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Non-Newtonian Jacobsthal and Jacobsthal-Lucas numbers: A new look
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Abstract. In this study, we introduce a novel version of Jacobsthal and Jacobsthal-Lucas numbers, termed
as non-Newtonian Jacobsthal and non-Newtonian Jacobsthal-Lucas numbers. We investigate various char-
acteristics of these newly defined sequences. Additionally, we explore several formulas and identities such
as Cassini’s identity, d’Ocagne’s identity, Binet’s formula, Gelin-Cesaro’s identity, Honsberger’s identity,
and Melham’s identity associated with these new types. Furthermore, we find the generating functions for
such sequences. The novel feature of this study is to generalize the notions of Jacobsthal numbers by using
non-Newtonian calculus. If we take the identity function I instead of the generator a in the construction
of non-Newtonian Jacobsthal numbers, then non-Newtonian Jacobsthal numbers turn into the classical

Jacobsthal numbers, so our results in this paper improve and generalize the known corresponding results
in the literature.

1. Introduction and Background

The world of mathematics provides an endless journey of exploration, encouraging us to delve into the
intricacies of various integer sequences. One of these number sequences is Jacobsthal numbers, which have
a recurrence relationship similar to Fibonacci numbers and are named after the German number theorist
Ernst Jacobsthal. Jacobsthal sequence begins with 0 and 1, and each subsequent number is found by adding
twice the previous number. Historically, the roots of Jacobsthal numbers date back to 1880; While Henri
Brocard [8] focused on the properties of a triangle sequence, he explained the recurrence relation and Binet

form of the resulting number sequence in a trigonometric context. Subsequently, in between 1919-1920,
Jacobsthal [32] identified the expression

fo1 = fo+Xfo1, f1=0, fo=1 1=0,1,2,..)

as the closest approximation to Jacobsthal numbers. This recursive relationship generates Jacobsthal se-
quence when x = 2. However, Jacobsthal did not explicitly state that x = 2 for Jacobsthal sequence, instead
indicating its equivalence to Fibonacci sequence when x = 1. The Jacobsthal number sequence, discovered
by Carlitz et al. [9], remained unnamed until Horadam'’s article [30], where the term “Jacobsthal numbers”
was first used. Horadam also made the first reference to Jacobsthal’s work [32] in this article. Before
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Horadam’s article [30], it is observed that the term ”Jacobsthal polynomials” appeared in the article by
Hoggatt and Bicknell [29]. Horadam [31] also included some features of Jacobsthal and Jacobsthal-Lucas
numbers and noted the history of these numbers at the end of the article. This chronological setting is
important in understanding the evolution and naming of studies on Jacobsthal numbers.

Beyond the boundaries of pure mathematics, Jacobsthal numbers have found versatile applications in
various disciplines. Their utility extends to problem solving and model formulation in fields as diverse as
astronomy [2], combinatorics [18, 46], graph theory [7], coding theory [38], theoretical computer science
and engineering [1, 43]. This multifaceted significance underscores the continuing relevance and broad
applicability of Jacobsthal numbers.

Let’s give the basic facts on Jacobsthal and Jacobsthal-Lucas numbers.

Jacobsthal numbers are the terms of the integer sequence

{0,1,1,3,5,11,21,43,85,171,341, ..., ], ...}
defined by the recurrence relation
Jus2 = Jus1 + 2], foreachn € {0,1,2, ...}

with Jop = 0,J; = 1, it is well known as the n—th term of the Jacobsthal sequence (J,) which is a numerical
sequence.
Jacobsthal-Lucas numbers are the terms of the integer sequence

{2,1,5,7,17,31,65,127,257,511,1025, ..., j, ...}
defined by the recurrence relation
jn+2 = jus1 +2j, foreachn € {0,1,2, ...}

with jo = 2,j1 = 1, it is well known as the n—th term of the Jacobsthal-Lucas sequence (j,) which is a
numerical sequence.
Generating functions for Jacobsthal and Jacobsthal-Lucas numbers are as follows:

(e8]

Z“]nx”_1 = (1 -x- 23{2)_1 , 1)

Y = () (1-x-202) @)

n=1
The Binet’s formulas for Jacobsthal and Jacobsthal-Lucas numbers are as follows:

P — o _ on _ (_1)n

o= : ®)
and
jn=V"+ " =2"+(-1)" 4)
where v =2 and w = —1.
The Simson’s (Cassini) identity for Jacobsthal and Jacobsthal-Lucas numbers are as follows:
Jwetfua =T = (1)" 2" (5)

and

st = 2 =9 (=17 2" = =9(Ja Jur = J2). (6)
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If we choose k = 2 in Theorem 5.3 and Theorem 5.9 of Koken (see [34]), the Catalan identities of the
Jacobsthal and Jacobsthal-Lucas numbers for n,7 > 0 and n > r are as follows, respectively:

JurJnmy = J2 = (1)1 2012, (7)

jn+rjn—r - ]31 =9 (_z)n—r ];% (8)

