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Abstract. In this study, almost parahermitian and almost paracontact metric manifolds are considered.
Almost paracontact metric manifolds are obtained from almost parahermitian manifolds with product ofR.
The relations between classes of almost paracontact metric manifolds and classes of almost parahermitian
manifolds are investigated. As an important outcome of our study, we obtain the decomposition of classes
of G1, G2, G3 and G4 into two sub-invariant classes. Finally, explicit examples are given for each class Wi

which illustrate our results.

1. Introduction

Differential manifolds having special tensor structure have been classified according to the covariant
derivative of their tensor structure. For example, the classification of almost Hermitian manifolds was given
in [7] by Gray-Hervella, the classification of almost contact metric manifolds was made in [2] by Chinea,
the classification of almost contact manifolds B-metric was carried out in [6] by Ganchev, the calssification
of Riemannian manifolds with G2-structure was done in [4] by Fernandez. There is another classification
of almost contact metric manifolds given in [12] by considering the usual almost hermitian structure on the
product of almost contact metric manifold with R. In literature, there are some recent studies concerning
relations between manifolds with additional structure and their products with R [13–15, 18, 19].

In this study, we consider the classification of almost parahermitian and almost paracontact manifolds
given by [5, 20], respectively. Almost paracontact metric manifols are obtained from almost parahermitian
manifolds with product ofR and almost paracontact structure is defined on the product manifold. Relations
between classes of almost parahermitian manifolds and almost paracontact metric manifolds are obtained.
Also, we partition some of the classes given in the classification of almost paracontact metric manifolds [20]
into smaller invariant subclasses.
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Email addresses: nozdemir@eskisehir.edu.tr (Nülifer Özdemir), eskofh26@gmail.com (Murat Efe)
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2. Preliminaries

First, we introduce almost parahermitian manifolds. An almost parahermitian manifold is an even-
dimensional semi-Riemannian manifold N having an almost product structure J and a semi-Riemannian
metric h such that h(J(X), J(Y)) = −h(X,Y) for all X,Y ∈ χ(N). The structure group of the almost parahermi-
tian manifold N is the group of matrices in the following form(

A 0
0 A−1

)
, A ∈ Gl(n,R).

The 2-form defined by F(X,Y) = h (J(X),Y) is the fundamental 2-form on N. Almost parahermitian manifolds
are classified according to the Levi-Civita covariant derivative ∇F of F. It follows that

α(X,Y,Z) := (∇XF) (Y,Z) = h ((∇X J) Y,Z) .

α satisfies
α(X,Y,Z) = −α(X,Z,Y) and α(X, J(Y), J(Z)) = α(X,Y,Z).

The tangent space T = TxN at each point x ∈ N is a direct sum T = V ⊕ H , where V and H are
the n-dimensional eigenspaces of J associated with the eigenvalues +1 and −1. There exists a basis
{A1, · · ·An,U1, · · ·Un}, where {A1, · · · ,An} and {U1, · · · ,Un} are bases of V and H respectively, in which
the expressions of h and J are

h =
(

0 In
In 0

)
, J =

(
In 0
0 −In

)
.

Considering an adapted local basis {A1, · · ·An,U1, · · ·Un}with respect to the metric h which is expressed by

the matrix h =
(

0 In
In 0

)
, we have

δF(X) = −
n∑

i=1

{α(Ai,Ui,X) + α(Ui,Ai,X)} .

The tensor α is included in the vector space

W =
{
ψ ∈ ⊗3T∗ : ψ(X,Y,Z) = −ψ(X,Z,Y) = ψ(X, J(Y), J(Z))

}
,

which splits into the direct sum of eight invariant and irreducible subspaces Wi, i = 1, · · · , 8 [5].
The classification of almost parahermitian manifolds is done as follows: Consider the following eight

conditions:
(1)SABCα(A,B,C) = 0 for all A,B,C ∈ V.
(2) ∇AA = 0 for all A ∈ V.
(3) α(A,U,V) = Θ(U)h(A,V) −Θ(V)h(A,U) for all A ∈ V, U,V ∈ H .

(4)
n∑

i=1

α(Ai,Ui,U) = 0 for all U ∈ H , {Ai,Ui} being a local adapted frame.

(5) SUVWα(U,V,W) = 0 for all U,V,W ∈ H .
(6) ∇UU = 0 for all U ∈ H .
(7) α(U,A,B) = Θ(B)h(U,A) −Θ(A)h(U,B) for all U ∈ H , A,B ∈ V.

(8)
n∑

i=1

α(Ui,Ai,A) = 0 for all A ∈ V, {Ai,Ui} being a local adapted frame.

HereSXYZ stands for the cyclic sum with respect to X,Y and Z. Θ is the Lee form of almost parahermitian
manifold (N, J, h) defined by

Θ(X) = −
1

n − 1
δF(J(X))
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for every vector field X on N. If all conditions (1)-(8) hold, the almost parahermitian manifold N is called
parakaehlerian (class PK ). The class Wi is identified by all these conditions except (i)-th condition. The
class Wi ⊕W j satisfies all conditions except properties (i) and (j). If dimN = 4, W1 = W3 = W5 = W7 = {0}
[5].

