext2

R(R/I,N) � Ext1
R(R/I,K) = 0 as K is nonnil-FP-injective. It follows that I is a projective

ideal of R.
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(4)⇒ (1): It follows from Proposition 3.6 and Theorem 3.8.
(4) ⇒ (5): Let I be a nonnil ideal of R, and let a be a non-nilpotent element in I. Let {Ii}i∈Γ be a family

of finitely generated subideals of I such that lim
−→

Ii = I. Set I′i = ⟨I, a⟩. Then I′i is a finitely generated nonnil
ideal of R such that lim

−→
I′i = I. Since each I′i is projective by (4), I is a flat ideal of R.

(5)⇔ (6): Let I be a (resp., finitely generated) nonnil ideal of R, and let J be a (resp., finitely generated)
ideal of R. Then we have

TorR
1 (R/J, I) � TorR

2 (R/I,R/J) � TorR
1 (R/I, J).

Thus, I is flat if and only if J is ϕ-flat.
(5) ⇒ (1): It follows from [13, Corollary 2.6] that R is a strong ϕ-ring. Let K and L be non-zero (resp.,

finitely generated) ideals of R/Nil(R) (denoted by R). Then K = I/Nil(R) and L = J/Nil(R) for some (resp.,
finitely generated) nonnil ideals I and J of R (see [1, Lemma 2.4]). By [21, Lemma 1.6], JNil(R) = Nil(R).
Thus, L = J/Nil(R) � J ⊗R R.

We claim that TorR
1 (R/K,L) = 0. Indeed, by change of rings, the exact sequence of R-modules:

0→ TorR
1 (R/K, J ⊗R R)→ K ⊗R J ⊗R R→ R ⊗R J ⊗R R→ R/K ⊗R J ⊗R R→ 0

is naturally isomorphic to

0→ TorR
1 (R/K, J ⊗R R)→ K ⊗R J→ R ⊗R J→ R/K ⊗R J→ 0.

Thus, there is a commutative diagram of R-modules:

0 // TorR
1 (R/I, J)

f
��

// I ⊗R J

1

��

// R ⊗R J

h
��

// R/I ⊗R J

�

��

// 0

0 // TorR
1 (R/K, J ⊗R R) // K ⊗R J // R ⊗R J // R/K ⊗R J // 0.

Since 1 and h are epimorphisms, f is also an epimorphism by the five Lemma (see [18, Theorem 1.9.9]). By
(5), J is flat, then TorR

1 (R/I, J) = 0. Thus, TorR
1 (R/K,L) � TorR

1 (R/K, J ⊗R R) = 0. Consequently, R = R/Nil(R)
is a Prüfer domain. By [1, Corollary 2.10], R is a ϕ-Prüfer ring.

(5) ⇒ (7): Let M be a ϕ-flat module and N a submodule of M. Let I be a nonnil ideal of R. Then I is
flat by (6). Thus, fdR(R/I) ≤ 1. By considering the long exact sequence TorR

2 (R/I,M/N) → TorR
1 (R/I,N) →

TorR
1 (R/I,M), we have TorR

1 (R/I,N) = 0 since TorR
2 (R/I,M/N) = TorR

1 (R/I,M) = 0. Thus, N is ϕ-flat.
(7)⇒ (6) and (9)⇒ (8): Trivial.
(8)⇒ (7): Let F be a ϕ-flat module, i : K↣ F a monomorphism, and f : K ↠ F′ an epimorphism ϕ-flat

preenvelope. Then there exists a homomorphism 1 : F′ → F such that i = 1 f . Thus, f is a monomorphism.
Consequently, K � F′, and K is ϕ-flat.

(1) + (4) + (7) ⇒ (9): Let R be a ϕ-Prüfer ring and I a finitely generated nonnil ideal of R. By (4), I is
projective and thus finitely presented. It follows that R is nonnil-coherent. Thus, the class of ϕ-flat modules
is preenveloping by Proposition 2.9. Let {Fi | i ∈ I} be a family of ϕ-flat modules. Then

∏
i∈I Fi is ϕ-flat by

[4, Theorem 2.4]. By (7), the class of ϕ-flat modules is closed under submodules. Thus, the class of ϕ-flat
modules is closed under inverse limits. By Corollary 2.10, the class of ϕ-flat modules is enveloping.

We claim that the ϕ-flat envelope of any R-module M is an epimorphism. Indeed, suppose f : M→ F is
the ϕ-flat envelope of M. Let f = h ◦ 1with 1 : M↠ Im f an epimorphism and h : Im f ↣ F the embedding
map. We will show that 1 is the ϕ-flat envelope of M. For any f ′ : M → F′ with F′ ϕ-flat, there exists
l : F→ F′ such that l ◦ f = f ′. Then 1 ◦ h ◦ l = f ′, and thus 1 is a ϕ-flat preenvelope of M as Im f is ϕ-flat by
(7).
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Suppose a : Im f → Im f such that 1 = a ◦ 1. Then a is an epimorphism. Consider the following
commutative diagram:

M
1 // // Im f

a

��

// h // F

b
��

M
1 // // Im f // h // F

Since f = h◦1 is a ϕ-flat envelope, there exists b : F→ F such that b◦ f = b◦h◦1 = h◦ a◦1 = h◦1 = f . Since
1 is an epimorphism, h ◦ a = b ◦ h. Then a is a monomorphism, and thus a is an isomorphism. It follows
that 1 is the ϕ-flat envelope of M.

Remark 3.14. Actually, Zhao [22, Theorem 4.3] showed that if R is a strong ϕ-ring, then R is a ϕ-Prüfer ring
if and only if each submodule of a ϕ-flat R-module is ϕ-flat, if and only if each nonnil ideal of R is ϕ-flat,
if and only if every finitely generated nonnil ideal of R is ϕ-flat. In Theorem 3.13, we provide simplified
versions of [22, Theorem 4.3] and several new characterizations of ϕ-Prüfer rings using divisible modules,
nonnil-FP-injective modules, and the epimorphic enveloping properties of ϕ-flat modules.

The following example demonstrates that not every divisible R-module is necessarily nonnil-FP-injective
for ϕ-Prüfer rings. Therefore, the condition that R is a strong ϕ-ring in Theorem 3.13 cannot be omitted.

Example 3.15. Let D be a non-field Prüfer domain and K its quotient field. Let R = D(+)K/D be the
idealization construction. As in Example 3.9, we can show that R is a ϕ-Prüfer ring and a total ring of
quotients. Hence, every R-module is divisible. However, since Nil(R) is not a maximal ideal of R, the
Krull dimension of R is greater than 1. Therefore, by Theorem 2.7, there exists an R-module M that is not
nonnil-FP-injective.
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