

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A study on lacunary strong $\hat{E}(r,t)$ -convergence according to F^k

Mustafa I. Hatima,*, Çiğdem A. Bektaşa

^aDepartment of Mathematics, University of Firat, 23119 Elazıg, Turkey

Abstract. In this manuscript, by using a double band matrix such as Lucas band matrix, a lacunary sequence and a sequence of modulus functions a new generalization is studied in which the concept of lacunary strong $\hat{E}(r,t)$ —convergence according to F^k is introduced. Then this concept is to be base to create the sequence space $N_{\theta}(\hat{E}(r,t),F^k)$, where for instance

$$N_{\theta}(\hat{E}(r,t),F^{k}) = \left\{ x = (x_{i}) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i}(r,t) \left(x \right) - s \right| \right) = 0 \text{ for some } s \in \mathbb{C} \right\}.$$

Furthermore, some inclusion relationships are given on this generalization. Finally, the connections between the sequence spaces $N_{\theta}(\hat{E}(r,t),F^k)$ and $w(\hat{E}(r,t),F^k)$ are investigated.

1. Introduction

Consider $\Psi = (\psi_{mi})$ as an infinite matrix and assume that X and Y are two sequence spaces. Then, Ψ provides a matrix mapping from X into Y if, for every $x = (x_i)$ in X, there exists the sequence $\Psi x = (\psi_m(x)) \in Y$, where

$$\psi_m(x) = \sum_{i=0}^{\infty} \psi_{mi} x_i \quad (m \in \mathbb{N})$$
(1.1)

2020 Mathematics Subject Classification. Primary 40A05; Secondary 40A35, 40D25.

Keywords. Sequence space, Lacunary sequence, Modulus function, Statistical convergence, Strong convergence.

Received: 28 July 2025; Accepted: 22 September 2025

Communicated by Eberhard Malkowsky

Email addresses: mustafa.ih88@gmail.com (Mustafa I. Hatim), cbektas@firat.edu.tr (Çiğdem A. Bektaş)

ORCID iDs: https://orcid.org/0000-0003-4062-5243 (Mustafa I. Hatim), https://orcid.org/0000-0003-0397-3193 (Çiğdem A. Bektaş)

^{*} Corresponding author: Mustafa I. Hatim

The set of all matrices Ψ that have the property $\Psi: X \to Y$ is represented by (X, Y). For that, $\Psi \in (X: Y)$ if and only if the right hand of the equality (1.1) mentioned above is convergent for each $m \in \mathbb{N}$ and $x \in X$. The notion of matrix domain X_{Ψ} of Ψ in X is expressed by

$$X_{\Psi} = \{x \in \omega : x_{\Psi} \in X\} \tag{1.2}$$

that represents a sequence space. In recent years, a few mathematicians have developed certain sequence spaces by use of the matrix domain for an infinite matrix, follow in ([4, 5]).

In 1876, the sequence $\{L_i\}_{i=1}^{\infty}$ of Lucas numbers 1, 3, 4, 7, 11, 18, ... was introduced by Edouard Lucas which is given by the Fibonacci recurrence relation in the form $L_i = L_{i-1} + L_{i-2}$; $i \ge 2$ with different initial conditions $L_0 = 2$ and $L_1 = 1$ where L_i is the *ith* term of the sequence $\{L_i\}_{i=1}^{\infty}$. Lucas numbers have various formulas and several properties, follow in ([6]).

By using Lucas numbers with two real numbers r and t such that $r, t \neq 0$, the Lucas band matrix $\hat{E}(r, t) = (\hat{E}_{im}(r, t))$ has been established as follows:

$$\hat{E}_{im}(r,t) = \begin{cases} t \frac{L_i}{L_{i-1}} & (m=i-1) \\ r \frac{L_{i-1}}{L_i} & (m=i) \\ 0 & m>i \text{ or } 0 \le m < i-1. \end{cases}$$
(1.3)

With the help of (1.3) the \hat{E} -transform for a sequence $x = (x_i)$ is formed by

$$\hat{E}_i(r,t)(x) = r \frac{L_{i-1}}{L_i} x_i + t \frac{L_i}{L_{i-1}} x_{i-1}, \quad i \ge 1.$$
(1.4)

Recently, several mathematicians have used Lucas numbers and Lucas band matrix in constructing some sequence spaces in their studies, follow in ([7, 8, 9]).

A subset *E* of \mathbb{N} has a natural density $\delta(E)$ that is given by

$$\delta(E) = \lim_{k \to \infty} \frac{1}{k} |E_k|$$

where $|E_k| = \{i \le k : i \in E\}$ specifies the number of elements of E not greater than k. It's evident that $\delta(\mathbb{N}) = 1$ and $\delta(E) = 0$ if E is a subset of \mathbb{N} that is finite and $\delta(\mathbb{N} \setminus E) = 1 - \delta(E)$.