At this step, we give fundamental definitions and properties of almost paracontact metric manifolds.
A (2n + 1)-dimensional real differentiable manifold M is said to have an almost paracontact structure

(φ, ξ, η), if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satsifying the following
conditions:

η(ξ) = 1, φ2 = I − η ⊗ ξ, (1)

where I denotes the identity map. Identities (1) imply

φ(ξ) = 0, η ◦ φ = 0. (2)

If a manifold M with an almost paracontact structure (φ, ξ, η) admits a metric 1 such that

1(φ(X), φ(Y)) = −1(X,Y) + η(X)η(Y) (3)

for all X,Y ∈ χ(M), then the manifold M is called an almost paracontact metric manifold.
The equation (3) gives

1(X, ξ) = η(X), 1(φ(X),Y) = −1
(
X, φ(Y)

)
. (4)

For an almost paracontact metric manifold, the fundamental 2-form is defined as

Φ(X,Y) := 1
(
φ(X),Y

)
. (5)

Let ∇ be the Levi-Civita covariant derivative of the metric 1. We denote

β(X,Y,Z) := (∇XΦ) (Y,Z) = 1
((
∇Xφ

)
(Y),Z

)
(6)

for all X,Y,Z ∈ χ(M). The tensor β has the following properties:

β(X,Y,Z) = −β(X,Z,Y),
β(X, φ(Y), φ(Z)) = β(X,Y,Z) + η(Y)β(X,Z, ξ) − η(Z)β(X,Y, ξ). (7)

The 1-forms θ, θ∗ and ω are defined as

θ(X) =
2n∑
i=1

1i jβ(ei, e j,X), (8)

θ∗(X) =
2n∑
i=1

1i jβ(ei, φ(ei),X), ω(X) = β(ξ, ξ,X), (9)

where {ei, · · · , e2n, ξ} is a basis of TM and (1i j) is the inverse matrix of (1i j) [20].
∇η, dη and dΦ are expressed in terms of the tensor β:(
∇Xη

)
(Y) = 1(∇Xξ,Y) = −β(X, φ(Y), ξ), (10)

2dη(X,Y) =
(
∇Xη

)
(Y) −

(
∇Yη

)
(X) = −β(X, φ(Y), ξ) + β(Y, φ(X), ξ), (11)

3dΦ(X,Y,Z) = β(X,Y,Z) + β(Y,Z,X) + β(Z,X,Y). (12)

Using properties (7), the spaces of covariant derivatives of the endomorphism φ are defined as

G :=
{
β ∈ ⊗0

3M : β(X,Y,Z) = −β(X,Z,Y) = β(X, φ(Y), φ(Z)) − η(Y)β(X,Z, ξ) + η(Z)β(X,Y, ξ)
}
.
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The space G is written as the direct sum of 12 subspaces;

G = G1 ⊕ · · · ⊕G12.

The subspaces Gi are orthogonal and invariant under the action ofUπ(n) × {1}, where

Uπ(n) × {1} =
{(

τ 0
0 1

)
: τ ∈ Uπ(n)

}
,

Uπ(n) =
{
τ =

(
A B
B A

)
: A,B are real matrices of type n × n

AtA − BtB = In, AtB − BtA = 0
}
,

here In is the unit matrix of size n.
Any almost paracontact metric manifold belongs to a subclass Gi1 ⊕ · · · ⊕Gik for 1 ≤ i1 ≤ · · · ≤ ik ≤ 12 of

G. The defining relations of subspaces we use are as follows:

G1 :=
{
β ∈ G : β(X,Y,Z) = 1

2(n−1)

{
1(X, φ(Y))θβ(φ(Z))

−1(X, φ(Z))θβ(φ(Y))
−1(φ(X), φ(Y))θβ(φ2(Z))
+1(φ(X), φ(Z))θβ(φ2(Y)

}
,

G2 :=
{
β ∈ G : β(φ(X), φ(Y),Z) = −β(X,Y,Z), θβ = 0

}
,

G3 :=
{
β ∈ G : β(ξ,Y,Z) = β(X, ξ,Z) = 0, β(X,Y,Z) = −β(Y,X,Z)

}
,

G4 :=
{
β ∈ G : β(ξ,Y,Z) = β(X, ξ,Z) = 0, SXYZβ(X,Y,Z) = 0

}
,

where X,Y,Z ∈ χ(M). Definitions of other classes can be found in [20]. Also, for any β(X,Y,Z) =∑12
i=1 β

i(X,Y,Z) ∈ G; the projections βi of the β ∈ G in the subspaces Gi are given below [20]:

β1(X,Y,Z) = 1
2(n−1)

{
1(X, φ(Y))θβ1 (φ(Z)) − 1(X, φ(Z))θβ1 (φ(Y))

−1(φ(X), φ(Y))θβ1 (φ2(Z)) + 1(φ(X), φ(Z))θβ1 (φ2(Y))
}
,

β2(X,Y,Z) =
1
2

{
β
(
φ2(X), φ2(Y), φ2(Z)

)
− β

(
φ(X), φ2(Y), φ(Z)

)}
− β1(X,Y,Z),

β3(X,Y,Z) = 1
6

{
β
(
φ2(X), φ2(Y), φ2(Z)

)
+ β

(
φ(X), φ2(Y), φ(Z)

)
+β

(
φ2(Y), φ2(Z), φ2(X)

)
+ β

(
φ(Y), φ2(Z), φ(X)

)
+β

(
φ2(Z), φ2(X), φ2(Y)

)
+ β

(
φ(Z), φ2(X), φ(Y)

)}
,

β4(X,Y,Z) =
1
2

{
β
(
φ2(X), φ2(Y), φ2(Z)

)
+ β

(
φ(X), φ2(Y), φ(Z)

)}
− β3(X,Y,Z),

β5(X,Y,Z) =
θβ5 (ξ)

2n
{
η(Y)1(φ(X), φ(Z)) − η(Z)1(φ(X), φ(Y))

}
,

β6(X,Y,Z) = −
θ∗
β6 (ξ)

2n
{
η(Y)1(X, φ(Z)) − η(Z)1(X, φ(Y))

}
,

β7(X,Y,Z) = −
1
4η(Y)

{
β
(
φ2(X), φ2(Z), ξ

)
− β

(
φ(X), φ(Z), ξ

)
−β

(
φ2(Z), φ2(X), ξ

)
+ β

(
φ(Z), φ(X), ξ

)}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y), ξ

)
− β

(
φ(X), φ(Y), ξ

)
−β

(
φ2(Y), φ2(X), ξ

)
+ β

(
φ(Y), φ(X), ξ

)}
− β6(X,Y,Z),
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β8(X,Y,Z) = −
1
4η(Y)

