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Abstract. Given a simple connected graph G = (V(G),E(G)), the atom-bond sum-connectivity (ABS) index
is defined as

ABS(G) =
∑

uv∈E(G)

√
d(u) + d(v) − 2

d(u) + d(v)
=

∑
uv∈E(G)

√
1 −

2
d(u) + d(v)

,

where d(u) and d(v) are the degrees of u, v ∈ V(G), respectively. In this paper, letUn,α be a set of all unicyclic
graphs of order n with diameter α. Firstly, we present the minimum ABS index of G ∈ Un,α with α ≥ 2.
We also determine the maximum ABS index of G ∈ Un,α with α ≥ 4. Finally, the corresponding extremal
graphs with the sharp upper and lower bounds have been characterized, respectively.

1. Introduction

Let G = (V(G),E(G)) be a simple connected graph with the vertex set V(G) and the edge set E(G). For
a vertex x ∈ V(G), we use dG(x) and NG(x) to denote the degree of x and the set of neighbors of x in G,
respectively. In particular, x is called a pendant vertex when dG(x) = 1. Let PV(G) be a set of all pendant
vertices in G. We call an edge uv is a pendant edge of G if either dG(u) = 1 or dG(v) = 1.

A path P is denoted by P = u0u1 · · · uk = Pk+1, and we call P a path from u0 to uk, or briefly by u0-uk
path. The distance d(u, v) of two vertices u and v is the length of the shortest u-v path. The longest distance
between any two vertices in G is the diameter of G, denoted by α(G). The longest path Pα is called a
diametral path of G. A unicyclic graph is a connected graph with n vertices and n edges. Let Cn denote the
cycle on n vertices. G − u is obtained from G by deleting a vertex u and its incident edges. Let G + uv and
G − uv be obtained from G by adding an edge uv < E(G) and deleting an edge uv ∈ E(G), respectively. We
drop G from the notations dG(v),NG(v) and α(G) if there is no confusion.

Topological indices are a class of molecular descriptors, which are of great significance in the fields of
biology and physical chemistry, especially in the study of the structural properties of molecules[7, 14, 15,

2020 Mathematics Subject Classification. Primary 05C92; Secondary 05C35.
Keywords. Extremal graph; Atom-bond sum-connectivity index; Unicyclic graph; Diameter.
Received: 04 July 2024; Revised: 18 October 2024; Accepted: 22 October 2024
Communicated by Paola Bonacini
This work is supported by 2024 Special Projects for Graduate Education and Teaching Reform of China University of Geosciences,

Beijing (Grant No. JG2024021 and No. JG2024013) and 2024 Subject Development Research Fund Project of China University of
Geosciences, Beijing (Grant No. 2024XK208).

* Corresponding author: Haiying Wang
Email addresses: 2019220014@email.cugb.edu.cn (Yuan Zhang), whycht@126.com (Haiying Wang), shaohuiwang@yahoo.com

(Shaohui Wang)
ORCID iDs: https://orcid.org/0009-0005-6262-9108 (Yuan Zhang), https://orcid.org/0000-0002-2058-5443 (Haiying

Wang), https://orcid.org/0000-0001-6941-3194 (Shaohui Wang)



Y. Zhang et al. / Filomat 39:4 (2025), 1311–1330 1312

17, 21]. So far, there have been a lot of invariants based on the degree of vertices, and they are hot research
topics to explore the extremal values of these invariants among all classes of graphs for a fixed condition.
Numerous topological indices exhibit interrelations with one another.

In fact, the atom-bond sum-connectivity (ABS) index of a graph is a variant from three famous chemical
topological indices, which are the Randić index, the sum-connectivity index and the atom-bond connectivity
index. The Randić index of G is the first chemical index introduced by the famous chemist Randić [16], which
was defined by

R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

.

One modified version of the Randić index of G is the sum-bond connectivity index proposed by Zhou and
Trinajstić [18] as

χ(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

.

And the atom-bond connectivity index of G is another modified version of the Randić index defined by Estrada
et al. [6] as

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v) − 2

dG(u)dG(v)
.

According to the main idea of the sum-bond connectivity index, Ali, Furtula, Redžepović and Gutman
[2] put forward the atom-bond sum-connectivity (ABS) index of a graph G, which was denoted as

ABS(G) =
∑

uv∈E(G)

√
d(u) + d(v) − 2

d(u) + d(v)
=

∑
uv∈E(G)

√
1 −

2
d(u) + d(v)

.

The ABS index is a crucial topological index widely employed to quantify and characterize molecu-
lar structures. The primary significance of the ABS index lies in its ability to simplify and mathemati-
cally process molecular structures, providing a powerful tool for predicting and interpreting molecular
physicochemical properties, reactivity, and biological activity. While traditional physicochemical methods
accurately measure molecular properties, they often struggle to deliver rapid conclusions in complex sys-
tems. As a topological index, the ABS index offers preliminary estimates of molecular properties through
relatively simple calculations [1, 12].

The aim of studying the ABS index is to explore its potential applications across various fields, particu-
larly in the property prediction and molecular design of organic compounds. The accuracy and generaliz-
ability of the ABS index in predicting molecular properties are further validated through comparisons with
other topological indices.

For example, among the Randić index, the sum-connectivity index, the atom-bond connectivity index
and the ABS index, Ali, Gutman and Redžepović found some conclusions referring to [1]. In the case
of octane isomers, it can be concluded from the values of some correlation coefficients that the ABS
index is as effective as the other three indices in predicting molecular properties. Additionally, they
indicated that the ABS index predicts molecular properties as well as other connectivity indices and, in some
cases, performs even better. Notably, the ABS index outperforms the ABC index in specific predictions of
physicochemical properties. Consequently, investigating the correlation properties of the ABS index holds
significant importance.

Up to now, Ali et al. determined the largest, second largest, smallest and second smallest ABS index
values for the class of unicyclic graphs in [1], respectively. As above, we cite the maximum and minimum
ABS index values for a class of unicyclic graphs as lemmas below. The extremal problems on the ABS indices
among all trees with given order has been studied by Ali et al. in [2]. Besides, Alraqad et al. obtained the
smallest ABS index values among all trees with a given number of pendant vertices in [4]. Further, Maitreyi
et al. investigated the largest ABS index values among all trees with a given number of pendant vertices
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in [11]. The maximum ABS index of trees with fixed number of leaves was proposed by Noureen and Ali
in [13]. In addition, Nithya et al. in [12] characterized the extremal graphs with respect to the ABS index
among all unicyclic graphs with given girth recently.

Lemma 1.1. [1] Among all unicyclic graphs of order n ≥ 4, the graph S+n has the maximum ABS index, equal to

(n − 3)

√
n − 2

n
+ 2

√
n − 1
n + 1

+
1
√

2
.

In chemical graph theory, a family of unicyclic graphs is one of the most common molecular structures.
In this paper, we discuss the minimum ABS index of G ∈ Un,α with α ≥ 2. Moreover, the maximum
ABS index of G ∈ Un,α with α ≥ 4 is determined. Finally, we characterize the graphs with minimum and
maximum ABS indices among the n-vertex unicyclic graphs with given diameter α, respectively.

2. The minimum ABS index of unicyclic graphs with fixed diameter

In this section, we discuss the minimum ABS index of unicyclic graphs with given diameter α ≥ 2 and
characterize the corresponding minimal graphs. To facilitate the narrative, we introduce some lemmas and
notations below.

