

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Beurling degree of inner matrix functions (II)

In Sung Hwanga, Hyoung Joon Kimb,, Jaehui Parkc

^a Department of Mathematics, Sungkyunkwan University, Suwon 16419, South Korea
 ^b Department of Mathematical Sciences, Seoul National University, Seoul 08826, South Korea
 ^c Department of Mathematics Education, Chonnam National University, Gwangju 61186, South Korea

Abstract. In this paper we show that for square-inner matrix functions, quasi-equivalence preserves the Beurling degree by using the Moore–Nordgren theorem.

1. Introduction

Let D and E be separable complex Hilbert spaces. Write $\mathcal{B}(D,E)$ for the set of all bounded linear operators from D into E and abbreviate $\mathcal{B}(E,E)$ to $\mathcal{B}(E)$. For an operator $T \in \mathcal{B}(E)$, an *orbit* of $x \in E$ under T is defined by

$$O_x(T) := \{T^n x : n \ge 0\} = \{x, Tx, T^2 x, \dots\}.$$

If $\bigvee O_x(T) = E$, then x is a cyclic vector for T. For example, if $x = 1 \in H^2$ then $\bigvee O_1(S) = H^2$. The *spectral multiplicity*, denoted by μ_T , of an operator $T \in \mathcal{B}(E)$ is defined by

$$\mu_T := \inf \left\{ \operatorname{card} F : \bigvee_{x \in F} O_x(T) = E, F \subseteq E \right\},$$

For a Banach space X, let $L^2_X \equiv L^2_X(\mathbb{T})$ be the space of X-valued norm square-integrable measurable functions on \mathbb{T} and let $L^\infty_X \equiv L^\infty_X(\mathbb{T})$ be the set of X-valued essentially bounded measurable functions on \mathbb{T} . We also let $H^2_X \equiv H^2_X(\mathbb{T})$ be the corresponding Hardy space and $H^\infty_X \equiv H^\infty_X(\mathbb{T}) = L^\infty_X \cap H^2_X$. We observe that $L^2_{\mathbb{C}^n} = L^2 \otimes \mathbb{C}^n$ and $H^2_{\mathbb{C}^n} = H^2 \otimes \mathbb{C}^n$.

Let $M_{N\times r}$ denote the set of all $N\times r$ complex matrices and write $M_N:=M_{N\times N}$. Write I_N for the $N\times N$ identity matrix. A matrix-valued function $\Delta\in H^\infty_{M_{N\times r}}$ is called an *inner* matrix function if $\Delta(z)$ is an isometry as an operator from \mathbb{C}^r into \mathbb{C}^N for almost all $z\in \mathbb{T}$, i.e., $\Delta^*\Delta=I_r$ a.e. on \mathbb{T} . Thus, for $\Delta\in H^\infty_{M_{N\times r}}$ to be inner,

²⁰²⁰ Mathematics Subject Classification. Primary 47A56; Secondary 15A15, 30J05, 47B35

Keywords. The Beurling degree, the spectral multiplicity, Moore–Nordgren theorem, quasiequivalent

Received: 18 October 2023; Accepted: 30 September 2025

Communicated by Dragan S. Djordjević

The work of the first named author was supported by NRF(Korea) grant No. 2022R1A2C1010830.

^{*} Corresponding author: Hyoung Joon Kim

Email addresses: ihwang@skku.edu (In Sung Hwang), hjkim76@snu.ac.kr (Hyoung Joon Kim), hiems1855@gmail.com (Jaehui Park)

 $N \ge r$. To avoid triviality, we assume that inner matrix function is not unitary matrix. For an inner matrix function Δ in $H^{\infty}_{M_{Nuv}}$, let

$$\mathcal{H}(\Delta) := H^2_{\mathbb{C}^N} \ominus \Delta H^2_{\mathbb{C}^r}.$$

The space $\mathcal{H}(\Delta)$ is often called a model space or a de Branges–Rovnyak space [2], [5], [7]. Let $S_{\mathbb{C}^N}$ be the shift operator on $H^2_{\mathbb{C}^N}$, i.e.,

$$(S_{\mathbb{C}^N}f)(z) = zf(z)$$
 for each $f \in H^2_{\mathbb{C}^N}$.