{
β
(
φ2(X), φ2(Z), ξ

)
− β

(
φ(X), φ(Z), ξ

)
+β

(
φ2(Z), φ2(X), ξ

)
− β

(
φ(Z), φ(X), ξ

)}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y), ξ

)
− β

(
φ(X), φ(Y), ξ

)
+β

(
φ2(Y), φ2(X), ξ

)
− β

(
φ(Y), φ(X), ξ

)}
− β5(X,Y,Z),

β9(X,Y,Z) = −
1
4η(Y)

{
β
(
φ2(X), φ2(Z), ξ

)
+ β

(
φ(X), φ(Z), ξ

)
−β

(
φ2(Z), φ2(X), ξ

)
− β

(
φ(Z), φ(X), ξ

)}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y), ξ

)
+ β

(
φ(X), φ(Y), ξ

)
−β

(
φ2(Y), φ2(X), ξ

)
− β

(
φ(Y), φ(X), ξ

)}
,

β10(X,Y,Z) = −
1
4η(Y)

{
β
(
φ2(X), φ2(Z), ξ

)
+ β

(
φ(X), φ(Z), ξ

)
+β

(
φ2(Z), φ2(X), ξ

)
+ β

(
φ(Z), φ(X), ξ

)}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y), ξ

)
+ β

(
φ(X), φ(Y), ξ

)
+β

(
φ2(Y), φ2(X), ξ

)
+ β

(
φ(Y), φ(X), ξ

)}
,

β11(X,Y,Z) = η(X)β(ξ, φ2(Y), φ2(Z)),

β12(X,Y,Z) = η(X)
{
η(Y)β(ξ, ξ, φ2(Z) − η(Z)β(ξ, ξ, φ2(Y)

}
.

3. Almost paracontact metric manifolds from almost parahermitian manifolds

Let N be an almost parahermitian manifold, dimN = 2n, with metric h and almost product structure
J. Now, consider the product manifold N × R. A vector field on N × R will be denoted by

(
X, a d

dt

)
, where

X ∈ χ(N), t is the coordinate ofR and a is a C∞ function on N×R. We define an almost paracontact structure
φ̃, metric 1̃, vector field ξ̃ and 1-form η̃ on N ×R by

φ̃

(
X, a

d
dt

)
:= (J(X), 0) , ξ̃ :=

(
0,

d
dt

)
,

1̃

((
X, a

d
dt

)
,

(
Y, b

d
dt

))
:= h (X,Y) + ab

and

η̃

(
Y, b

d
dt

)
= a.

The fundamental 2-form of
(
N ×R, φ̃, ξ̃, η̃, 1̃

)
is given by

Φ̃

((
X, a

d
dt

)
,

(
Y, b

d
dt

))
= 1̃

(
φ̃

(
X, a

d
dt

)
,

(
Y, b

d
dt

))
.

Hence

Φ̃

((
X, a

d
dt

)
,

(
Y, b

d
dt

))
= h(J(X),Y) = F(X,Y).

Let ∇̃ be the Levi-Civita covariant derivative of
(
N ×R, φ̃, ξ̃, η̃, 1̃

)
. Then, from the Koszul formula we have

∇̃(X,a d
dt )

(
Y, b

d
dt

)
=

(
∇XY,

(
X[b] + a

db
dt

)
d
dt

)
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where X,Y ∈ χ(N) and a, b are C∞ functions on N × R. In addition, the covariant derivative of the
endomorphism φ̃ is calculated as(

∇̃(X,a d
dt )φ̃

) (
Y, b

d
dt

)
= ((∇X J) (Y), 0) . (13)

A tensor field β̃ of type (0, 3) is defined as follows:

β̃

((
X, a

d
dt

)
,

(
Y, b

d
dt

)
,

(
Z, c

d
dt

))
= 1̃

((
∇̃(X,a d

dt )φ̃
) (

Y, b
d
dt

)
,

(
Z, c

d
dt

))
= α(X,Y,Z),

where α(X,Y,Z) = (∇XF) (Y,Z). The exterior derivative of the basic 2-form Φ̃ can be computed as

dΦ̃
((

X, a
d
dt

)
,

(
Y, b

d
dt

)
,

(
Z, c

d
dt

))
= dF(X,Y,Z).

Let {A1, , ...,An,U1, ...,Un} be a local adapted frame on an open subset U of N. Then,{(
1
√

2
(A1 +U1), 0

)
, · · · ,

(
1
√

2
(An +Un), 0

)
, φ

(
1
√

2
(A1 +U1), 0

)
, · · · , φ

(
1
√

2
(An +Un), 0

)
,

(
0,

d
dt

)}
is an orthonormal basis with respect to 1̃ on the open subset U × R of N × R. By using this frame, the
followings are obtained by direct calculation:

θ̃

(
X, a

d
dt

)
= −δF(X), θ̃∗

(
X, a

d
dt

)
= −δF(J(X)),

ω̃

(
X, a

d
dt

)
= 0.

The Riemannian curvature R̃ of
(
N ×R, φ̃, ξ̃, η̃, 1̃

)
is written as

R̃
((

X, a
d
dt

)
,

(
Y, b

d
dt

)) (
Z, c

d
dt

)
= (R(X,Y)Z, 0) (14)

for any vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
,
(
Z, c d

dt

)
. In addition, the Ricci curvature Q̃ is evaluated as

Q̃
((

X, a
d
dt

)
,

(
Y, b

d
dt

))
= Q(X,Y), (15)

for any vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
. Also the scalar curvature s̃ is as follows

s̃ = s. (16)

From now on, we shall use X̃ =
(
X, a d

dt

)
, Ỹ =

(
Y, b d

dt

)
and Z̃ =

(
Z, c d

dt

)
to denote smooth vector fields on

N ×R where X,Y,Z are smooth vector fields on N and a, b, c are smooth functions on N ×R.