Assume that T is a tree with order n ≥ 4 and e = uv is a non-pendant edge of T. Let T′ be the new tree
obtained from T by contracting the edge e = uv into a new vertex w and adding a new pendant edge to w.
We say that T′ is obtained from T by e.1.t. the edge uv (see Figure 1).

Figure 1. Two trees T and T′ for e.1.t..

DenoteUn,α = {G | G is a unicyclic graph with order n and diameter α}.
Next, we construct a new unicyclic graph and denote by U1 in Figure 2. Then U1 ∈ Un,α.

Figure 2. U1.

Lemma 2.1. [22] Let

f (x) =

√
x − a

x − a + 2
−

√
x − b

x − b + 2

with x ≥ b ≥ a ≥ 0. Then f (x) ≥ 0 with equality if and only if a = b and f (x) is a decreasing function in (b,+∞).

Lemma 2.2. Let G ∈ Un,α be a unicyclic graph and let Pα be a diametral path of G. If there is a pendant vertex v
such that v < V(Pα), then there exists a unicyclic subgraph G′ of G such that ABS(G) > ABS (G′) with v < V (G′)
and α(G) = α (G′).



Y. Zhang et al. / Filomat 39:4 (2025), 1311–1330 1314

Proof. Let u be the endpoint of the shortest path among all u-v paths with dG(u) ≥ 3. Let G′ be a graph
obtained from G by deleting the u-v path while containing the vertex u. Then V(G′) ⊂ V(G). Let x be
adjacent to u and on the u-v path (If u-v path has exactly one edge, then v = x). It is easy to see that G′ is a
unicyclic graph and α (G′) = α(G).

For 1 ≤ i ≤ dG(u) − 1, let wi ∈ NG(u)\{x} and wi ∈ NG′ (u). Then we have dG(u) = dG′ (u) + 1 = d(u),
dG(wi) = dG′ (wi) = d(wi) and the following holds.

ABS(G) − ABS (G′)

≥

√
dG(u) − 1
dG(u) + 1

+
∑

wi∈NG(u)\{x}

√
dG(u) + dG(wi) − 2

dG(u) + dG(wi)
−

∑
wi∈NG′ (u)

√
dG′ (u) + dG′ (wi) − 2

dG′ (u) + dG′ (wi)

=

√
d(u) − 1
d(u) + 1

+
∑

wi∈NG(u)\{x}


√

d(u) + d(wi) − 2
d(u) + d(wi)

−

√
d(u) + d(wi) − 3
d(u) + d(wi) − 1


> 0,

which implies that ABS(G) > ABS (G′). Thus, Lemma 2.2 holds immediately.

Lemma 2.3. [1] For every fixed integer n ≥ 3, among all unicyclic graphs of order n, the cycle Cn is the only graph
possessing the minimum ABS index, equal to n/

√
2.

Remark 2.4. Let G be a unicyclic graph and let |PV(G)| be the number of pendant vertices of G. By Lemmma 2.3, if
|PV(G)| = 0, then G � Cn and Cn is the only graph possessing the minimum ABS index. Therefore, we will consider
|PV(G)| ≥ 1 in the remaining part of the paper.

Theorem 2.5. Let G ∈ Un,α with α ≥ 3 and α + 2 ≤ n ≤ 2α. Then we have

ABS(G) ≥ ABS (U1) = (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

Proof. Let G ∈ Un,α with α ≥ 3 and α + 2 ≤ n ≤ 2α. Since we have |PV(G)| ≥ 1 from Remark 2.4, it suffices
to discuss three cases below from the view of pendant vertices.
Case 1. |PV(G)| = 1.

Since G ∈ Un,α and |PV(G)| = 1, G contains a path P of length m ≥ 1 and a cycle Cl with order l ≥ 3,
where n = m + l. Then P and Cl of G have a common vertex denoted by u1 and d(u1) = 3. As above, we
obtain ABS(G) by the following equation.

ABS(G) = ABS (Cl) + ABS(P). (1)

Case 1.1. m ≥ 2 and l ≥ 4.
In this subcase, it is easy to calculate that

ABS(P) = (m − 2)

√
2

2
+

√
15
5
+

√
3

3

and

ABS (Cl) = (l − 2)

√
2

2 + 2
+ 2

√
3

3 + 2
= (l − 2)

√
2

2
+

2
√

15
5
.

We substitute the values of ABS (Cl) and ABS(P) above into Equation (1). Then

ABS(G) = ABS (Cl) + ABS(P) = (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
= ABS (U1) .
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Case 1.2. m = 1 and l ≥ 4.
By m = 1, we know ABS(P) =

√
2

2 . Combined with Equation (1), that is,

ABS(G) = (l − 2)

√
2

2
+

2
√

15
5
+

√
2

2

≥ (n − 2)

√
2

2
+

2
√

15
5

≥ ABS (U1) .

Case 1.3. l = 3 and m ≥ 2.
In this subcase, we have ABS(Cl) =

√
2

2 +
2
√

15
5 . According to Equation (1), it holds that

ABS(G) = (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
= ABS (U1) .

Case 2. |PV(G)| = 2.
Since G ∈ Un,α and |PV(G)| = 2, there exists two paths and exactly one cycle in G, denoted by P of length

m1, P′ of length m2 and Cl of order l, respectively. Thus there are three structures a, b and c in all, of which
the structure a is divided into three seed structures a1, a2 and a3 in Figure 3, the structure b is divided into
three seed structures b1 and b2 in Figure 4 and the structure c is divided into four seed structures c1, c2, c3
and c4 in Figure 5.

Without loss of generality, we assume that V (Cl)∩V (P) = u1 and V (Cl)∩V (P′) = u2 in Figure 3. Denote
V (P)∩V (P′) = u2 if V (Cl)∩V (P) = u1 and V (P)∩V (P′) = u1 if V (Cl)∩V (P′) = u2 in Figure 4 and 6. Then
d(u1), d(u2) ∈ {3, 4} and n = l +m1 +m2. Hence,

ABS(G) = ABS (Cl) + ABS(P) + ABS (P′) . (2)

Figure 3. Attaching two paths P and P′ to the unique cycle Cl.

Case 2.1. V(P) ∩ V(P′) = ∅.
Case 2.1.1. l ≥ 4 and m1,m2 ≥ 2.