By the Beurling–Lax Theorem (cf. [5]), every invariant subspace of $S^*_{\mathbb{C}^N}$ is of the form $\mathcal{H}(\Delta)$ for some inner function $\Delta \in H^\infty_{M_{N\times T}}$. Thus the restriction $S^*_{\mathbb{C}^N}|_{\mathcal{H}(\Delta)}$ of $S^*_{\mathbb{C}^N}$ to its invariant subspace $\mathcal{H}(\Delta)$ is in $\mathcal{B}(\mathcal{H}(\Delta))$. Often, $S^*_{\mathbb{C}^N}|_{\mathcal{H}(\Delta)}$ is called the truncated backward shift operator.

For $\Phi \in L^2_{M_{N\times r}}$, the Hankel operator $H_{\Phi}: H^2_{\mathbb{C}^r} \to H^2_{\mathbb{C}^N}$ is a densely defined operator defined by

$$H_{\Phi}p := JP_{-}(\Phi p) \quad (p \in \mathcal{P}_{\mathbb{C}^r}),$$

where $\mathcal{P}_{\mathbb{C}^r}$ is the set of \mathbb{C}^r -valued polynomials, P_- is the orthogonal projection from $L^2_{\mathbb{C}^N}$ onto $L^2_{\mathbb{C}^N} \ominus H^2_{\mathbb{C}^N}$, and J denotes the unitary operator from $L^2_{\mathbb{C}^N}$ to $L^2_{\mathbb{C}^N}$ given by $(Jg)(z) := \overline{z}g(\overline{z})$ for $g \in L^2_{\mathbb{C}^N}$. For a function $\Phi \in L^2_{M_{N\times r}}$, write

$$\check{\Phi}(z) := \Phi(\overline{z}) \quad \text{and} \quad \widetilde{\Phi} := \Phi(\overline{z})^*.$$

It is known that $\ker H_{\Phi}^*$ is invariant for $S_{\mathbb{C}^N}$. Thus, by the Beurling–Lax Theorem, $\ker H_{\Phi}^* = \Delta H_{\mathbb{C}^r}^2$ for some inner function $\Delta \in H_{M_{N/r}}^{\infty}$.

Definition 1.1. [2] Let Δ be an inner matrix function in $H_{M_{N\times r}}^{\infty}$. Then the Beurling degree of Δ , denoted by $deg_B(\Delta)$, is defined by

$$\deg_B(\Delta) := \min \{ m : \ker H^*_{\Phi} = \Delta H^2_{\mathbb{C}^r} \text{ for some } \Phi \in L^2_{M_{N \times m}} \}.$$

If $\Phi \in L^{\infty}_{M_{N \times m'}}$, then we can easily check that $H^*_{\Phi} = H_{\Phi^*}$. Note that $\deg_B(\Delta) \leq r+1$ (cf. [2, Corollary 4.2]). Also, $\deg_B(\Delta) \leq N$, because if N=r, then $\ker H_{\Delta^*} = \Delta H^2_{\mathbb{C}^N}$. For a subset F of $H^2_{\mathbb{C}^N}$, let E^*_F denote the smallest $S^*_{\mathbb{C}^N}$ -invariant subspace containing F, i.e.,

$$E_F^* = \bigvee \left\{ S_{\mathbb{C}^N}^{*n} F : \ n \ge 0 \right\}.$$

Then by the Beurling–Lax Theorem, $E_F^* = \mathcal{H}(\Delta)$ for an inner function Δ with values in $M_{N\times r}$. Now, given a backward shift-invariant subspace $\mathcal{H}(\Delta)$, we may ask:

Question 1.2. What is the smallest number of vectors in F satisfying $\mathcal{H}(\Delta) = E_F^*$?

We here observe that Question 1.2 is identical to the problem of finding the spectral multiplicity of the truncated backward shift operator $S_{\mathbb{C}^N}^*|_{\mathcal{H}(\Delta)}$.