From Freedman [10], the sequence $\theta = (k_r)$ of non-negative integers is referred to be a lacunary sequence such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. And the periods given by θ are identified by $I_r = (k_{r-1}, k_r]$ and $\frac{k_r}{k_{r-1}}$ can be recognized by q_r . These notations are going to be used during the article.

Lacunary sequences have been investigated by several authors in ([11, 12-16]).

The meaning that Orhan and Fridy [17] intended from lacunary statistical convergence is stated in the following expression.

Suppose that $\theta = (k_r)$ is a given lacunary sequence. A sequence (x_i) of numbers is referred to be lacunary statistically convergent (or S_θ -convergent) to ℓ , if

$$\lim_{r \to \infty} \frac{1}{h_r} |\{i \in I_r : |x_i - \ell| \ge \varepsilon\}| = 0$$

for each given $\varepsilon > 0$. In this context, we shall build $x_i \to \ell(S_\theta)$ or $S_\theta - \lim x_i = \ell$. From the paper entirely, the class of S_θ -convergent sequences is identified by S_θ , that is

$$S_{\theta} = \left\{ (x_i) : \lim_{r \to \infty} \frac{1}{h_r} | \{ i \in I_r : |x_i - \ell| \ge \varepsilon \} | \text{ for some } \ell \in \mathbb{C} \right\}.$$

Lacunary statistically convergence has also been talked in ([12, 13, 17-20]) and studied by many other authors.

According to Freedman [10], the space N_{θ} of lacunary strongly convergent sequences is presented as follows:

$$N_{\theta} = \left\{ (x_i) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} |x_i - \ell| = 0 \text{ for some } \ell \right\}.$$

This space becomes a *BK*-space with the norm presented below.

$$||x||_{\theta} = \sup_{r} \frac{1}{h_r} \sum_{i \in I_r} |x_i|.$$

The space N_{θ}^{0} defines the collection of all sequences containing $\ell = 0$ in the definition of N_{θ} . It becomes also a BK-space with the presented norm $\|\cdot\|_{\theta}$. After that, Pehlivan and Fisher [14] developed the idea of lacunary strong convergence by the use of a modulus function.

In 1953, Nakano [21] established the concept of the modulus function. We remember that $f: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}$ is a modulus function such that f(x) = 0 iff x = 0, f is increasing and continuous from 0^+ , and $f(x+y) \le f(x) + f(y)$ for every x, y in $\mathbb{R}^+ \cup \{0\}$. A modulus can either be bound or unbound. For illustration, $f(x) = \frac{1}{1+x}$ is a bounded modulus, but $f(x) = x^p$, (0 is being unbounded. The notion of the modulus function has also been discussed in ([5, 12, 19]).

Since $|f(c_1) - f(c_2)| \le f(|c_1 - c_2|)$, then from the continuity of f on 0^+ it shall be clear that f is continuous on $\mathbb{R}^+ \cup \{0\}$. Additionally, since $f(x+y) \le f(x) + f(y)$ for every x, y in $\mathbb{R}^+ \cup \{0\}$, then we can have $f(mc) \le mf(c)$ for every $m \in \mathbb{N}$ and for all $c \in \mathbb{R}^+ \cup \{0\}$.

Lemma 1.1 For any $k \in \mathbb{N}$, the function $f^k = f \circ f ... \circ f$ (k times) is a modulus whenever f is a modulus function. The notion f^k has been used in some monographs to create new sequence spaces and established new concepts, follow in ([11, 20]).

Definition 1.2 [20] Suppose that f is a modulus function and let $\theta = (k_r)$ be given as a lacunary sequence. Let $\ell \in \mathbb{C}$ be a number, then the sequence (x_i) in \mathbb{C} is referred to be lacunary strongly convergent to ℓ according to f^k (or $N_{\theta}(f^k)$ -strongly convergent), if

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{i\in I_r}f^k\left(|x_i-\ell|\right)=0.$$

In this manner, it is written as $x_i \to \ell(N_{\theta}(f^k))$ or $N_{\theta}(f^k) - \lim x_i = \ell$. The set of all $N_{\theta}(f^k)$ -strongly convergent sequences is identified by $N_{\theta}(f^k)$. That is

$$N_{\theta}(f^k) = \left\{ (x_i) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} f^k \left(|x_i - \ell| \right) = 0 \text{ for some } \ell \in \mathbb{C} \right\}.$$

It is clear to see that if k = 1, then the space $N_{\theta}(f^k)$ will become the same as $N_{\theta}(f)$ of Pehlivan and Fisher [14]. In the special case of $\theta = (2^r)$ and f(u) = u, we see that $N_{\theta}(f^k) = |\sigma_1|$, where $|\sigma_1| = w$ is the set of strongly Cesaro summable sequences. We use the notation (x_i) as a sequence of complex numbers throughout the next.