Firstly, if l ≥ 4 and m1,m2 ≥ 2, then we obtain

ABS(P) = (m1 − 2)

√
2

2
+

√
15
5
+

√
3

3
(3)

and

ABS (P′) = (m2 − 2)

√
2

2
+

√
15
5
+

√
3

3
. (4)

If we attach P and P′ to two non-adjacent vertices of Cl referring to a3 in Figure 3, then

ABS (Cl) = (l − 4)

√
2

2
+

4
√

15
5
. (5)
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If we attach P and P′ to two adjacent vertices of Cl referring to a1 in Figure 3, then

ABS (Cl) = (l − 3)

√
2

2
+

2
√

15
5
+

√
6

3
. (6)

Combined with the condition that Equation (6) is smaller than Equation (5) about values, as we consider
the lower bound of the ABS index by Theorem 2.5. Hence we just have to think about whether the Theorem
2.5 holds if we substitute Equations (3), (4) and (6) into Equation (2). As a result, we conclude that

ABS(G) ≥ (l +m1 +m2 − 7)

√
2

2
+

4
√

15
5
+

2
√

3
3
+

√
6

3

≥ (n − 7)

√
2

2
+

4
√

15
5
+

2
√

3
3
+

√
6

3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

Case 2.1.2. l ≥ 4 and m1 = 1,m2 ≥ 2.
In this subcase, we know ABS(P) =

√
2

2 and ABS (P′) = (m2 − 2)
√

2
2 +

√
15
5 +

√
3

3 . By substituting Equation
(6) and the above two equations into Equation (2), we have

ABS(G) ≥ (l +m2 − 5)

√
2

2
+

3
√

15
5
+

√
3

3
+

√
6

3
+

√
2

2

≥ (n − 5)

√
2

2
+

3
√

15
5
+

√
3

3
+

√
6

3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

Case 2.1.3. l ≥ 4 and m1 = m2 = 1.
Since ABS(P) + ABS (P′) =

√
2 and combining with Equations (2) and (6), we obtain

ABS(G) ≥ (l − 3)

√
2

2
+

2
√

15
5
+

√
6

3
+
√

2

≥ (n − 5)

√
2

2
+

2
√

15
5
+

√
6

3
+
√

2

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

Case 2.1.4. l = 3 and m1,m2 ≥ 2.
Note that ABS (Cl) = 2

√
15

5 +
√

6
3 , then combined Equations (2), (3) and (4), it holds that

ABS(G) = (m1 +m2 − 4)

√
2

2
+

2
√

15
5
+

2
√

3
3
+

2
√

15
5
+

√
6

3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

Case 2.1.5. l = 3 and m1 = 1,m2 ≥ 2.
In this subcase, we have ABS (Cl) = 2

√
15

5 +
√

6
3 and ABS(P) =

√
2

2 . According to Equations (2) and (4), the
following holds.

ABS(G) = (m2 − 2)

√
2

2
+

3
√

15
5
+

√
3

3
+

√
2

2
+

√
6

3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.



Y. Zhang et al. / Filomat 39:4 (2025), 1311–1330 1317

Case 2.1.6. l = 3 and m1 = m2 = 1.

Since ABS (Cl) = 2
√

15
5 +

√
6

3 and ABS(P) = ABS(P′) =
√

2
2 , we substitute these two equations into Equation

(2). Then

ABS(G) =
2
√

15
5
+

√
6

3
+
√

2 ≥

√
2

2
+

3
√

15
5
+

√
3

3
.

Case 2.2. V(P) ∩ V(P′) , ∅ and Pα contains both pendant vertices of G.
Case 2.2.1. Attaching both pendant vertices of P and P′ to exactly one vertex of Cl.

Let u1 be the common vertex of P, P′ and Cl. Then d(u1) = 4 referring to a2 in Figure 3. If u1 is not
adjacent to a pendant vertex of Pα, then l ≥ 3 and m1,m2 ≥ 2 as V(Pα) is a subset of V(P)∪V(P′). According
to Equation (2), we obtain

ABS(G) = ABS (Cl) + ABS(P) + ABS (P′)

= (l − 2)

√
2

2
+

2
√

6
3
+ (m1 − 2)

√
2

2
+

√
6

3
+

√
3

3

+ (m2 − 2)

√
2

2
+

√
6

3
+

√
3

3

= (n − 6)

√
2

2
+

4
√

6
3
+

2
√

3
3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

If u1 is adjacent to one pendant vertex of Pα (Without loss of generality, we assume that u1 is adjacent
to another endpoint of P), then l = 3, m1 = 1 and m2 ≥ 2 as V(Pα) is a subset of V(P) ∪ V(P′). Since
ABS (Cl) =

√
2

2 +
2
√

6
3 , ABS(P) =

√
15
5 and from Equations (2) and (4), the following holds.

ABS(G) = (m2 − 2)

√
2

2
+

√
6

3
+

√
3

3
+

√
2

2
+

2
√

6
3
+

√
15
5

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

If u1 is adjacent to two pendant vertices of Pα, i.e., u1 is adjacent to both end vertices of P and P′, then
l = 3 and m1 = m2 = 1. We consider ABS (Cl) = 2

√
6

3 +
√

2
2 , ABS(P) = ABS(P′) =

√
15
5 and substitute these two

equations into Equation (2). Then

ABS(G) =
2
√

15
5
+

2
√

6
3
+

√
2

2
≥

√
2

2
+

3
√

15
5
+

√
3

3
.

Case 2.2.2. Attaching a pendant vertex of P′ (P) to an inner vertex of P (P′).
There are two conditions in this subcase and we characterize them in Figure 4. Below, we just consider

the condition b1 and the proof of condition b2 is similar.
Let u2 be the common vertex of P and P′ and let v1, v2 be the another endpoint of P′ and P, respectively.

Then d(u2) = 3. Note that V(Pα) is a subset of V(P)∪V(P′), one has t1 + t2 ≥ max
{
m1 +

⌊
l
2

⌋
,m2 +

⌊
l
2

⌋}
, where

t1 and t2 are the number of edges of u2-v1 path and u2-v2 path, respectively. We are able to deduce that the
vertex u2 is not adjacent to a pendant vertex of Pα (otherwise the diametral path Pα has only one pendant
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vertex). Then

ABS(G) = ABS (Cl) + ABS(P) + ABS (P′)

= (l − 2)

√
2

2
+

2
√

15
5
+ (m1 − 4)

√
2

2
+

3
√

15
5

+

√
3

3
+ (m1 − 2)

√
2

2
+

√
15
5
+

√
3

3

= (n − 8)

√
2

2
+

2
√

3
3
+

6
√

15
5

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

Figure 4. Attaching a pendant vertex of P(P′) to an inner vertex of P′(P).

Case 2.2.3. Attaching a pendant vertex of P′ (P) to a pendant vertex of P (P′).
Let v1, v2 be the another pendant vertex of P and P′, respectively. If u1 is adjacent to a pendant vertex of

Pα, then l = 3 and m1,m2 ≥ 1 (see c1 in Figure 5). Then ABS (Cl) = 2
√

6
3 +

√
2

2 and substitute it into Equation
(2). As a result, we have

ABS(G) =
2
√

6
3
+

√
2

2
+ (m1 +m2 − 3)

√
2

2
+

√
15
5
+

√
6

3
+

√
3

3

= (n − 5)

√
2

2
+
√

6 +

√
15
5
+

√
3

3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

If u1 is not adjacent to a pendant vertex of Pα, then m1 + m2 ≥ max
{
s1 +

⌊
l
2

⌋
,m2 + s2 +

⌊
l
2

⌋}
, where

s1 = d(u1, v2) and s2 = d(u1,u2) (see c3 in Figure 5). Then we calculate that

ABS(G) = ABS (Cl) + ABS(P) + ABS (P′)

= (l − 2)

√
2

2
+

2
√

6
3
+ (m1 +m2 − 4)

√
2

2
+

2
√

6
3
+

2
√

3
3

= (n − 6)

√
2

2
+

4
√

6
3
+

2
√

3
3

≥ (n − 4)

√
2

2
+

3
√

15
5
+

√
3

3
.

The condition c2 and c4 is similar to c1 and c2, respectively.
Case 2.3. V(P) ∩ V(P′) , ∅ and Pα contains one pendant vertex of G.