If $\Phi \in H^2_{M_{N\times r}}$ and $\{e_k : k = 1, 2, \dots, r\}$ is an orthonormal basis for \mathbb{C}^r , write

$$\phi_k := \Phi e_k \in H^2_{\mathbb{C}^N}.$$

We then define

$$\{\Phi\}:=\{\phi_1,\ldots,\phi_r\}\subseteq H^2_{\mathbb{C}^N}.$$

Hence, $\{\Phi\}$ may be regarded as the set of "column" vectors ϕ_k (in $H^2_{\mathbb{C}^N}$) of Φ . It was known ([2, Lemma 2.9]) that if $\Phi \in M_{N \times r}$, then

$$E_{\{\Phi\}}^* = \operatorname{cl} \operatorname{ran} H_{\overline{z}\Phi}. \tag{1}$$

Also, an answer to Question 1.2 was given in [2, Theorem 4.6]. Indeed, it was shown that there is a connection between the Beurling degree and the spectral multiplicity: more concretely, given an inner function Δ with values in $M_{N\times r}$, if $T:=S_{\mathbb{C}^N}^*|_{\mathcal{H}(\Delta)}$, then

$$\mu_T = \deg_{\mathbb{R}}(\Delta).$$
 (2)

For an operator $A_k \in \mathcal{B}(E_k)$ (E_k is a Hilbert space for each k = 1, 2), we say that A_1 is a *deformation* of A_2 , and write $A_1 < A_2$, if there exists an operator $T \in \mathcal{B}(E_1, E_2)$ such that T is injective and has dense range, and $TA_1 = A_2T$. If $A_1 < A_2$ and $A_2 < A_1$, we say that A_1 and A_2 are *quasi-similar*.

For an inner matrix function $\Delta \in H^{\infty}_{M_{N\times r}}$, write

$$\mathbf{S}_{\Delta} := P_{\mathcal{H}(\Delta)} S_{\mathbb{C}^N}|_{\mathcal{H}(\Delta)}.$$

We recall that the Model Theorem (cf. [5]) states that if $T \in \mathcal{B}(E)$ is a contraction (i.e., $||T|| \le 1$) satisfying $\lim_{n\to\infty} T^{*n}x = 0$ for each $x \in E$, then T is unitarily equivalent to \mathbf{S}_{Δ} for some inner function Δ . In this case, \mathbf{S}_{Δ} is called the *model operator* of T and Δ is called the *characteristic function* of T. Also, for the functions Θ_1 and Θ_2 in $H_{M_N}^{\infty}$ are called *quasi-equivalent* if there exist functions X and Y in $H_{M_N}^{\infty}$ such that $X\Theta_1 = \Theta_2 Y$ and such that the inner parts $(\det X)^i$ and $(\det Y)^i$ of the corresponding determinants are coprime to $(\det \Theta_k)^i$, k = 1, 2.

In [3, Lemma 2.5], the authors have shown that if Δ_1 and Δ_2 are quasi-equivalent then $\deg_B(\Delta_1)$ and $\deg_B(\Delta_2)$ coincide. In this paper we prove the same result, without using the equality (2), by a direct use of the Moore–Nordgren theorem.

2. The main result

We begin with the Moore–Nordgren theorem. The following lemma is the crucial point of the Moore–Nordgren theory.

Lemma 2.1. (Moore–Nordgren Theorem) [4], [5], [6] Let Δ_k (k = 1, 2) be an inner matrix function in $H_{M_N}^{\infty}$. If Δ_1 and Δ_2 are quasi-equivalent then \mathbf{S}_{Δ_1} and \mathbf{S}_{Δ_2} are quasi-similar.

Lemma 2.2. [2] Let Δ be an inner matrix function in $H_{M_N}^{\infty}$. Then, for $f \in H_{\mathbb{C}^N}^2$,

$$f \in \mathcal{H}(\Delta) \iff \Delta^* f \in L^2_{\mathbb{C}^N} \ominus H^2_{\mathbb{C}^N}.$$

We are ready for proving:

Theorem 2.3. Let Δ_i (i=1,2) be an inner matrix function in $H_{M_N}^{\infty}$. If $\mathbf{S}_{\widetilde{\Delta}_1} < \mathbf{S}_{\widetilde{\Delta}_2}$, then

$$deg_{R}(\Delta_{2}) \leq deg_{R}(\Delta_{1}).$$

Proof. Suppose $\mathbf{S}_{\widetilde{\Delta}_1}$ is a deformation of $\mathbf{S}_{\widetilde{\Delta}_2}$. Then there exists an operator $T:\mathcal{H}(\widetilde{\Delta}_1)\to\mathcal{H}(\widetilde{\Delta}_2)$ such that T is injective and has dense range, and

$$T\mathbf{S}_{\widetilde{\Delta}_1} = \mathbf{S}_{\widetilde{\Delta}_2}T. \tag{3}$$