2. Main results

In this part of our manuscript, we introduce a concept and several sequence spaces based on the Lucas band matrix $\hat{E}(r,t)$ and a sequence of modulus functions $F=(f_i)$, and study some interesting results through newly sequence spaces. Let the set of all sequences of modulus functions $F=(f_i)$ be identified by \mathcal{F} such that $\lim_{u\to 0^+}\sup_i f_i(u)=0$. The sequence of modulus functions determined by F is indicated by $F=(f_i)\in\mathcal{F}$. We let $F^k=(f_i^k)=\{f_1^k,f_2^k,...\}$ ($k\in\mathbb{N}$) to be a sequence of composite modulus functions. We use these notations throughout this study.

Definition 2.1 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} and let $\theta = (k_r)$ be given as a lacunary sequence. Let s be a number in \mathbb{C} , then the sequence (x_i) in \mathbb{C} is referred to be lacunary strongly $\hat{E}(r,t)$ -convergent to s according to F^k (or $N_{\theta}(\hat{E}(r,t),F^k)$ -strongly convergent), if

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{i\in I}f_i^k\left(\left|\hat{E}_i\left(r,t\right)\left(x\right)-s\right|\right)=0.$$

In this manner, we refer it to as $x_i \to s(N_\theta(\hat{E}(r,t),F^k))$ or $N_\theta(\hat{E}(r,t),F^k) - \lim x_i = s$. The set of all $N_\theta(\hat{E}(r,t),F^k)$ -strongly convergent sequences is identified by $N_\theta(\hat{E}(r,t),F^k)$. That is

$$N_{\theta}(\hat{E}(r,t),F^{k}) = \left\{ (x_{i}) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i}(r,t)(x) - s \right| \right) = 0 \text{ for some } s \in \mathbb{C} \right\}.$$

The set of all sequences in which s=0 in the definition of $N_{\theta}(\hat{E}(r,t),F^k)$ is identified by $N_{\theta}^0(\hat{E}(r,t),F^k)$. That is

$$N_{\theta}^{0}(\hat{E}(r,t),F^{k}) = \left\{ (x_{i}) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(|\hat{E}_{i}(r,t)(x)| \right) = 0 \right\}.$$

Observe that the functions in F are not necessary to be unbounded modulus in this definition. If we put $f_i(u) = u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then the $N_\theta(\hat{E}(r,t),F^k)$ -strong convergence is reduced to the $N_\theta(\hat{E}(r,t))$ -strong convergence and it is so for the $N_\theta^0(\hat{E}(r,t),F^k)$ -strong convergence. Also, it is clear to see that if k = 1, then from the spaces $N_\theta(\hat{E}(r,t),F^k)$ and $N_\theta^0(\hat{E}(r,t),F^k)$ we have $N_\theta(\hat{E}(r,t),F)$ and $N_\theta^0(\hat{E}(r,t),F)$, respectively. As well as if $f_i(u) = f(u)$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then instead of $N_\theta(\hat{E}(r,t),F^k)$ and $N_\theta^0(\hat{E}(r,t),F^k)$ we shall write $N_\theta(\hat{E}(r,t),F^k)$ and $N_\theta^0(\hat{E}(r,t),F^k)$, respectively.

Theorem 2.2 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} , and let $\theta = (k_r)$ be given as a lacunary sequence. Then the sets $N_{\theta}(\hat{E}(r,t),F^k)$ and $N_{\theta}^0(\hat{E}(r,t),F^k)$ are linear spaces.

Proof. Here, we only consider $N_{\theta}(\hat{E}(r,t),F^k)$. Suppose $x_i \to s_1(N_{\theta}(\hat{E}(r,t),F^k))$ and $y_i \to s_2(N_{\theta}(\hat{E}(r,t),F^k))$ as $i \to \infty$, and let $\alpha, \beta \in \mathbb{C}$. Then there are positive integers N_{α} and M_{β} such that $|\alpha| \le N_{\alpha}$ and $|\beta| \le M_{\beta}$. Since f_i is a modulus for each $i \in \mathbb{N}$, we may have

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(|\hat{E}_i(r, t) (\alpha x + \beta y) - (\alpha s_1 + \beta s_2)| \right)$$

$$= \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(|\alpha \left(\hat{E}_i(r, t) (x) - s_1 \right) + \beta \left(\hat{E}_i(r, t) (y) - s_2 \right)| \right)$$

$$\leq \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(|\alpha| |\hat{E}_i(r, t) (x) - s_1| + |\beta| |\hat{E}_i(r, t) (y) - s_2| \right)$$

$$\leq N_{\alpha} \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(|\hat{E}_i(r, t) (x) - s_1| \right) + M_{\beta} \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(|\hat{E}_i(r, t) (y) - s_2| \right).$$