Given the one pendant vertex belonging to Pα denoted by w1. If w2 is another pendant vertex of G and
w2 < PV(Pα), then there exists a unicyclic subgraph G′ satisfying V(G′) ⊂ V(G) from Lemma 2.2. As above,
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G′ contains exactly one pendant vertex w1 such that α(G) = α (G′) and ABS(G) > ABS (G′). According to
Case 1, this leads to the fact

ABS (G) ≥ ABS (G′) ≥ ABS (U1) .

Figure 5. Attaching a pendant vertex of P(P′) to a pendant vertex of P′(P).

Case 3. |PV(G)| ≥ 3.
For |PV(G)| ≥ 3, we obtain that the diametral path Pα contains at most two pendant vertices denoted by

u1 and u2 of G. If |PV(G)| ≥ 3, then there are at least |PV(G)| − 2 pendant vertices u3,u4, · · · ,u|PV(G)| not in Pα.
Further, by Lemma 2.2, there exists a unicyclic subgraph G′ of G such that G′ contains at most two pendant
vertices of Pα satisfying V(G′) ⊂ V(G), α(G) = α (G′) and ABS(G) > ABS (G′). If Pα has exactly one pendant
vertex, then from Case 1 and we have

ABS (G) ≥ ABS (G′) ≥ ABS (U1) .

On the other hand, if Pα has two pendant vertices, then by Case 2 one has

ABS (G) ≥ ABS (G′) ≥ ABS (U1) .

Therefore, the result holds.

Theorem 2.6. Let G ∈ Un,α with α = 2, then ABS(G) ≥ 2
√

2.

Proof. Given a graph G ∈ Un,α for α = 2, there are three structures as follows. If G = C4 or G = C5, then

ABS(G) = 2
√

2 and ABS(G) =
5
√

2
2

, respectively. Further, we may assume that G is obtained by attaching
at least one pendant vertex to one vertex of C3.

Let V (C3) = {v1, v2, v3} and let u1,u2, · · · ,uk be pendant vertices adjacent to v1. Then v2v1u1 is a diametral
path of G. Note that there exists a unicyclic subgraph G′ satisfying V(G′) ⊂ V(G) and containing the unique
pendant vertex u1 from Lemma 2.2. Hence, it is clear that α(G) = α (G′) and ABS(G) > ABS (G′). Therefore,
ABS (G′) =

√
2 + 2

√
15

5 , which implies that ABS(G) ≥ 2
√

2.

3. The maximum ABS index of unicyclic graphs with fixed diameter

In this section, we obtain the maximum ABS index among all unicyclic graphs with given diameter
α ≥ 2 and characterize the corressponding maximal graphs. Let

U
max
n,α = {G | G is a graph inUn,α with the maximum ABS index }.
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For every 4 ≤ α ≤ n − 2, we construct a new unicyclic graph Uαn ∈ Un,α (see Figure 6).
Therefore,

ABS
(
Uαn

)
= (n − α − 1)

√
n − α

n − α + 2
+ 2

√
n − α + 1
n − α + 3

+ A1,

where A1 =
2
√

15
5 +

√
2

2 if α = 4 and A1 = (α − 5)
√

2
2 +

3
√

15
5 +

√
3

3 if α ≥ 5.

Figure 6. Uαn

Lemma 3.1. [22] Let

f (x) = (x − a)

√
x − a

x − a + 2
− (x − b)

√
x − b

x − b + 2

with x ≥ b ≥ a ≥ 0. Then f (x) ≥ 0 with equality if and only if a = b and f (x) is an increasing function in (b,+∞).

Theorem 3.2. Let G ∈ Un,α with diameter α = 2 and n ≥ 4. Then we have ABS(G) ≤ 2
√

n−1
n+1 + (n− 3)

√
n−2

n +
√

2
2 .

Proof. According the proof of Theorem 2.6, there are three structures such that G ∈ Un,α for α = 2. If G = C4

or G = C5, then ABS(C4) = 2
√

2 and ABS(C5) =
5
√

2
2

, respectively. Further, if G is obtained by attaching

n− 3 pendant vertices to one vertex of C3, then it is clearly that ABS(G) = 2
√

n−1
n+1 + (n− 3)

√
n−2

n +
√

2
2 . Above

all, the result holds.

Theorem 3.3. Let G ∈ Un,α with diameter α = 3 and n ≥ 5. Then we have ABS(G) ≤ 2
√

n−1
n+1 + (n− 3)

√
n−2

n +
√

2
2 .

Proof. By Lemma 1.1, we know the graph S+n has the maximum ABS index in the class of all unicyclic graphs.
When n1, n2 ≥ 1 and n3 ≥ 0, we obtain α(S+n ) = 3 and n = n1 + n2 + n3 + 3 ≥ 5. Thus, the result is true.

Theorem 3.4. Let G ∈ Un,α with diameter α ≥ 4 and n = α + 2. Then ABS(G) ≤ ABS(Uαα+2), where the equality
holds if and only if G � Uαα+2.

Proof. Let G+ ∈ Umax
n,α with n = α+ 2. Let Pα = u1u2 · · · uαuα+1 be a diametral path and Cl be the unique cycle

of G+. Then there exists a vertex w < V(Pα) such that Cl is denoted by Cl = uiui+1wui or Cl = uiui+1ui+2wui
(otherwise, if l ≥ 5, then it contradicts Pα).

Claim 1. u1 < V(Cl) and uα+1 < V(Cl).

Seeking a contradiction, we assume that u1 ∈ V(Cl) or uα+1 ∈ V(Cl).
Case 1. Cl = u1u2wu1.
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Let G++ = G+ − {u1w} + {u3w}. Then G++ ∈ Uα+2,α and

ABS (G+) − ABS (G++) = 2

√
2

2 + 2
−

√
2

3 + 1
−

√
4

3 + 3
< 0.

Case 2. Cl = u1u2u3wu1.
Let G++ = G+ − {u1w} + {u2w}. Then G++ ∈ Uα+2,α and

ABS (G+) − ABS (G++) = 2

√
2

2 + 2
−

√
2

3 + 1
−

√
4

3 + 3
< 0.

Note that these two cases are both contradicted with G+ ∈ Umax
n,α , and hence u1 < V(Cl). Similarly, we

also have uα+1 < V(Cl).

Claim 2. l = 4.

By contradiction, we may assume l ≥ 5, which contradicts to the fact the diametral path Pα = u1u2 . . . uαuα+1.
In what follows, we consider l = 3 or l = 4. If l = 3, then Cl = uiui+1wui. According to Claim 1, it is clear
that 2 ≤ i ≤ α − 1 and ui−1 < PV (G+) or ui+2 < PV (G+) (otherwise, the diameter α = 3). Without loss of
generality, we assume that ui−1 < PV (G+). Thus dG+ (ui−2) = 1 or 2.

Let G++ = G+ − {uiw} + {ui−1w}. Then G++ ∈ Uα+2,α. By Lemma 2.1, it holds that

ABS (G+) − ABS (G++)

=

√
dG+ (ui−2)

dG+ (ui−2) + 2
−

√
dG+ (ui−2) + 1
dG+ (ui−2) + 3

−

√
4

3 + 3
−

√
3

2 + 3

≤

√
1

1 + 2
−

√
2

1 + 3
−

√
4

3 + 3
−

√
3

2 + 3
< 0,

which contradicts G+ ∈ Umax
n,α . Hence we obtain that l = 4 and 2 ≤ i ≤ α − 2. Above all, if 2 < i < α − 2, then

ABS (G+) − ABS
(
Uαα+2

)
=

√
3

2 + 3
+

√
1

1 + 2
−

√
2

1 + 3
−

√
2

2 + 2
< 0,

which also contradicts G+ ∈ Umax
n,α . Therefore whether i = 2 or i = α − 2, i.e., G+ � Uαα+2.