Definition 3.1. Let (M, 1) be a semi-Riemannian manifold. If there exists a constant λ such that

Q(X,Y) = λ1(X,Y) (17)

for any vector fields X,Y on M, then M is called an Einstein manifold with Einstein constant λ [8, 11].
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Definition 3.2. Let (M, 1) be a semi-Riemannian manifold. If there exists a smooth non-zero vector field v on M and
a constant λ such that

1
2
Lv1 +Q + λ1 = 0, (18)

then (M, 1) is called a Ricci soliton, where L denotes the Lie derivative [3, 9, 16].

There exist a generalization of the Ricci soliton on an almost paracontact metric manifold (M, φ, ξ, η, 1)
as follows:

Definition 3.3. Let (M, φ, ξ, η, 1) be an almost paracontact metric manifold. If there exists a smooth non-zero vector
field v on M, constants λ and µ such that

1
2
Lv1 +Q + λ1 + µη ⊗ η = 0, (19)

then (M, φ, ξ, η, 1) is called an η-Ricci soliton [1, 3, 16, 17].

Now, we give relations between an almost parahermitian Einstein manifold (Ricci soliton) N and the
η-Ricci soliton N ×R.

Theorem 3.4. Almost parahermitian manifold N is Einstein with Einstein constant λ if and only if the almost
paracontact metric manifold N ×R is η̃-Ricci soliton with vector field ξ̃ and constants (−λ, λ).

Proof. Let the manifold N be an Einstein manifold with constant λ, that is Q(X,Y) = λh(X,Y) for all
X,Y ∈ χ(N). If we take v = ξ̃ =

(
0, d

dt

)
and λ = −λ̃ = µ̃, we have

1
2
Lξ̃1̃(X̃, Ỹ) + Q̃(X̃, Ỹ) + λ̃1̃(X̃, Ỹ) + µ̃η̃(X̃)η̃(Ỹ) = Q(X,Y) − λh(X,Y) = 0 (20)

Hence N ×R is η̃-Ricci soliton with constants (−λ, λ).
Conversely, if N × R is an η̃-Ricci soliton with the vector field ξ̃ =

(
0, d

dt

)
and scalars λ = −λ̃ = µ̃, then

the equation

Q(X,Y) − λh(X,Y) =
1
2
Lξ̃1̃(X̃, Ỹ) + Q̃(X̃, Ỹ) + λ̃1̃(X̃, Ỹ) + µ̃η̃(X̃)η̃(Ỹ) = 0 (21)

is satisfied. (21) implies Q(X,Y) = λh(X,Y), that is N is an Einstein manifold with the constant λ.

Theorem 3.5. The almost parahermitian manifold N is a Ricci soliton with non-zero vector field v and constant λ if
and only if the almost paracontact metric manifold N ×R is an η̃-Ricci soliton with vector field (v, 0) and constants
(λ,−λ).

Proof. Let N be a Ricci soliton with non-zero vector field v and constant λ. Then the equation

1
2
Lvh(X,Y) +Q(X,Y) + λh(X,Y) = 0 (22)

is satisfied for each X,Y ∈ χ(N). On N ×R, if we take ṽ = (v, 0) and λ̃ = −µ̃ = λ, we get

1
2
Lṽ1̃(X̃, Ỹ) + Q̃(X̃, Ỹ) + λ̃1̃

(
X̃, Ỹ

)
+ µ̃η̃(X̃)η̃(Ỹ) =

1
2
Lvh(X,Y) +Q(X,Y) + λh(X,Y) = 0.

Hence N ×R is an η̃-Ricci soliton with vector field (v, 0) and constants (λ,−λ).
Conversely, if N × R is an η̃-Ricci soliton with the vector field ṽ = (v, 0) and constants (λ,−λ), then we

have
1
2
Lṽ1̃(X̃, Ỹ) + Q̃(X̃, Ỹ) + λ1̃(X̃, Ỹ) + (−λ)η̃(X̃)η̃(Ỹ) = 0

From this equation (22) follows. Therefore N is a Ricci soliton with any vector field v and constants
(λ,−λ).
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Example 3.6. [10] Let G be a Lie group of dimension 6 with Lie algebra g, where {e1, · · · , e6} is a basis for g with
non-zero brackets

[e1, e4] = e1 + e4 [e2, e5] = e2 + e5, [e3, e6] = e3 + e6.

A left-invariant almost parahermitian structure on the Lie group G is determined by

J(e1) = e1, J(e2) = e2, J(e3) = e3, J(e4) = −e4, J(e5) = −e5, J(e6) = −e6.

We choose the left-invariant metric h of the Lie group as follows

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


.

It is easily checked that (J, h) is a left-invariant almost parahermitian structure on the Lie group G. From the Koszul
formula, we obtain non-zero Levi-Civita covariant derivatives as

∇e1 e1 = −e1, ∇e1 e4 = e4, ∇e2 e4 = −e2, ∇e2 e5 = e5,
∇e3 e3 = −e3, ∇e3 e6 = e6, ∇e4 e1 = −e1, ∇e4 e4 = e4,
∇e5 e2 = −e2, ∇e5 e5 = e5, ∇e6 e3 = −e3, ∇e6 e6 = e6.

The Ricci curvature is calculated as Q(X,Y) = −2h(X,Y) and the scalar curvature is −12. From Theorem 3.4, the
left-invariant almost paracontact metric structure on G ×R is an η-Ricci soliton with the vector field ξ =

(
0, d

dt

)
and

constant (2,−2).