Putting the limits into both given sides as r tends to ∞ , we then have

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{i\in I_r}f_i^k\left(\left|\hat{E}_i\left(r,t\right)\left(\alpha x+\beta y\right)-\left(\alpha s_1+\beta s_2\right)\right|\right)=0.$$

This implies that $(x_i + y_i) \to (s_1 + s_2)(N_{\theta}(\hat{E}(r,t), F^k))$ as $i \to \infty$. Therefore, the space $N_{\theta}(\hat{E}(r,t), F^k)$ is indeed linear. \square

Theorem 2.3 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} , and let $\theta = (k_r)$ be given as a lacunary sequence. Then every $N_{\theta}^0(F^k)$ -strongly convergent sequence implies $N_{\theta}^0(\hat{E}(r,t),F^k)$ -strongly convergent, i.e, $N_{\theta}^0(F^k) \subset N_{\theta}^0(\hat{E}(r,t),F^k)$.

Proof. From the Lucas sequence, we see that $(L_{i-1}/L_i) \le 2$ and $(L_i/L_{i-1}) \le 3$ ($\forall i \in \mathbb{N}$). Then by using (1.4), we have

$$|\hat{E}_i(r,t)(x)| \le 36 \max\{|r|,|t|\}(|x_i|+|x_{i-1}|).$$

Let $x = (x_i)$ be an $N_{\theta}^0(F^k)$ -strongly convergent sequence. Since f_i is increasing for each $i \in \mathbb{N}$, then we may write

$$\frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) \right| \right) \leq 36 \max \left\{ T_{r}, T_{t} \right\} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| x_{i} \right| + \left| x_{i-1} \right| \right) \\
\leq 36 \max \left\{ T_{r}, T_{t} \right\} \left(\frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| x_{i} \right| \right) + \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| x_{i-1} \right| \right) \right)$$

where T_r and T_t are natural values such that $|r| \le T_r$ and $|t| \le T_t$. Thus, we have

$$\frac{1}{h_r} \sum_{i \in I} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) \right| \right) \to 0 \text{ as } r \to \infty.$$

This concludes that $x \in N_{\theta}^{0}(\hat{E}(r,t), F^{k})$. Hence the proof. \square

Corollary 2.4 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} and let $\theta = (k_r)$ be given as a lacunary sequence. We have the results below

- (i) If $f_i(u) \le u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then $N_\theta^0 \subset N_\theta^0(\hat{E}(r,t), F^k)$.
- (ii) If $f_i(u) \ge u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then $N_\theta^0(F^k) \subset N_\theta^0(\hat{E}(r,t))$.
- (iii) If $f_i(u) = u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then $N_\theta^0 \subset N_\theta^0(\hat{E}(r,t))$.

Theorem 2.5 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} , and let the lacunary sequences $\theta = (k_r)$ and $\vartheta = (s_r)$ be given such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$. If $\lim_{r \to \infty} \frac{\ell_r}{h_r} = 1$ and $(x_i) \in \ell_\infty(\hat{E}(r,t))$ then $N_\theta(\hat{E}(r,t), F^k) \subset N_\vartheta(\hat{E}(r,t), F^k)$, where

$$\ell_{\infty}(\hat{E}(r,t)) = \left\{ (x_i) : \sup_{i} \left| \hat{E}_i(r,t)(x) \right| < \infty \right\}.$$

Proof. Let $(x_i) \in \ell_\infty(\hat{E}(r,t)) \cap N_\theta(\hat{E}(r,t),F^k)$. Then $(\hat{E}_i(r,t)(x))$ is a bounded sequence, so there has some

H > 0 such that $|\hat{E}_i(r,t)(x) - s| \le H$ for all $i \in \mathbb{N}$. Since $I_r \subseteq J_r$ and $h_r \le \ell_r$ for all $r \in \mathbb{N}$, we are going to write

$$\begin{split} \frac{1}{\ell_{r}} \sum_{i \in J_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) &= \frac{1}{\ell_{r}} \sum_{i \in J_{r} - I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) + \frac{1}{\ell_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\ &\leq \left(\frac{\ell_{r} - h_{r}}{\ell_{r}} \right) \sup_{i} f_{i}^{k} \left(H \right) + \frac{1}{\ell_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\ &\leq \left(\frac{\ell_{r}}{h_{r}} - 1 \right) \sup_{i} f_{i}^{k} \left(H \right) + \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right). \end{split}$$

Putting the limits into both given sides as r tends to ∞ , we then have

$$\frac{1}{\ell_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) = 0$$

since $\lim_{r\to\infty}\frac{\ell_r}{h_r}=1$. Therefore, we obtain that $(x_i)\in N_{\vartheta}(\hat{E}(r,t),F^k)$. Hence the proof. \square