The case of n = α + 2 has discussed in Theorem 3.4, we discuss the case of n ≥ α + 3 in the remainder of the
article. To simplify the proof, we present three lemmas as follows.

Lemma 3.5. Let G+ ∈ Umax
n,α with 3 ≤ α ≤ n − 3 and Pα = u1u2 · · · uαuα+1 be a diametral path. If u ∈ PV(G+) and

either uu2 ∈ E(G+) or uuα ∈ E(G+), then |V(Cl) ∩ V(Pα)| ≥ 2.

Proof. In the following proof, we suppose that |V(Cl) ∩ V(Pα)| ≤ 1 seeking a contradiction.
Case 1. |V(Cl) ∩ V(Pα)| = 0.

If |V(Cl) ∩ V(Pα)| = 0, then there exists a path uiw1w2 · · ·wk attaching cycle Cl and path Pα. Hence
ui−1 < PV (G+) and ui+1 < PV (G+) with 3 ≤ i ≤ α − 1, that is, dG+ (ui−1) ≥ 2 and dG+ (ui+1) ≥ 2.
Case 1.1. k = 1.

Let G++ be the graph obtained from G+ by e.1.t. edge uiw1. Then G++ ∈ Un,α. As dG+ (ui−1) = dG++ (ui−1)
and dG+ (ui+1) = dG++ (ui+1), the following holds from Lemma 2.1.

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG++ (ui−1) + 3
dG++ (ui−1) + 5

 + 2

√
3

2 + 3
+

√
4

3 + 3

+


√

dG+ (ui+1) + 1
dG+ (ui+1) + 3

−

√
dG++ (ui+1) + 3
dG++ (ui+1) + 5

 − 2

√
5

2 + 5
−

√
4

1 + 5

< 0.
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Case 1.2. k = 2.
We consider G++ = G+ − {w1w2} + {uiw2}, then G++ ∈ Un,α. Since dG+ (ui−1) = dG++ (ui−1) and dG+ (ui+1) =

dG++ (ui+1), by Lemma 2.1, we obtain that

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG++ (ui−1) + 2
dG++ (ui−1) + 4

 + 2

√
3

2 + 3
−

√
5

3 + 4

+


√

dG+ (ui+1) + 1
dG+ (ui+1) + 3

−

√
dG++ (ui+1) + 2
dG++ (ui+1) + 4

 −
√

3
1 + 4

< 0.

Case 1.3. k ≥ 3.
We denote G++ = G+ − {w1w2} + {uiw2}. One can easily find that G++ ∈ Un,α, dG+ (ui−1) = dG++ (ui−1) and

dG+ (ui+1) = dG++ (ui+1). On the basis of Lemma 2.1, then

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG++ (ui−1) + 2
dG++ (ui−1) + 4

 +
√

3
2 + 3

+


√

dG+ (ui+1) + 1
dG+ (ui+1) + 3

−

√
dG++ (ui+1) + 2
dG++ (ui+1) + 4

 −
√

4
2 + 4

< 0.

Case 2. |V(Cl) ∩ V(Pα)| = 1.
Let Cl = v1v2v3 · · · vlv1 and let v1 be the common vertex of Cl and Pα, where ui = v1. Note that α ≥ 4, one

has dG+ (ui−1) ≥ 2 or dG+ (ui+1) ≥ 2 for 2 ≤ i ≤ α. Without loss of generality, we assume that dG+ (ui+1) ≥ 2, and
hence dG+ (ui) ≥ 4 and dG+ (ui+2) ≥ 1.
Case 2.1. l = 3.

Let G++ = G+ − {v2v3} + {v2ui+1}. Then G++ ∈ Un,α and by Lemma 2.1, we have

ABS (G+) − ABS (G++)

=

√
dG+ (ui)

dG+ (ui) + 2
−

√
dG+ (ui) − 1
dG+ (ui) + 1

+

√
2

2 + 2
−

√
dG+ (ui+1) + 1

dG+ (ui+1) + 1 + 2

+


√

dG+ (ui) + dG+ (ui+1) − 2
dG+ (ui) + dG+ (ui+1)

−

√
dG+ (ui) + dG+ (ui+1) − 1
dG+ (ui) + dG+ (ui+1) + 1


+


√

dG+ (ui) + dG+ (ui+2) − 2
dG+ (ui) + dG+ (ui+2)

−

√
dG+ (ui) + dG+ (ui+2) − 1
dG+ (ui) + 1 + dG+ (ui+2)


<

√
4

4 + 2
−

√
3

4 + 1
+

√
2

2 + 2
−

√
3

2 + 1 + 2
< 0.

Case 2.2. l ≥ 4.
For l ≥ 4 and 3 ≤ i ≤ α − 1, we define G++ = G+ − {v2v3} + {uiv3}. Thus we know G++ ∈ Un,α. According
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to Lemma 2.1, the following holds.

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 2
dG+ (ui−1) + 4

−

√
dG+ (ui−1) + 3
dG+ (ui−1) + 5

 +
√

2
2 + 2

−

√
4

1 + 5

+


√

dG+ (ui+1) + 2
dG+ (ui+1) + 4

−

√
dG+ (ui+1) + 3
dG+ (ui+1) + 5

 + 2


√

4
2 + 4

−

√
5

2 + 5


<

√
2

2
−

√
6

3
< 0.

Above all cases contradict to G+ ∈ Umax
n,α , and hence |V(Cl) ∩ V(Pα)| ≥ 2 is feasible.

Lemma 3.6. Let G+ ∈ Umax
n,α with 3 ≤ α ≤ n − 3. Then there must exist a vertex u0 ∈ PV (G+) such that

G+ − u0 ∈ Un−1,α.

Proof. Based on Lemma 2.2, we just prove the existence of vertex u0. By contradiction, we suppose
that G+ − u ∈ Un−1,α−1 for each u ∈ PV (G+). Let Pα = u1u2 · · · uαuα+1 be a diametral path of G+ and
u1 ∈ PV (G+). Then u = u1 or u = uα+1. Combined with Lemma 3.5, we claim that |V(Cl) ∩ V(Pα)| ≥ 2. Let
Cl = uiui+1 · · · ui+ jvkvk−1 · · · v3v2v1 (ui) for j ≥ 1. Then j ≤ k (otherwise it contradicts the diametral path Pα)
and k ≥ 2 as n ≥ α + 3. Note that dG+ (ui−1) ≥ 1, dG+ (ui) = 3 and dG+ (v2) = dG+ (v3) = 2.
Case 1. j = k ≥ 3.

Let G++ = G+ − {uiv2} − {v2v3} + {ui+1v2} + {ui+1v3}. Then dG++ (ui−1) = dG+ (ui−1) ≥ 1 and we conclude that
G++ ∈ Un,α. As a result, we have

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG++ (ui−1) + 1
dG++ (ui−1) + 2

 + 2


√

2
2 + 2

+

√
3

2 + 3


− 3

√
4

2 + 4
−

√
3

1 + 4
.