For each k = 1, 2, let

$$V_k f := \overline{z} \widetilde{\Delta}_k \check{f} \quad \text{for } f \in \mathcal{H}(\Delta_k).$$

If $f \in \mathcal{H}(\Delta_k)$, then $\widetilde{\Delta}_k^* V_k f = \overline{z} \widecheck{f} \in L^2_{\mathbb{C}^N} \ominus H^2_{\mathbb{C}^N}$. Thus, by Lemma 2.2, V_k is an isometry from $\mathcal{H}(\Delta_k)$ onto $\mathcal{H}(\widetilde{\Delta}_k)$. For $g \in \mathcal{H}(\widetilde{\Delta}_k)$, let $f := \overline{z} \Delta_k \widecheck{g}$. Then, by Lemma 2.2, $f \in \mathcal{H}(\Delta_k)$ and

$$V_k f = \overline{z} \widetilde{\Delta}_k z \check{\Delta}_k g = g,$$

which implies that V_k is a surjection. Thus V_k is a unitary operator from $\mathcal{H}(\Delta_k)$ onto $\mathcal{H}(\widetilde{\Delta}_k)$. We claim that

$$V_2^{-1}TV_1S_{\mathbb{C}^N}^*|_{\mathcal{H}(\Delta_1)} = S_{\mathbb{C}^N}^*|_{\mathcal{H}(\Delta_2)}V_2^{-1}TV_1. \tag{4}$$

If $f \in \mathcal{H}(\Delta_k)$, then

$$\mathbf{S}_{\widetilde{\Delta}_{k}}V_{k}f = P_{\mathcal{H}(\widetilde{\Delta}_{k})}(\widetilde{\Delta}_{k}\check{f}) = (I_{n} - \widetilde{\Delta}_{k}P_{+}\check{\Delta}_{k})(\widetilde{\Delta}_{k}\check{f}) = \widetilde{\Delta}_{k}(\check{f} - \widehat{f}(0)),$$

where P_+ is the orthogonal projection from $L^2_{\mathbb{C}^N}$ onto $H^2_{\mathbb{C}^N}$ and $\widehat{f}(0)$ denotes the 0-th Fourier coefficient of f. It thus follows that $\mathbf{S}_{\widetilde{\Delta}_k} = V_k S^*_{\mathbb{C}^N}|_{\mathcal{H}(\Delta_k)} V_k^{-1}$ for k = 1, 2. Thus, by (3), we have that

$$TV_1S_{\mathbb{C}^N}^*|_{\mathcal{H}(\Delta_1)}V_1^{-1} = V_2S_{\mathbb{C}^N}^*|_{\mathcal{H}(\Delta_2)}V_2^{-1}T,$$

which proves (4). We now write $C := V_2^{-1}TV_1$. It is clear that $C \in \mathcal{B}(\mathcal{H}(\Delta_1), \mathcal{H}(\Delta_2))$ is injective and has dense range. Also, it follows from (4) that

$$C\left(S_{\mathbb{C}^{N}}^{*}|_{\mathcal{H}(\Delta_{1})}\right)^{n} = \left(S_{\mathbb{C}^{N}}^{*}|_{\mathcal{H}(\Delta_{2})}\right)^{n}C \quad \text{for all } n = 0, 1, 2, \dots$$

$$(5)$$

Let $r := \deg_B(\Delta_1)$. Then there exists a function $\Phi \in L^2_{M_{N\times r}}$ such that $\ker H^*_{\Phi} = \Delta_1 H^2_{\mathbb{C}^N}$. Then we may assume that $\widehat{\Phi}(n) = 0$ for all $n \leq 0$. Thus if we put $F := \overline{z}\Phi \in H^2_{M_{N\times r}}$, then it follows from (1) that

$$E_{\{F\}}^* = \operatorname{cl} \operatorname{ran} H_{\overline{2}F} = \operatorname{cl} \operatorname{ran} H_{\Phi} = \left(\ker H_{\Phi}^* \right)^{\perp} = \mathcal{H}(\Delta_1). \tag{6}$$