Now we investigate relations between classes of an almost parahermitian manifold N and the almost
paracontact metric manifold N ×R. Note that from (13) we have(

∇̃(X,a d
dt )φ̃

) (
0,

d
dt

)
= (0, 0). (23)

Then the projections β̃5, · · · , β̃12 vanish. Hence N × R is in G1, G2, G3, G4, or in one of their suitable direct
sum.

We introduce the following decompositions of classes Gi, 1 ≤ i ≤ 4 to investigate relations between N
and N ×R. Define

f : Gi → Gi, f (β)(X,Y,Z) :=
1
2
{
β(φ(X),Y,Z) + β(X,Y,Z)

}
, 1 ≤ i ≤ 4.

It can be seen that f 2 = f . Then Gi = Ker( f ) ⊕ Im( f ). Let G1
i = Ker( f ) and G2

i = Im( f ), 1 ≤ i ≤ 4. The classes
G1

i and G2
i are orthogonal and invariant under the action of the structure group.

By using these decompositions, we state following theorems:

Theorem 3.7. Almost parahermitian manifold (N, J, h) belongs to the class W1 if and only if almost paracontact
metric manifold (N ×R, φ̃, ξ̃, η̃, 1̃) belongs to the class G2

3.

Proof. Let the manifold (N, J, h) be of class W1. Then all conditions except condition (1) are satisfied. From
conditions (4) and (8), we have δF(X) = 0 and we get

θ̃

(
X, a

d
dt

)
= 0
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for all vector fields
(
X, a d

dt

)
. Since δF = 0 and the conditions (3) and (7) hold,

α(A,U,V) = α(U,A,B) = 0 (24)

is obtained for all A,B ∈ V, U,V ∈ H . In addition, from conditions (2) and (6) we get

α(X,X,Z) = 0. (25)

for all X,Z ∈ χ(N). From the condition (5) and the equation (25) we have

α(U,V,W) = 0, (26)

for all U,V,W ∈ H . Moreover, from (24) and (26)

α(X,Y,Z) = α(J(X),Y,Z) (27)

is obtained. Hence we get

β̃(X̃, Ỹ, Z̃) = β̃(φ̃(X̃), Ỹ, Z̃). (28)

Also from (25), we have

β̃(X̃, Ỹ, Z̃) = −β̃(Ỹ, X̃, Z̃). (29)

In addition, since β̃(ξ̃, Ỹ, Z̃) = 0 and the equations (28) and (29) are met, N ×R is of the class G2
3.

Conversely, if N ×R is of the class G2
3, then the equations (28) and (29) are satisfied. From (28) and (29),

we obtain (27) and (25). Setting X = Y = A, A ∈ V in (25), α(A,A,Z) = 0 is obtained for any vector field Z.
Similarly, setting X = Y = U, U ∈ H in (25), we have α(U,U,Z) = 0. Therefore the conditions (2) and (6) are
satisfied. In addition, (27) yields the condition (5). From the equation (25) we have δF(X) = 0. Hence the
conditions (4) and (8) hold. Also from (25) and (27), we have α(U,A,B) = α(A,U,V) = 0 for all A,B ∈ V,
U,V ∈ H . Hence the conditions (3) and (7) are satisfied. Thus N is of the class W1.

Example 3.8. [10] Consider a Lie group of dimension 6 with Lie algebra, where

[e1, e2] = 2e3, [e1, e6] = 2e5, [e2, e6] = 2e4.

A left-invariant almost parahermitian structure on G is given by

J(e1) = e1, J(e2) = e2, J(e3) = −e3, J(e4) = −e4, J(e5) = −e5, J(e6) = e6.

The left-invariant metric h of the Lie group is chosen as

0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0


.

It can be proved that (J, h) is a left-invariant almost parahermitian structure on G. The Koszul formula gives the
following non-zero Levi-Civita covariant derivatives:

∇e1 e2 = e3, ∇e2 e1 = −e3, ∇e1 e6 = e5,
∇e6 e1 = −e5, ∇e2 e6 = e4, ∇e6 e2 = −e4.
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Also, we calculate non-zero Levi-Civita covariant derivatives of J as(
∇e1 J

)
e2 = 2e3 = −

(
∇e2 J

)
e1,

(
∇e1 J

)
e6 = 2e5 = −

(
∇e6 J

)
e1,(

∇e2 J
)

e6 = 2e4 = −
(
∇e6 J

)
e2.

SinceV = Span{e1, e2, e6} andH = Span{e3, e4, e5},

α(e1, e2, e6) + α(e2, e6, e1) + α(e6, e1, e2) = 6 , 0

so the condition (1) is not satisfied. But it can be seen that the other conditions (condition (2), ..., condition (8))
are met. Hence the left-invariant parahermitian structure (J, h) on G is of the class W1. Then from Theorem 3.7,
left-invariant paracontact structure on G ×R is of the class G2

3.

Theorem 3.9. Almost parahermitian manifold (N, J, h) is in the class W2 if and only if almost paracontact metric
manifold (N ×R, ξ̃, φ̃, η̃, 1̃) is in the class G2

4.

Proof. Let the manifold (N, J, h) be of class W2. In this class we have

δF = 0, α(A,U,V) = α(U,A,B) = α(U,V,W) = 0

for all A,B ∈ V, U,V,W ∈ H . Then

α(X,Y,Z) = α(J(X),Y,Z) (30)

for all X,Y,Z ∈ χ(N) and we obtain

β̃(X̃, Ỹ, Z̃) = β̃(φ(X̃), Ỹ, Z̃). (31)

Also from the condition (1), we get

SX̃ỸZ̃β̃
(
X̃, Ỹ, Z̃

)
= 0. (32)

Thus N ×R is of the class G2
4, since β̃(ξ̃, Ỹ, Z̃) = β̃(X̃, ξ̃, Z̃) = 0.