Case 1.1. dG+ (ui−1) = 1.
Using Lemma 2.1, it holds that

ABS (G+) − ABS (G++)

=


√

2
1 + 3

−

√
1

1 + 2

 + √2 +

√
15
5
−

√

6

=
3
√

2
2
−

√
3

3
−

√

6 +

√
15
5
< 0.

Case 1.2. dG+ (ui−1) ≥ 2.
Similarly, the following holds from Lemma 2.1.

ABS (G+) − ABS (G++)

≤


√

3
2 + 3

−

√
2

2 + 2

 + 2


√

2
2 + 2

+

√
3

2 + 3

 − 3

√
4

2 + 4
−

√
3

1 + 4

=

√
2

2
−

√

6 +
2
√

15
5
< 0.

Case 2. k > j.
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If k > j, then G++ = G+ − {v2v3} + {uiv3}, in which we obtain G++ ∈ Un,α and the following is true by
Lemma 2.1.

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG+ (ui−1) + 2
dG+ (ui−1) + 4

 + 
√

2
2 + 2

+

√
3

2 + 3


+


√

dG+ (ui+1) + 1
dG+ (ui+1) + 3

−

√
dG+ (ui+1) + 2
dG+ (ui+1) + 4

 −

√

4
2 + 4

+

√
3

1 + 4


<

√
2

2
−

√
6

3
< 0.

Both of these two cases are contradicted with G+ ∈ Umax
n,α , in which there must exist a vertex u0 ∈ PV (G+)

such that G+ − u0 ∈ Un−1,α.

Lemma 3.7. Let G+ ∈ Umax
n,α with 4 ≤ α ≤ n− 3 and V1 =

{
u ∈ PV (G+) | G+ − u ∈ Un−1,α

}
. Let v ∈

⋃
u∈V1

NG+ (u)
and RG+ (v) = {w ∈ NG+ (v) | dG+ (w) ≥ 2}, where |RG+ (v)| ≥ 1. Then there must exist a vertex u0 ∈ PV (G+) such that
u0 ∈ V1 and |RG+ (NG+ (u0))| ≥ 2.

Proof. In this proof, we know V1 , ∅ by Lemma 3.6. On the contrary, we suppose |RG+ (v)| = 1 for all
v ∈

⋃
u∈V1

NG+ (u) since |RG+ (v)| ≥ 1. Let Cl = v1v2 · · · vlv1 be a cycle and let Pα = u1u2 · · · uαuα+1 be a diametral
path of G+.

Claim 1. V1 ⊆ NG+ (u2)
⋃

NG+ (uα).

If V1 ⊆ NG+ (u2)
⋃

NG+ (uα), then there exists a vertex u ∈ NG+ (u2)
⋃

NG+ (uα), while u < V1. Seeking a
contradiction, we may assume that u ∈ V1, but u < NG+ (u2)

⋃
NG+ (uα). Denote NG+ (u) = v, and hence v <

{u2,uα} and v < {u1,uα+1} (otherwise, the diameter αwill change). Since |RG+ (v)| = 1 for all v ∈
⋃

u∈V1
NG+ (u),

we know v < V(Pα)
⋃

V(Cl). Let w ∈ NG+ (v) with dG+ (w) = t + 1 ≥ 2 and NG+ (w) = {v, x1, x2, · · · , xt}.
Let G++ = G+ −

⋃
1≤i≤t {xiw}+

⋃
1≤i≤t {xiv}. Observe that G++ ∈ Un,α and the following holds from Lemma

2.1.

ABS (G+) − ABS (G++)

=

t∑
i=1


√

dG+ (xi) + t − 1
dG+ (xi) + (t + 1)

−

√
dG+ (xi) + dG+ (v) + t − 2
dG+ (xi) + (dG+ (v) + t)


+ (dG+ (v) − 1)


√

dG+ (v) − 1
dG+ (v) + 1

−

√
dG+ (v) + t − 1

(dG+ (v) + t) + 1


+


√

dG+ (v) + t − 1
dG+ (v) + (t + 1)

−

√
dG+ (v) + t − 1

(dG+ (v) + t) + 1


< 0,

which is a contradiction with G+ ∈ Umax
n,α . Thus the Claim 1 holds.

As V1 , ∅ and V1 ⊆ NG+ (u2) ∪ NG+ (uα), there exists u ∈ V1 such that u ∈ NG+ (u2) and |RG+ (u2)| = 1.
Then u1, u2 < Cl, dG+ (u2) ≥ 3 and dG+ (ui−1) ≥ 1. By Lemma 3.5, then |V(Cl) ∩ V(Pα)| ≥ 2. Let Cl =
uiui+1 . . . ui+ jvkvk−1 · · · v3v2v1 (ui) for j ≥ 1. Then j ≤ k.

Claim 2. |V(Cl)\V(Pα)| = 1.
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By contradiction, we may assume |V(Cl)\V(Pα)| ≥ 2, which implies k ≥ 2. Thus it suffices to only consider
the following two cases.
Case 1. k = j.

Let G++ = G+ − {uiv2} − {v2v3}+ {ui+1v2}+ {ui+1v3} . Then G++ ∈ Un,α and we conclude the following holds
by Lemma 2.1.

ABS (G+) − ABS (G++)

=


√

dG+ (ui+2)
dG+ (ui+2) + 2

−

√
dG+ (ui+2) + 2
dG+ (ui+2) + 4

 + 2


√

3
3 + 2

−

√
4

2 + 4


+

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG+ (ui−1)

dG+ (ui−1) + 2

 + 
√

2
2 + 2

−

√
3

1 + 4


< 2

( √
15
5
−

√
6

3

)
+

√
2

1 + 3
−

√
1

1 + 2
+

√
2

2
−

√
15
5
< 0.

Case 2. k > j.
We denote G++ = G+ − {v2v3} + {uiv3}. Then G++ ∈ Un,α and by Lemma 2.1, we have

ABS (G+) − ABS (G++)

=

√dG+ (ui−1) + 1
dG+ (ui−1) + 3

−

√
dG+ (ui−1) + 2
dG+ (ui−1) + 4

 +
√

3
3 + 2

+

√
2

2 + 2

+


√

dG+ (ui+1) + 1
dG+ (ui+1) + 3

−

√
dG+ (ui+1) + 2
dG+ (ui+1) + 4

 −
√

2
2 + 4

−

√
3

1 + 4

<

√
2

2
−

√
6

3
< 0,

which is a contradiction with G+ ∈ Umax
n,α . Therefore, the Claim 2 holds.

Claim 3. dG+ (uα+1) = 1.

It suffices to prove that dG+ (uα+1) ≥ 2 not holds. If dG+ (uα+1) ≥ 3, then the diametral path Pα will be
changed. Hence we obtain dG+ (uα+1) = 2. For all v ∈

⋃
u∈V1

NG+ (u), we suppose |RG+ (v)| = 1, then uα is
non-adjacent to a pendant vertex. As α ≥ 4, it is clear that dG+ (uα−2) ≥ 2. Further, we have |V(Cl)\V(Pα)| = 1
by Claim 2, i.e., |V(Cl)| = 3 or 4 .
Case 1. |V(Cl)| = 3.