Let $\{e_k : k = 1, 2, \dots, r\}$ be the canonical basis for \mathbb{C}^r , and let

$$\Psi := [CFe_1, CFe_2, \cdots, CFe_r] \in L^2_{M_{N\times r}}.$$

Note that $Fe_j \in \mathcal{H}(\Delta_1)$ and $CFe_j \in \mathcal{H}(\Delta_2)$ for all $j = 1, 2, \dots, r$. Thus it follows from (1), (5) and (6) that

cl ran
$$H_{\mathbb{Z}\Psi} = \bigvee \left\{ S_{\mathbb{C}^N}^{*n} CFe_j : n \geq 0, \ j = 1, 2, \cdots, r \right\}$$

$$= \bigvee \left\{ CS_{\mathbb{C}^N}^{*n} Fe_j : n \geq 0, \ j = 1, 2, \cdots, r \right\}$$

$$= \text{cl } C\mathcal{H}(\Delta_1)$$

$$= \mathcal{H}(\Delta_2).$$

Thus $\ker H_{\overline{z}\Psi}^* = \left(\operatorname{cl} \operatorname{ran} H_{\overline{z}\Psi}\right)^{\perp} = \Delta_2 H_{\mathbb{C}^N}^2$, which implies that $\deg_B(\Delta_2) \leq \deg_B(\Delta_1)$. This completes the proof. \square

However, the converse of Theorem 2.3 is not true in general, as we see in the following example.

Example 2.4. Let

$$\Delta_k = \begin{bmatrix} z^k & 0 \\ 0 & z^k \end{bmatrix} \quad (k = 1, 2).$$

Then $\deg_B(\Delta_k) \leq 2$. Suppose that $\deg_B(\Delta_1) = 1$, then there exists $\Phi \in L^2_{M_{2\times 1}}$ such that $\ker H^*_{\Phi} = \Delta_1 H^2_{\mathbb{C}^2}$. Then, by [2, Theorem 3.1], Φ can be written as

$$\Phi = \Delta_1 A^* + B,$$

where $A \in H^2_{M_{1/2}}$ is such that Δ_1 and A are right coprime. Observe that

$$\widetilde{\Delta}_1 H_{\mathbb{C}^2}^2 \bigvee \widetilde{A} H_{\mathbb{C}^1}^2 \neq H_{\mathbb{C}^2}^2.$$

Thus Δ_1 and A are not right coprime, which is a contradiction. Hence $deg_B(\Delta_1) = 2$. Similarly, we can show that $deg_B(\Delta_2) = 2$. Note that

$$\mathbf{S}_{\Delta_1} = P_{\mathcal{H}(\Delta_1)} S_{\mathbb{C}^2}|_{\mathcal{H}(\Delta_1)} = 0$$
 and $(\mathbf{S}_{\Delta_2} f)(z) = \widehat{f}(0)z \neq 0$.

Thus S_{Δ_1} is not a deformation of S_{Δ_2} .

Corollary 2.5. Let Δ_i (i = 1, 2) be an inner matrix function in $H_{M_N}^{\infty}$. If $\mathbf{S}_{\overline{\Delta}_1}$ and $\mathbf{S}_{\overline{\Delta}_2}$ are quasi-similar then $deg_R(\Delta_1) = deg_R(\Delta_2)$.

Example 2.6. Let

$$\Delta_1 := \begin{bmatrix} z^2 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\Delta_2 := \frac{1}{\sqrt{2}} \begin{bmatrix} z^2 & -z \\ z & 1 \end{bmatrix}$.