Conversely, if N ×R is of the class G2
4, then (31) and (32) are satisfied. From these equations, we get (30)

and

SXYZ (∇XF) (Y,Z) = 0. (33)

From (33), we get the conditions (1), (5) and we have

α(U,A,B) = α(A,U,V) = 0

for all A,B ∈ V and U,V ∈ H and δF = 0. Hence the conditions (3), (4), (7) and (8) are satisfied. In addition
we obtain the condition (6) since (30) holds. Therefore N is in W2.

Example 3.10. Consider a Lie group G of dimension 4 with Lie algebra 14.3, where

[e1, e4] = e1, [e3, e4] = e2.

Suppose a left-invariant almost parahermitian structure on G determined by

J(e1) = −e1, J(e2) = −e2, J(e3) = e3, J(e4) = e4.

We choose the left-invariant metric h of the Lie group as follows
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
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It can be seen that (J, h) is a left-invariant almost parahermitian structure on the Lie group G. Using the Koszul
formula, we get non-zero components of Levi-Civita covariant derivativess as

∇e4 e1 = −e1, ∇e4 e3 = −e2, ∇e4 e4 = e4.

SinceV = Span{e4, e3} andH = Span{e1, e2}, non-zero Levi-Civita covariant derivative of J is evaluated as(
∇e4 J

)
(e3) = −2e2.

By direct calculation, all conditions except condition (2) are satisfied and the left-invariant parahermitian structure
(J, h) on G is in W2. Then from Theorem 3.9 the left-invariant paracontact structure on G ×R is of the class G2

4.

Theorem 3.11. Almost parahermitian manifold (N, J, h) is in W3 if and only if (N × R, ξ̃, φ̃, η̃, 1̃) is an almost
paracontact metric manifold of class G2

2.

Proof. Let (N, J, h) belongs to W3. In this class following relations hold:

α(A,B,C) = α(U,A,B) = α(U,V,W) = 0, δF = 0

for all A,B,C ∈ V and U,V,W ∈ H . Then we have

α(X,Y,Z) = α(J(X),Y,Z) = −α(J(X), J(Y),Z). (34)

Thus we get θ̃ = 0 and

β̃(X̃, Ỹ, Z̃) = −β̃(φ̃(X̃), φ̃(Ỹ), Z̃) = β̃(φ̃(X̃), Ỹ, Z̃). (35)

Hence N ×R is of class G2
2.

Now, let us assume that N × R is in G2
2, then (35) is satisfied and we have θ̃(X̃) = 0. The equation (35)

implies (34). Also we have δF = 0 since θ̃(X̃) = 0. In addition, taking into account (34) we have

α(A,B,Z) = α(U,A,Z) = α(U,V,Z) = 0,

so we get all conditions except the condition (3). Hence the manifold N belongs to the class W3.

Example 3.12. [10] Consider a Lie group G of dimension 6 with Lie algebra, where

[e4, e5] = e6.

Suppose a left-invariant almost parahermitian structure on the Lie group G defined by

J(e1) = e1, J(e2) = e2, J(e3) = e3, J(e4) = −e4, J(e5) = −e5, J(e6) = −e6.

We choose the left-invariant metric h of the Lie group as follows

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


.

(J, h) is a left-invariant almost parahermitian structure on G. From the Koszul formula, the non-zero Levi-Civita
covariant derivatives are

∇e3 e4 = −
1
2 e2, ∇e3 e5 =

1
2 e1, ∇e4 e3 = −

1
2 e2,

∇e4 e5 =
1
2 e6, ∇e5 e3 =

1
2 e1, ∇e5 e4 = −

1
2 e6.

We calculate the non-zero Levi-Civita covariant derivatives of J as(
∇e3 J

)
(e4) = e2,

(
∇e3 J

)
(e5) = −e1.

It can be proved that the condition (3) is not satisfied and the other conditions (condition (1), condition (2), condition
(4) ,..., condition (8)) hold. Hence G ×R is in G2

2 from Theorem 3.11.
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Theorem 3.13. Almost parahermitian manifold (N, J, h) belongs to the class W4 if and only if almost paracontact
metric manifold (N ×R, ξ̃, φ̃, η̃, 1̃) belongs to the class G2

1.

Proof. Let the manifold (N, J, h) be of class W4. In this class we have

α(A,B,C) = α(U,V,W) = α(U,A,B) = 0, δF(A) = 0

for all A,B,C ∈ V and U,V,W ∈ V. Then

β̃(φ̃2(X̃), φ̃2(Ỹ), φ̃2(Z̃)) + β̃(φ̃(X̃), φ̃2(Ỹ), φ̃(Z̃)) = 0, (36)

β̃(φ̃(X̃), Ỹ, Z̃) = β̃(X̃, Ỹ, Z̃)

are fulfilled. Taking into account (36) we conclude that

β̃3 = β̃4 = 0.

In addition, from condition (3), we obtain

β̃1(X̃, Ỹ, Z̃) = α(A,U,V),

hence β̃2(X̃, Ỹ, Z̃) = 0. As a result N ×R belongs to the class G2
1.

Conversely, let N ×R be in G2
1. In this case we get

β̃(X̃, Ỹ, Z̃) = β̃1(X̃, Ỹ, Z̃) (37)

and

β̃(X̃, Ỹ, Z̃) = β̃(φ̃(X̃), Ỹ, Z̃). (38)

From (38) we have

α(U,Y,Z) = 0 (39)

for all U ∈ H , Y,Z ∈ χ(N). From (39), we get conditions (5), (6), (7) and (8). Setting X̃ = (A, 0) and Ỹ = (U, 0)
and Z̃ = (V, 0) in (37), we have the condition (3). In addition, setting X̃ = (A, 0) and Ỹ = (A, 0) and Z̃ = (Z, 0)
in the equation (37) we obtain

α(A,A,Z) = 0,

thus we get conditions (1), (2). As a result, N belongs to the class W4.