There exists the unique cycle Cl = uαuα+1wuα such that the diameter α does not change. By letting
G++ = G+ − {uα+1w} + {uα−1w} and Lemma 2.1, it is clear that G++ ∈ Un,α and

ABS (G+) − ABS (G++)

=

√ dG+ (uα−2)
dG+ (uα−2) + 2

−

√
dG+ (uα−2) + 1
dG+ (uα−2) + 3

 + 2

√
3

3 + 2

+

√
2

2 + 2
−

√
4

3 + 3
−

√
2

1 + 3
−

√
3

2 + 3

<

√
15
5
−

√
6

3
< 0.

Case 2. |V(Cl)| = 4.
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If |V(Cl)| = 4, then there exists the exactly one cycle Cl = uα−1uαuα+1wuα−1 such that the diameter α does
not change. Let G++ = G+ − {uα+1w} + {uαw}. Then G++ ∈ Un,α and

ABS (G+) − ABS (G++) = 2

√
2

2 + 2
−

√
4

3 + 3
−

√
2

1 + 3
< 0.

Both of these two cases are contradicted with G+ ∈ Umax
n,α . Therefore Claim 3 is feasible.

Claim 4. |V(Cl)| = 4.

We assume |V(Cl)| = 3 by a contradiction, i.e., Cl = uiui+1wui (3 ≤ i ≤ α − 1). We have dG+ (u2) = x ≥ 3 as
V1 , ∅. Thus we only consider the following two cases.
Case 1. i = 3.

Let G++ = G+ − {u3w} + {u2w}. Then G++ ∈ Un,α and by Lemma 2.1, we have

ABS (G+) − ABS (G++)

= (dG+ (u2) − 1)


√

dG+ (u2) − 1
dG+ (u2) + 1

−

√
dG+ (u2)

dG+ (u2) + 1 + 1


+

√
dG+ (u2) + 1
dG+ (u2) + 3

− 2

√
dG+ (u2) + 1

dG+ (u2) + 1 + 2
+

√
4

3 + 3

= (x − 1)


√

x − 1
x + 1

−

√
x

x + 1 + 1

 +  √6
3
−

√
x + 1
x + 3


< 0.

Case 2. i ≥ 4.
In this case, we denote G++ = G+ − {uiw} − {ui+1w}+ {u2w}+ {u4w}. Since dG+ (ui+2) = y ≥ 1 and by Lemma

2.1, we know G++ ∈ Un,α and

ABS (G+) − ABS (G++)

= (dG+ (u2) − 1)


√

dG+ (u2) − 1
dG+ (u2) + 1

−

√
dG+ (u2)

dG+ (u2) + 1 + 1

 +
√

dG+ (u2)
dG+ (u2) + 2

− 2

√
dG+ (u2) + 1

dG+ (u2) + 1 + 2
+

√
dG+ (ui+2) + 1
dG+ (ui+2) + 3

−

√
dG+ (ui+2)

dG+ (ui+2) + 2
−

√
4

3 + 3

= (x − 1)

√
x − 1
x + 1

− (x − 2)

√
x

x + 2
− 2

√
x + 1
x + 3

+

√
y + 1
y + 3

−

√
y

y + 2
+

√
6

3
.

We consider

f (x, y) = (x − 1)

√
x − 1
x + 1

− (x − 2)

√
x

x + 2
− 2

√
x + 1
x + 3

+

√
y + 1
y + 3

−

√
y

y + 2
+

√
6

3
.

According to Lemma 2.1, we know f (x, y) is decreasing on y ≥ 1. And for x ≥ 3, we have

∂ f (x, y)
∂x

=

√
x − 1
x + 1

+
x − 1√

x−1
x+1 (x + 1)2

−

√
x

x + 2
−

x − 2√ x
x+2 (x + 2)2 −

2√
x+1
x+3 (x + 3)2

.
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By Remark 3.8, the following holds.

f (x, y) ≤ f (x, 1) ≤ f (3, 1) = −0.047 < 0.

As a result, Claim 4 is true, then there exists the only one cycle Cl = uiui+1ui+2wui with 3 ≤ i ≤ α− 2 such
that dG+ (uα+1) = 1, dG+ (u2) ≥ 3 and dG+ (ui+3) ≥ 1.

If i = 3, then dG+ (u6) = t ≥ 1 and the following is true.

ABS (G+) − ABS
(
Uαn

)
= (dG+ (u2) − 1)


√

dG+ (u2) − 1
dG+ (u2) + 1

−

√
dG+ (u2)

dG+ (u2) + 1 + 1

 +
√

dG+ (u2) + 1
dG+ (u2) + 3

− 2

√
dG+ (u2) + 1

dG+ (u2) + 1 + 2
+

√
dG+ (u6) + 1
dG+ (u6) + 3

−

√
dG+ (u6)

dG+ (u6) + 2
+

√
3

2 + 3
.

Let

1(x, t) = (x − 1)

√
x − 1
x + 1

− (x − 1)

√
x

x + 2
−

√
x + 1
x + 3

+

√
t + 1
t + 3

−

√
t

t + 2
+

√
15
5
.

By Lemma 2.1, we have 1(x, t) is decreasing on t ≥ 1. And for x ≥ 3, we have

∂1(x, t)
∂x

=

√
x − 1
x + 1

+
x − 1√

x−1
x+1 (x + 1)2

−

√
x

x + 2
−

x − 1√ x
x+2 (x + 2)2 −

1√
x+1
x+3 (x + 3)2

= −
A√

x−1
x+1 (x + 1)2 √ x

x+2 (x + 2)2
√

x+1
x+3 (x + 3)2

< 0,

where

A =

√
x − 1
x + 1

√
x + 1
x + 3

x6
−

√
x

x + 2

√
x + 1
x + 3

x6 + 11

√
x − 1
x + 1

√
x + 1
x + 3

x5

− 11

√
x

x + 2

√
x + 1
x + 3

x5 +

√
x − 1
x + 1

√
x

x + 2
x4 + 45

√
x − 1
x + 1

√
x + 1
x + 3

x4

− 45

√
x

x + 2

√
x + 1
x + 3

x4 + 6

√
x − 1
x + 1

√
x

x + 2
x3 + 82

√
x − 1
x + 1

√
x + 1
x + 3

x3

− 77

√
x

x + 2

√
x + 1
x + 3

x3 + 13

√
x − 1
x + 1

√
x

x + 2
x2 + 59

√
x − 1
x + 1

√
x + 1
x + 3

x2

− 22

√
x

x + 2

√
x + 1
x + 3

x2 + 12

√
x − 1
x + 1

√
x

x + 2
x + 3

√
x − 1
x + 1

√
x + 1
x + 3

x

+ 84

√
x

x + 2

√
x + 1
x + 3

x + 4

√
x − 1
x + 1

√
x

x + 2
− 9

√
x − 1
x + 1

√
x + 1
x + 3

+ 72

√
x

x + 2

√
x + 1
x + 3

> 0.