Corollary 2.6 Assume that $F = (f_i)$ is given as a sequence of modulus functions in \mathcal{F} and k < n. If $f_i(u) \le u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then Theorem 2.5, provides the following results:

- (i) $N_{\theta}(\hat{E}(r,t)) \subset N_{\vartheta}(\hat{E}(r,t), F^k).$
- (ii) $N_{\theta}(\hat{E}(r,t),F^k) \subset N_{\vartheta}(\hat{E}(r,t),F^n)$

Corollary 2.7 Assume that $F = (f_i)$ is given as a sequence of modulus functions in \mathcal{F} and k < n. If $f_i(u) \ge u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then Theorem 2.5, provides the following results:

- (i) $N_{\theta}(\hat{E}(r,t),F^k) \subset N_{\vartheta}(\hat{E}(r,t)).$
- (ii) $N_{\theta}(\hat{E}(r,t),F^n) \subset N_{\vartheta}(\hat{E}(r,t),F^k).$

Theorem 2.8 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} , and let the lacunary sequences $\theta = (k_r)$ and $\vartheta = (s_r)$ be given such that $I_r \subseteq J_r$ for all $r \in \mathbb{N}$. If $\lim_{r \to \infty} \sup \frac{\ell_r}{h_r} < \infty$, then $N_{\vartheta}(\hat{E}(r,t), F^k) \subset N_{\theta}(\hat{E}(r,t), F^k)$.

Proof. Let $(x_i) \in N_{\vartheta}(\hat{E}(r,t), F^k)$. Since $I_r \subseteq J_r$ we may write

$$\frac{1}{\ell_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \le \frac{1}{\ell_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right)$$

and then

$$\frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \le \frac{\ell_r}{h_r} \frac{1}{\ell_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right).$$

Putting the limits into both given sides as r tends to ∞ , we then have

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{i\in I_r}f_i^k\left(\left|\hat{E}_i\left(r,t\right)\left(x\right)-s\right|\right)=0.$$

Therefore, we obtain that $(x_i) \in N_{\theta}(\hat{E}(r,t), F^k)$. Hence the proof. \square

Corollary 2.9 Assume that $F = (f_i)$ is given as a sequence of modulus functions in \mathcal{F} and k < n. If $f_i(u) \le u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then Theorem 2.8, provides the following results.

- (i) $N_{\vartheta}(\hat{E}(r,t)) \subset N_{\theta}(\hat{E}(r,t),F^k).$
- (ii) $N_{\vartheta}(\hat{E}(r,t),F^k) \subset N_{\theta}(\hat{E}(r,t),F^n)$

Corollary 2.10 Assume that $F = (f_i)$ is given as a sequence of modulus functions in \mathcal{F} and k < n. If $f_i(u) \ge u$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$, then Theorem 2.8, provides the following results.

- $N_{\vartheta}(\hat{E}(r,t),F^k) \subset N_{\theta}(\hat{E}(r,t)).$
- $N_{\vartheta}(\hat{E}(r,t),F^n) \subset N_{\theta}(\hat{E}(r,t),F^k).$

Theorem 2.11 Assume that $F = (f_i)$ and $G = (g_i)$ are two sequences of modulus functions in \mathcal{F} , and let $\theta = (k_r)$ be given as a lacunary sequence. If $\sup_{u,i} \frac{f_i(u)}{g_i(u)} < \infty$, then $N_{\theta}(\hat{E}(r,t), F^k \circ G) \subset N_{\theta}(\hat{E}(r,t), F^{k+1})$.

Proof. Let $a \in \mathbb{C}$. Then there is a natural number T_a such that $|a| \leq T_a$. Now suppose $0 < \alpha = \sup_{u,i} \frac{f_i(u)}{g_i(u)} < 0$ ∞ , then $\alpha \ge \frac{f_i(u)}{g_i(u)}$ and so that $f_i(u) \le \alpha g_i(u)$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$. Since (f_i) is increasing for each $i \in \mathbb{N}$, then we get

$$f_i^{k+1}(u) \le f_i^k(\alpha g_i(u)) \le T_a f_i^k(g_i(u)).$$
 (2.1)

Now if $(x_i) \in N_{\theta}(\hat{E}(r,t), F^k \circ G)$, then according to (2.1), we shall possess

$$\frac{1}{h_r} \sum_{i \in I_r} f_i^{k+1} \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \le T_a \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(g_i \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \right) \to 0 \text{ as } r \to \infty.$$

This concludes that $(x_i) \in N_{\theta}(\hat{E}(r,t), F^k \circ G)$ implies $(x_i) \in N_{\theta}(\hat{E}(r,t), F^{k+1})$. Hence the proof. \Box

Theorem 2.12 Assume that $F = (f_i)$ and $G = (g_i)$ are two sequences of modulus functions in \mathcal{F} , and let $\theta = (k_r)$ be given as a lacunary sequence. If $\inf_{u,i} \frac{f_i(u)}{g_i(u)} > 0$, then $N_{\theta}(\hat{E}(r,t), F^{k+1}) \subset N_{\theta}(\hat{E}(r,t), F^k \circ G)$.