Example 3.14. Consider a Lie group G of dimension 4 with Lie algebra 14.10, where

[e1, e4] = e1, [e3, e4] = e2.

Consider a left-invariant almost parahermitian structure on G determined by

J(e1) = −e1, J(e2) = e2, J(e3) = e3, J(e4) = −e4.

We use the left-invariant metric h of the G given by
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
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(J, h) is a left-invariant almost parahermitian structure on G. Non-zero Levi-Civita covariant derivatives are

∇e1 e2 = −
1
2 e3, ∇e1 e3 = −

1
2 e3, ∇e1 e4 =

1
2 e1 +

1
2 e4,

∇e2 e1 = −
1
2 e3, ∇e2 e4 =

1
2 e2, ∇e3 e1 = −

1
2 e3,

∇e3 e4 =
1
2 e2, ∇e4 e1 = −

1
2 e1 +

1
2 e4, ∇e4 e2 =

1
2 e2,

∇e4 e3 = −
1
2 e2.

SinceV = Span{e2, e3} andH = Span{e1, e4}, we evaluate non-zero Levi-Civita covariant derivatives of J as(
∇e2 J

)
(e1) = e3,

(
∇e2 J

)
(e4) = −e2,

(
∇e3 J

)
(e1) = e3,

(
∇e3 J

)
(e4) = −e2.

It is seen that all conditions except condition (4) are valid. The structure (J, h) on G is in W4. Therefore from Theorem
3.13, the paracontact structure on G ×R is of the class G2

1.

Theorem 3.15. (N, J, h) is of the class W5 if and only if (N ×R, ξ̃, φ̃, η̃, 1̃) is of the class G1
3.

Proof. Assume that (N, J, h) is in W5. In this class all conditions except the condition (5) are satisfied. Then
we have the followings:

α(A,B,C) = α(A,U,V) = α(U,A,B) = 0, (40)

also

α(X,Y,Z) = −α(Y,X,Z). (41)

for all A,B,C ∈ V, U,V ∈ H , X,Y,Z ∈ χ(N). In addition from (40) we have

α(X,Y,Z) = −α(J(X),Y,Z). (42)

Now (42) implies

β̃(X̃, Ỹ, Z̃) = −β̃(φ̃(X̃), Ỹ, Z̃). (43)

Moreover if we use (41), we derive

β̃(X̃, Ỹ, Z̃) = −β̃(Ỹ, X̃, Z̃). (44)

Thus N ×R is of the class G1
3.

If N × R is in G1
3, then (43) and (44) are satisfied. Then we have (41) and (42). From (41) and (42), all

conditions except the condition (5) are hold. Thus N is in W5.

Example 3.16. Let G be a 6-dimensional Lie group with Lie algebra, whose non-zero brackets satisfy

[e1, e2] = 2e3, [e1, e6] = 2e5, [e2, e6] = 2e4.

Define a left-invariant almost parahermitian structure on G by

J(e1) = −e1, J(e2) = −e2, J(e3) = e3, J(e4) = e4, J(e5) = e5, J(e6) = −e6.

We choose the left-invariant metric h of the Lie group G as follows

0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0


.
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It is verified that (J, h) is a left-invariant almost parahermitian structure on G. We write the non-zero Levi-Civita
covariant derivatives as

∇e1 e2 = e3, ∇e2 e1 = −e3, ∇e1 e6 = e5,
∇e6 e1 = −e5, ∇e2 e6 = e4, ∇e6 e2 = −e4.

The non-zero components of the Levi-Civita covariant derivatives of J are(
∇e1 J

)
e2 = −2e3 = −

(
∇e2 J

)
e1,(

∇e1 J
)

e6 = −2e5 = −
(
∇e6 J

)
e1,(

∇e2 J
)

e6 = −2e4 = −
(
∇e6 J

)
e2.

V = Span{e3, e4, e5} andH = Span{e1, e2, e6} imply

α(e1, e2, e6) + α(e2, e6, e1) + α(e6, e1, e2) = −6 , 0,

and as a results the condition (5) is not satisfied. In addition it can be shown that the other conditions are met. Hence
the structure (J, h) on G is in W5. Then the left-invariant paracontact structure on G × R is of the class G1

3 from
Theorem 3.15.

Theorem 3.17. (N, J, h) belongs to class W6 if and only if (N ×R, ξ̃, φ̃, η̃, 1̃) belongs to the class G1
4.

Proof. Let (N, J, h) be in W6. The equations

α(A,B,C) = α(A,U,V) = α(U,A,B) = 0

hold in the class W6. Then we have

α(X,Y,Z) = −α(J(X),Y,Z) (45)

and

SXYZ (∇XF) (Y,Z) = 0. (46)

for all X,Y,Z ∈ χ(N). Hence we obtain

β̃(X̃, Ỹ, Z̃) = −β̃(φ̃(X̃), Ỹ, Z̃) (47)

and

SX̃ỸZ̃β̃(X̃, Ỹ, Z̃) = 0. (48)

Thus, N ×R is in G1
4.

If N ×R is of the class G1
4, then (47) and (48) are satisfied. We get (45) and (46) from (47) and (48). Then

(45) and (46) yield that all conditions except the condition (6) hold. As a result, N is in W6.

Example 3.18. Consider a Lie group G of dimension 4 with Lie algebra 14.3, where

[e1, e4] = e1, [e3, e4] = e2.

A left-invariant almost parahermitian structure on G is determined by

J(e1) = e1, J(e2) = e2, J(e3) = −e3, J(e4) = −e4.

We choose the left-invariant metric h of the Lie group as below
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
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It can be seen that (J, h) is a left-invariant almost parahermitian structure on G. The non-zero Levi-Civita covariant
derivatives are

∇e4 e1 = −e1, ∇e4 e3 = −e2, ∇e4 e4 = e4.