 $Put \ \Phi := \begin{bmatrix} z^2 \\ 1 \end{bmatrix} \in H^{\infty}_{M_{1 \times 2}}. \ Observe \ that$

$$\begin{bmatrix} f \\ g \end{bmatrix} \in \ker H_{\check{\Phi}}^* \Longrightarrow \overline{z}^2 f + g \in H^2$$
$$\Longrightarrow f \in z^2 H^2.$$

Thus we see that $\ker H_{\Phi}^* = \Delta_1 H_{\mathbb{C}^2}^2$, and hence $\deg_B(\Delta_1) = 1$. Put $e_1 := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 := \begin{bmatrix} z \\ 0 \end{bmatrix}$, and $e_3 := \frac{1}{\sqrt{2}} \begin{bmatrix} z \\ 1 \end{bmatrix}$. Then $\mathcal{H}(\Delta_1) = \operatorname{span}\{e_1, e_2\}$ and $\mathcal{H}(\Delta_2) = \operatorname{span}\{e_1, e_3\}$. Note that $S_{\Delta_1} : e_1 \mapsto e_2, e_2 \mapsto 0$ and

$$S_{\Delta_2}e_1 = P_{\mathcal{H}(\Delta_2)}ze_1 = \langle ze_1, e_1 \rangle e_1 + \langle ze_1, e_3 \rangle e_3 = \frac{1}{\sqrt{2}}e_3.$$

Similarly, we have that $S_{\Delta_2}e_3=0$. Define $T:\mathcal{H}(\Delta_1)\to\mathcal{H}(\Delta_2)$ linear by

$$T: e_1 \mapsto e_1, \quad e_2 \mapsto \frac{1}{\sqrt{2}}e_3.$$

Then T is invertible and $TS_{\Delta_1}=S_{\Delta_2}T$. Thus, by Corollary 2.5, $deg_B(\Delta_2)=deg_B(\Delta_1)=1$.

The following lemma is elementary:

Lemma 2.7. Let $\Delta_k \in H^{\infty}_{M_N}$ (k=1,2). If Δ_1 and Δ_2 are quasi-equivalent then $\widetilde{\Delta}_1$ and $\widetilde{\Delta}_2$ are quasi-equivalent.

Proof. Suppose that Δ_1 and Δ_2 are quasi-equivalent. Then there exist functions $X,Y \in H_{M_N}^{\infty}$ such that $X\Delta_1 = \Delta_2 Y$ and such that the inner parts $(\det X)^i$ and $(\det Y)^i$ of the corresponding determinants are coprime to $(\det \Delta_k)^i$ (k = 1, 2). Observe that

$$(\det \widetilde{A})^i = (\widetilde{\det A})^i = [(\widetilde{\det A})^i]$$
 for all $A \in H_{M_N}^{\infty}$.

Thus $(\det \widetilde{X})^i$ and $(\det \widetilde{Y})^i$ are coprime to $(\det \widetilde{\Delta}_k)^i$ (k = 1, 2), and hence $\widetilde{\Delta}_1$ and $\widetilde{\Delta}_2$ are quasi-equivalent. \square

Corollary 2.8. Let Δ_i (i=1,2) be an inner matrix function in $H_{M_N}^{\infty}$. If Δ_1 and Δ_2 are quasi-equivalent then

$$deg_{R}(\Delta_{1}) = deg_{R}(\Delta_{2}).$$

Proof. It follows from Lemma 2.1, Corollary 2.5 and Lemma 2.7. □

References

- [1] R.E. Curto, I.S. Hwang, and W.Y. Lee, *Matrix functions of bounded type: An interplay between function theory and operator theory,* Mem. Amer. Math. Soc. **260** (2019), no. 1253, v+100 pp.
- [2] R. E. Curto, I. S. Hwang, and W. Y. Lee, The Beurling—Lax—Halmos theorem for infinite multiplicity, J. Funct. Anal. 280 (2021), no. 6, Art. ID 108884, 101 pp.
- [3] I. S. Hwang, W. Y. Lee and J. Park, The Beurling degree of inner matrix functions, Linear Multilinear Algebra 77(3) (2023), 472–479.
- [4] B. Moore III and E. A. Nordgren, On quasi-equivalence and quasi-similarity, Acta. Sci. Math. (Szeged) 34 (1973), 311–316.
- [5] N. K. Nikol'skiĭ, *Treatise on the Shift Operator*, Springer-Verlag, Berlin, 1986.
- [6] E. A. Nordgren, On quasi-equivalence of matrices over H^{∞} , Acta. Sci. Math. (Szeged) 34 (1973), 301–310.
- [7] B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy, Harmonic Analysis of Operators on Hilbert Space, 2nd ed., Springer, New York, 2010.