Proof. Let $b \in \mathbb{C}$ with $b \neq 0$. Then there has a natural value $T_{b^{-1}}$ such that $|b^{-1}| \leq T_{b^{-1}}$. Now suppose $\beta = \inf_{u,i} \frac{f_i(u)}{g_i(u)} > 0$ then $\beta \leq \frac{f_i(u)}{g_i(u)}$ and so that $g_i(u) \leq \frac{1}{\beta} f_i(u)$ for all $i \in \mathbb{N}$ and for every $u \in \mathbb{R}^+ \cup \{0\}$. Since (f_i) is increasing for each $i \in \mathbb{N}$ and $\beta > 0$, then we get

$$f_i^k(g_i(u)) \le f_i^k(\beta^{-1}f_i(u)) \le T_{\beta^{-1}}f_i^{k+1}(u).$$
 (2.2)

Now let $(x_i) \in N_{\theta}(\hat{E}(r,t), F^{k+1})$, then according to (2.2), we shall possess

$$\frac{1}{h_r} \sum_{i \in I} f_i^k \left(g_i \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \right) \le T_{\beta^{-1}} \frac{1}{h_r} \sum_{i \in I} f_i^{k+1} \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \to 0 \text{ as } r \to \infty.$$

This concludes that $(x_i) \in N_{\theta}(\hat{E}(r,t), F^{k+1})$ implies $(x_i) \in N_{\theta}(\hat{E}(r,t), F^k \circ G)$. Hence the proof. \Box

Corollary 2.13 Assume that $F = (f_i)$ and $G = (g_i)$ are two sequences of modulus functions in \mathcal{F} , and let $\theta = (k_r)$ be given as a lacunary sequence.

- If $\sup_{u,i} \frac{f_i(u)}{g_i(u)} < \infty$, then $N_{\theta}(\hat{E}(r,t), G^{k+1}) \subset N_{\theta}(\hat{E}(r,t), G^k \circ F)$. If $\inf_{u,i} \frac{f_i(u)}{g_i(u)} > 0$, then $N_{\theta}(\hat{E}(r,t), G^k \circ F) \subset N_{\theta}(\hat{E}(r,t), G^{k+1})$.

Theorem 2.14 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} and let $\theta = (k_r)$ be given as a lacunary sequence. If $\lim_{u\to\infty}\frac{f_i^k(u)}{u}>0$ for all $i\in\mathbb{N}$ and there has a natural number d such that $f_i(uv)\geq df_i(u)\,f_i(v)$ for all $i\in\mathbb{N}$ and for every $u,v\in\mathbb{R}^+\cup\{0\}$. Then $(x_i)\to s(N_\theta(\hat{E}(r,t),F^k))$ implies $(x_i) \rightarrow s(S_{\theta}(\hat{E}(r,t),F^k))$, where

$$S_{\theta}(\hat{E}(r,t),F^{k}) = \left\{ (x_{i}) : \lim_{r \to \infty} \frac{1}{f_{i}^{k}(h_{r})} f_{i}^{k} \left(\left| \left\{ i \in I_{r} : \left| \hat{E}_{i}(r,t)(x) - s \right| \ge \varepsilon \right\} \right| \right) = 0 \text{ for some } s \in \mathbb{C} \right\}.$$

Proof. Suppose that $(x_i) \to s(N_\theta(\hat{E}(r,t),F^k))$, and $\varepsilon > 0$ is given. Let \sum_A and \sum_B be defined on $|\hat{E}_i(r,t)(x) - s| \ge \varepsilon$ and $|\hat{E}_i(r,t)(x) - s| < \varepsilon$, respectively. Then from the definition of modulus functions, we

may write

$$\begin{split} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) &= \frac{1}{h_{r}} \sum_{i \in I_{r} \setminus A} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) + \frac{1}{h_{r}} \sum_{i \in I_{r} \setminus B} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\ &\geq \frac{1}{h_{r}} \sum_{i \in I_{r} \setminus A} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\ &\geq \frac{1}{h_{r}} f_{r}^{k} \left(\sum_{i \in I_{r} \setminus A} \left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\ &\geq \frac{1}{h_{r}} f_{r}^{k} \left(\left| \left\{ i \in I_{r} : \left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \geq \varepsilon \right\} \right| \right) f_{r}^{k} \left(\varepsilon \right), \end{split}$$