SinceV = Span{e1, e2} andH = Span{e3, e4}, we evaluate non-zero Levi-Civita covariant derivative of J as(
∇e4 J

)
(e3) = 2e2.

It is proved that all conditions except condition (6) are satisfied. Hence the structure (J, h) on G is in W6. Then
Theorem 3.17 implies that G ×R is of the class G1

4.

Theorem 3.19. (N, J, h) is in W7 if and only if (N ×R, ξ̃, φ̃, η̃, 1̃) is in G1
2.

Proof. Let (N, J, h) belongs to W7. We have

α(A,B,C) = α(U,V,W) = α(A,U,V) = 0, δF = 0. (49)

Taking into account (49) we get

α(X,Y,Z) = −α(J(X),Y,Z), (50)

α(X,Y,Z) = −α(J(X), J(Y),Z). (51)

Also we obtain θ̃ = 0 from δF = 0. (50) and (51) yield

β̃3(X̃, Ỹ, Z̃) = β̃4(X̃, Ỹ, Z̃) = 0

and

β̃1(X̃, Ỹ, Z̃) = 0

since θ̃ = δF = 0. Also, (50) and (51) imply

β̃(X̃, Ỹ, Z̃) = −β̃(φ̃(X̃), φ̃(Ỹ), Z̃) = −β̃(φ̃(X̃), Ỹ, Z̃) (52)

Thus N ×R is of class G1
2.

Conversely, if N ×R is in G1
2, then (52) is satisfied and θ̃β̃(X̃) = 0. The conditions (4) and (8) hold since

δF(X) = θ̃β̃(X̃) = 0. From (52), we have

α(A,B,C) = α(A,U,V) = α(U,V,W) = 0.

Thus the conditions (1), (2), (3), (5) and (6) are obtained. As a result the manifold N belongs to the class
W7.

Example 3.20. [10] Consider a Lie group G of dimension 6 with Lie algebra, where

[e1, e2] = e3.

Suppose a left-invariant almost parahermitian structure on the Lie group G determined by

J(e1) = e1, J(e2) = e2, J(e3) = e3, J(e4) = −e4, J(e5) = −e5, J(e6) = −e6.

We choose the left-invariant metric h of the Lie group as follows

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


.
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(J, h) is a left-invariant almost parahermitian structure on G. Using the Koszul formula, we compute the non-zero
Levi-Civita covariant derivatives as

∇e1 e2 =
1
2 e3, ∇e1 e6 = −

1
2 e5, ∇e2 e1 = −

1
2 e3,

∇e2 e6 =
1
2 e4, ∇e6 e1 = −

1
2 e5, ∇e6 e2 =

1
2 e4.

Also, non-zero Levi-civita covariant derivatives of J are(
∇e6 J

)
(e1) = −e5,

(
∇e6 J

)
(e2) = e4

It is shown that other conditions except condition (8) are valid. Hence the structure (J, h) on G is in W7. Then Theorem
3.19 yields that the structure on G ×R is in G1

2.

Theorem 3.21. Almost parahermitian manifold (N, J, h) is in W8 if and only if almost paracontact metric manifold
(N ×R, ξ̃, φ̃, η̃, 1̃) belongs to the class G1

1.

Proof. Let (N, J, h) be a manifold of class W8. We have

β̃3 = β̃4 = 0

since α(X,Y,Z) = −α(J(X),Y,Z) = −α(J(X), J(Y),Z) in W8. Also, from the condition (7)

β̃1(X̃, Ỹ, Z̃) = β̃(X̃, Ỹ, Z̃)

is obtained. Thus N ×R is of class G1
1.

Conversely, if N ×R is of class G1
1, then we get

β̃(X̃, Ỹ, Z̃) = −β̃(φ̃(X̃), Ỹ, Z̃) (53)

and

β̃(X̃, Ỹ, Z̃) = β̃1(X̃, Ỹ, Z̃). (54)

(53) and (54) imply
α(X,Y,Z) = −α(J(X),Y,Z) = −α(J(X), J(Y),Z).

Then all conditions except the condition (8) are valid. Therefore N is in W8.

Example 3.22. Consider a Lie group G of dimension 4 with Lie algebra 14.10, where

[e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1.

Suppose a left-invariant almost parahermitian structure on the Lie group G given by

J(e1) = −e1, J(e2) = −e2, J(e3) = e3, J(e4) = e4.

The left-invariant metric h of the Lie group is chosen by
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
Then (J, h) is a left-invariant almost parahermitian structure on G with non-zero components of the Levi-Civita
covariant derivatives evaluated as

∇e1 e3 = e1, ∇e1 e4 = −e2, ∇e3 e2 = −e2,
∇e3 e3 = e3, ∇e4 e2 = −e1, ∇e4 e4 = e3.
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SinceV = Span{e4, e3} andH = Span{e1, e2}, we write the non-zero components of Levi-Civita covariant derivative
of J as (

∇e1 J
)

(e3) = 2e1,
(
∇e1 J

)
(e4) = −2e2.

It is verified that all conditions except condition (8) hold. Hence the structure (J, h) on G is of the class W8. Then the
left-invariant paracontact structure on G ×R is of the class G1

1 from Theorem 3.21.

The relationship between classes are summarized in the table below:

The class to which the
manifold N belongs

The class to which themanifold N × R
belongs

W1 G2
3

W2 G2
4

W3 G2
2

W4 G2
1

W5 G1
3

W6 G1
4

W7 G1
2

W8 G1
1
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[14] N. Özdemir, Ş.Aktay, M. Solgun, Almost Hermitian Structures from Almost Contact Metric Manifolds and their Curvature Properties,

Konuralp J. Math. 12(1) (2024), 5–12.
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