Hence, the following holds.
1(x, t) ≤ 1(x, 1) ≤ 1(3, 1) = −0.047 < 0.
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On the other hand, if 4 ≤ i ≤ α − 2, then by Lemma 2.1 and Remark 3.8 we also know

ABS (G+) − ABS
(
Uαn

)
= (dG+ (u2) − 1)


√

dG+ (u2) − 1
dG+ (u2) + 1

−

√
dG+ (u2)

dG+ (u2) + 1 + 1


− 2

√
dG+ (u2) + 1

dG+ (u2) + 1 + 2
+

√
dG+ (u2)

dG+ (u2) + 2
+ 2

√
3

2 + 3

+

√
dG+ (ui+3) + 1
dG+ (ui+3) + 3

−

√
dG+ (ui+3)

dG+ (ui+3) + 2
−

√
2

2 + 2

≤ 2


√

2
3 + 1

−

√
3

3 + 1 + 1

 − 2

√
4

4 + 2
+

√
3

3 + 2

+
2
√

15
5
+

√
2

1 + 3
−

√
1

1 + 2
−

√
2

2

=
√

2 −
2
√

6
3
+

√
15
5
−

√
3

3
< 0.

Therefore, if |RG+ (v)| = 1 for all v ∈
⋃

u∈V1
NG+ (u), then it is a contradiction to G+ ∈ Umax

n,α . Thus, there must
exist a vertex u0 ∈ PV (G+) such that u0 ∈ V1 and |RG+ (NG+ (u0))| ≥ 2. The result follows.

Remark 3.8. For x ≥ 3, the function f (x) = (x− 1)
√

1 − 2
x+1 − (x− 2)

√
1 − 2

x+2 − 2
√

1 − 2
x+3 obtains its maximum

value at x = 3. Since

f ′(x0) =

√
x − 1
x + 1

+
x − 1√

x−1
x+1 (x + 1)2

−

√
x

x + 2
−

x − 2√ x
x+2 (x + 2)2 −

2√
x+1
x+3 (x + 3)2

,

there exists a unique 6 < x0 < 7 such that f ′(x0) = 0. Further, we obtain f ′(x0) < 0 with 3 ≤ x ≤ x0 and f ′(x0) > 0
with x ≥ x0, i.e., f (x) is decreasing in [3, x0] and increasing in [x0,+∞). If x = 3, then f (3) = −0.010 < 0. If
x→ +∞, then f (x)→ −1 < 0. Hence, for x ≥ 3, the function f (x) ≤ f (3).

Theorem 3.9. Let G ∈ Un,α with α ≥ 4 and n ≥ α + 2. Then ABS(G) ≤ ABS
(
Uαn

)
with equality if and only if

G � Uαn .

Proof. We prove the theorem by induction on n. If n = α+ 2, then the result holds for Theorem 3.4. In what
follows, we just consider that 4 ≤ α ≤ n− 3. For convenience, we assume the conclusion holds for n− 1 and
let G+ ∈ Umax

n,α . According to Lemma 3.7, there exists a vertex u ∈ PV (G+) such that G+ − u ∈ Un−1,α.

As above, there are at least two edges vw1, vw2 ∈ E(G+), where v = NG+ (u) and w1,w2 < PV(G+). Let
NG+ (v) = {u, v1, v2, · · · , vk−1}. Then |NG+ (v)| = k and 3 ≤ k ≤ n−α+ 1. Denote dG+ (vi) = ki for 1 ≤ i ≤ k− 1. Let
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G++ = G+ − u. Then G++ ∈ Un−1,α with α ≥ 5. By the induction hypothesis and Remark 3.10, it is clear that

ABS (G+)

= ABS (G++) +

√
k − 1
k + 1

+

k−1∑
i=1

√k + ki − 2
k + ki

−

√
k + ki − 3
k − 1 + ki


≤ ABS

(
Uαn−1

)
+

√
k − 1
k + 1

+ 2


√

k
k + 2

−

√
k − 1

k − 1 + 2


+ (k − 3)


√

k − 1
k + 1

−

√
k − 2

k − 1 + 1


= (n − α − 2)

√
n − α − 1
n − α + 1

+ 2

√
n − α

n − α + 2
+ (α − 5)

√
2

2
+

3
√

15
5
+

√
3

3

+ (k − 4)

√
k − 1
k + 1

+ 2

√
k

k + 2
− (k − 3)

√
k − 2

k

≤ (n − α − 2)

√
n − α − 1
n − α + 1

+ 2

√
n − α

n − α + 2
+ (α − 5)

√
2

2
+

3
√

15
5
+

√
3

3

+ (n − α − 3)

√
n − α

n − α + 2
+ 2

√
n − α + 1
n − α + 3

− (n − α − 2)

√
n − α − 1
n − α + 1

= (n − α − 1)

√
n − α

n − α + 2
+ 2

√
n − α + 1
n − α + 3

+ (α − 5)

√
2

2
+

3
√

15
5
+

√
3

3
= ABS

(
Uαn

)
with equalities if and only if G++ � Uαn−1, k = n− α+ 1, exactly two vertices in NG+ (v) have degree 2 and the

other k− 2 vertices in NG+ (v) have degree 1, i.e., G+ � Uαn . If α = 4, then we just replace (α− 5)
√

2
2 +

3
√

15
5 +

√
3

3

with 2
√

15
5 +

√
2

2 , and the conclusion still holds.

Remark 3.10. For 3 ≤ k ≤ n − α + 1, the function

f (k) = (k − 4)

√
1 −

2
k + 1

+ 2

√
1 −

2
k + 2

− (k − 3)

√
1 −

2
k

is increasing. Since

f ′(k) =
k2

(
k2 + k − 3

) √
k−2

k −
(
k2
− k − 3

)
(k + 1)2

√
k−1
k+1√

k−2
k

√
k−1
k+1 (k + 1)2 k2

.

Let

1(k) = k2
(
k2 + k − 3

) √
k − 2

k
− (k + 1)2

(
k2
− k − 3

) √
k − 1
k + 1

.

Then for 3 ≤ k ≤ n − α + 1, we have

1(k) =

√
k − 2

k
k4
−

√
k − 1
k + 1

k4 +

√
k − 2

k
k3
−

√
k − 1
k + 1

k3

− 3

√
k − 2

k
k2 + 4

√
k − 1
k + 1

k2 + 7

√
k − 1
k + 1

k + 3

√
k − 1
k + 1

> 0,

that is, f ′(k) > 0 and f (k) is increasing on 3 ≤ k ≤ n − α + 1.
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4. Conclusion

In this paper, we not only study the minimum ABS index of all unicyclic graphs of order n with diameter
α ≥ 2, but also give the sharp upper bounds for the ABS indices of unicyclic graphs on the basis of their
fixed diameter α ≥ 4. Furthermore, the corresponding extremal graphs with the sharp upper and lower
bounds have been depicted, respectively.

Unicyclic graphs are quite common in molecular structure diagrams. The study of the extremal problems
of the ABS index of unicyclic graphs with fixed diameter can be widely applied to molecular structures
with a single cycle, enabling a more accurate analysis of molecular properties. Since the ABS index predicts
better than some indices when studying physicochemical properties, investigating the extremal problems
of the ABS index of unicyclic graphs with given diameter has significant importance.

As future work, it would be interesting and valuable to find the extremal problems of ABS with fixed
other parameters. For example, the sharp upper bounds for the ABS index of unicyclic graphs with
given girth represents the potential for research advancement. What’s more, Jahanbani and Redžepović
proposed the generalized ABS index of graphs in [9] recently, which also holds significant importance in
the study of molecular structures and presents promising research prospects. Consequently, investigating
the generalized ABS index with given parameters such as matching number, independence number and so
on also has research significance.
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