where *D* is a positive constant. Since $\left|\left\{i \in I_r : \left|\hat{E}_i\left(r,t\right)\left(x\right) - s\right| \ge \varepsilon\right\}\right|$ is a natural value, then

$$\begin{split} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) &\geq \frac{D}{h_{r}} f_{r}^{k} \left(\left| \left\{ i \in I_{r} : \left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \geq \varepsilon \right\} \right| \right) \frac{\inf_{r} f_{r}^{k} \left(\varepsilon \right)}{\inf_{r} f_{r}^{k} \left(1 \right)} \\ &= \frac{f_{r}^{k} \left(\left| \left\{ i \in I_{r} : \left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \geq \varepsilon \right\} \right| \right)}{f_{r}^{k} \left(h_{r} \right)} \frac{f_{r}^{k} \left(h_{r} \right)}{\inf_{r} f_{r}^{k} \left(\varepsilon \right)} D. \end{split}$$

Putting the limits on both sides as $r \to \infty$, it concludes that $x_i \to s(S_\theta(\hat{E}(r,t),F^k))$. Hence the proof. \Box

Theorem 2.15 Assume that $F = (f_i)$ is a sequence of modulus functions in \mathcal{F} and let $\theta = (k_r)$ be given as a lacunary sequence.

- (i) If $\lim\inf q_r > 1$ then $x_i \to s(w(\hat{E}(r,t),F^k))$ implies $x_i \to s(N_\theta(\hat{E}(r,t),F^k))$.
- (ii) If $\limsup q_r < \infty$, then $x_i \to s(N_\theta(\hat{E}(r,t),F^k))$ implies $x_i \to s(w(\hat{E}(r,t),F^k))$.

Proof. (i) Since $\liminf q_r > 1$ then there is $\delta > 0$ such that

$$q_r = \frac{k_r}{k_{r-1}} \ge 1 + \delta$$

for sufficiently large r, then we have that

$$\frac{h_r}{k_r} \ge \frac{\delta}{\delta + 1}$$
 and $\frac{k_r}{h_r} \le \frac{\delta + 1}{\delta}$

Now assume that $x_i \to s(w(\hat{E}(r,t),F^k))$, then we may write

$$\frac{1}{k_r} \sum_{i=1}^{k_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \ge \frac{1}{k_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \\
= \frac{h_r}{k_r} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) \\
\ge \frac{\delta + 1}{\delta} \frac{1}{h_r} \sum_{i \in I_r} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right).$$

Thus

$$\frac{\delta+1}{\delta}\frac{1}{h_r}\sum_{i\in I_r}f_i^k\left(\left|\hat{E}_i\left(r,t\right)\left(x\right)-s\right|\right)\to 0 \text{ as } r\to\infty.$$

This concludes that $x_i \to s(N_\theta(\hat{E}(r,t), F^k))$.

(ii) Since $\limsup q_r < \infty$, then there has a positive number K, say $K = \sup q_r$ so that $q_r < K$ for every $r \in \mathbb{N}$. Assume that $x_i \to s(N_\theta(\hat{E}(r,t),F^k))$ and given $\varepsilon > 0$. There has n_0 such that for every $n > n_0$, we shall have

$$T_n = \frac{1}{h_n} \sum_{i \in I_n} f_i^k \left(\left| \hat{E}_i \left(r, t \right) \left(x \right) - s \right| \right) < \varepsilon.$$

Also, a positive number S can be found such that $T_n \le S$ for all n. Let m be an arbitrary integer such that $m \in (k_{r-1}, k_r]$. Now we may write

$$\frac{1}{m} \sum_{i=1}^{m} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \leq \frac{1}{k_{r}} \sum_{i=1}^{k_{r}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\
\leq \frac{1}{k_{r-1}} \left(\sum_{n=1}^{n_{0}} + \sum_{n=n_{0}+1}^{k_{r}} \right) \sum_{i \in I_{n}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\
= \frac{1}{k_{r-1}} \sum_{n=1}^{n_{0}} \sum_{i \in I_{n}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) + \frac{1}{k_{r-1}} \sum_{n=n_{0}+1}^{k_{r}} \sum_{i \in I_{n}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) \\
\leq \frac{1}{k_{r-1}} \sum_{n=1}^{n_{0}} \sum_{i \in I_{n}} f_{i}^{k} \left(\left| \hat{E}_{i} \left(r, t \right) \left(x \right) - s \right| \right) + \frac{1}{k_{r-1}} \left(k_{r} - k_{n_{0}} \right) \varepsilon \\
= \frac{1}{k_{r-1}} \left(h_{1} T_{1} + h_{2} T_{2} + \dots + h_{n_{0}} T_{n_{0}} \right) + \frac{1}{k_{r-1}} \left(k_{r} - k_{n_{0}} \right) \varepsilon \\
\leq \frac{1}{k_{r-1}} \left(\sup_{i \in [1, n_{0}]} T_{i} k_{n_{0}} \right) + \varepsilon K < \frac{1}{k_{r-1}} K_{n_{0}} S + \varepsilon K.$$

Thus

$$\frac{1}{m}\sum_{i=1}^{m}f_{i}^{k}\left(\left|\hat{E}_{i}\left(r,t\right)\left(x\right)-s\right|\right)\to0\text{ as }r\to\infty.$$

This implies that $x_i \to s(w(\hat{E}(r,t),F^k))$. Hence the proof. \square

Compliance with ethical standards

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

- [1] H. Kizmaz, On Certain Sequence Spaces, Canadian Mathematical Bulletin 24(2) (1981) 169-176.
- [2] M. Et and R. Çolak, On Some Generalized Difference Sequence Spaces, Soochow Journal of Mathematics 21(4) (1995) 377-386.
- [3] M. Kirişçi and F. Başar, Some New Sequence Spaces Derived by The Domain of Generalized Difference Matrix, Computers & Mathematics with Applications 60(5) (2010) 1299-1309.
- [4] M. C. Dağli and T. Yaying, Some New Paranormed Sequence Spaces Derived By Regular Tribonacci Matrix, The Journal of Analysis 31(1) (2023) 109-127.
- [5] H. Ş. Kandemir, E. Mikail and H. Çakalli, On $S_A^B(\Theta,A,F)$ -Convergence and Strong $N_A^B(\Theta,A,F)$ -Convergence, Boletim da Sociedade Paranaense de Matemática 41 (2023) 1-8.
- [6] T. Koshy, Fibonacci and Lucas Numbers with Applications 2: John Wiley & Sons (2019).

- [7] M. I. Hatim and Ç. A. Bektaş, On Some Sequence Sets Based On The Lucas Band Matrix and Modulus Functions, Filomat 38(11) (2024) 3739-3747.
- [8] M. Karakaş and A. M. Karakaş, A Study on Lucas Difference Sequence Spaces $\ell_p(\hat{E}(r,s))$ and $\ell_\infty(\hat{E}(r,s))$, Maejo Int. J. Sci. Technol. 12(01) (2018) 70-78.
- [9] S. Mohiuddine, K. Raj, and A. Choudhary, Difference Sequence Spaces Based on Lucas Band Matrix and Modulus Function, São Paulo Journal of Mathematical Sciences 16 (2022) 1249-1240.
- [10] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesaro-type Summability Spaces, Proceedings of the London Mathematical Society 3(3) (1978) 508-520.
- [11] Y. Altin, H. Altinok and R. Colak, On Some Seminormed Sequence Spaces Defined by a Modulus Function, Kragujevac Journal of Mathematics 29(29) (2006) 121-132.
- [12] I. S. Ibrahim and R. Colak, On Strong Lacunary Summability of Order α with Respect to Modulus Functions, Annals of the University of Craiova-Mathematics and Computer Science Series 48(1) (2021) 127-136.
- [13] M. Mursaleen, K. Raj and S. K. Sharma, Some Spaces of Difference Sequences and Lacunary Statistical Convergence in *n*-Normed Space Defined by Sequence of Orlicz Functions, Miskolc Mathematical Notes 16(1) (2015) 283-304.
- [14] S. Pehlivan and B. Fisher, On Some Sequence Spaces, Indian Journal of Pure and Applied Mathematics 25 (1994) 1067-1072.
- [15] N. Aral, H. S. Kandem and M. Et, Strongly Lacunary Convergence of Order 13 of Difference Sequences of Fractional Order in Neutrosophic Normed Spaces, Filomat 37(19) (2023) 6443-6451.
- [16] Ç. A. Bektaş and G. Atıci, On Sequence Spaces of Invariant Means and Lacunary, Int. J. Open Problems Comput. Math 5(1) (2012) 113-123.
- [17] J. A. Fridy and C. Orhan, Lacunary Statistical Convergence, Pacific Journal of Mathematics 160 (1) (1993) 43-51.
- [18] V. K. Bhardwaj and S. Dhawan, Density by Moduli and Lacunary Statistical Convergence: in Abstract and Applied Analysis, Wiley Online Library (2016).
- [19] R. Çolak, Some Relations Between the Sets of *f*-Statistically Convergent Sequences, in 4th International Conference on Computational Mathematics and Engineering Sciences (CMES-2019) 4 (2020) Springer.
- [20] M. I. Hatim and Ç. A. Bektaş, A Study on Lacunary Strong Convergence According to Modulus Functions, in Proceedings of the Bulgarian Academy of Sciences 76(10) (2023) 1475-1485.
- [21] H. Nakano, Concave modulars, Journal of the Mathematical society of Japan 5(1) (1953) 29-49.