In the same way, d’Ocagne identities of Jacobsthal and Jacobsthal-Lucas numbers are as follows, respec-
tively:

JmJn+1 = Jms1)n = (_2)n Jin-n,s &)
w1 = st = 9 (=1 2" . (10)
If we take H, = % Ju in the equality (41) and I,, = (_2%)" jn in the equality (42) of Theorem 2.7 in

Dasdemir’s work (see [15]), then the Gelin-Cesaro identities of Jacobsthal and Jacobsthal-Lucas numbers
for n > 2 are the followings, respectively:

Ja = Tn2luaTustfurz = 272 (1)1 2 + 2771, (11)
i = fu-2jnc et sz = 9 X 22 (1) 2 + 9 x 2", (12)
In [31], the following result is proved:

lim 220 = fim 1 2 o, (13)

n—00 ]n n—oo ]n

In [31], the following result is also proved:

lim;—n 3. (14)

For n,m > 1, the following relations hold (see [34-36]):

Jinen = JmJns1 + 2]m-1]n, (15)
jm+n = jn]m+1 + 2jn—1]m- (16)
For n > 0, the following relations hold (see [31]):
jn]n = ]271' (17)
3 (]n+1 + ]n) = jn+1 + jn- (18)
3(ne1 = Jn) + 4 (=1 = juia = ju- (19)
jn+1 - z]n = 6]n - 3]n+1' (20)
3]71 +2 (_1)” = jn- (21)
2 = 3], + . (22)
2]p1 = Jn + jn. (23)
P2+92=2js [m=n—(33)]. (24)

P2A=92=(-1)"2"2 [m=n— 35)]. (25)
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For n > 1, the following relations hold (see [31]):

]n+1 + 2]n—1 = jn- (26)
jn+1 + 2].1771 = 9]11- (27)
2jus1 + o1 = 6Jus1 + 3]y + 6 (=1)". (28)

For n > 2, the following relation holds (see [31]):
jn+2jn—2 - ]i = _9]n+2]n—2 + 9]5 (29)

For n,m > 0 and m > n, the following relations hold (see [31]):

3 (Jmen + Jinen) + 4 (D" = jursn + jin- (30)
3(msn = Jmen) = fuwen = jm-n- (31)
Jujun + Tnjm = 2Jmen [m=n— A7)]. (32)
jmjn + 9 ln = 2jmen. (33)
Joujn = Jujm = (Z1)" 27 . (34)
jjn = Jn = (1" 2" . (35)

Calculus, a branch of analysis and an important area of mathematics is the mathematical study of
change and motion. The history of calculus has been shaped by many contributions of mathematicians and
thinkers, culminating in the 17th century when Gottfried Wilhelm Leibniz and Isaac Newton independently
and simultaneously defined and developed the fundamental principles of differential and integral calculus.
This fundamental framework, which encompasses the integral and the derivative, reflects the essence of
arithmetic operations even on infinitesimally small scales. The work of Newton and Leibniz paved the way
for profound advances in differential and integral calculus, with results that revolutionized mathematical
thought and enriched scientific research, spanning many scientific fields. Over time, however, the evolu-
tion of mathematical thought and methods has allowed new perspectives and computational methods to
emerge. The trajectory of calculus underwent a paradigm shift in the mid-20th century when Michael Gros-
man and Robert Katz [26] introduced modern calculus, the so-called non-Newtonian calculus. This new
approach uses functions called generators to reshape arithmetic operations and create new mathematical
structures, especially multiplicative arithmetic. Non-Newtonian calculus includes some special and infinite
calculi such as harmonic, bigeometric, geometric and anageometric calculus. Non-Newtonian calculus also
overcomes the limitations of traditional calculus by emphasizing differentiation and integration regardless
of units of measure, thus offering a nuanced perspective on mathematical analysis.

Since the seminal work of Grossman and Katz [26], the importance of this field has been increasingly
recognized among researchers from different disciplines. For example, this new calculus has been trans-
ferred to many different areas of mathematical analysis, such as sequence spaces, fixed point theory, integral
equations and measurement [17, 20, 22, 27]. Especially after the work of Bashirov et al. [3], the signifi-
cant applications of multiplicative calculus in various fields have become more evident and attracted the
attention of researchers. Particularly noteworthy are the important applications of multiplicative calculus
in actuarial science, demography and finance [4], economics [23-25], statistics [10], biomedical image anal-
ysis [28], logistic growth models [45], contour detection in noisy images [40], linear and nonlinear signal
representation [5], physics [13], quantum theory and cryptology [12, 14, 44], multiplicative mechanics [37],
geometric magnetic energy [21], exponential signal processing [42], neural networks [41] and cancer treat-
ment [39], etc. The reader can refer to Tekin and Basar [47] for some spaces of non-Newtonian complex
sequences; Boruah, Hazarika and Bashirov [6] for some new numerical methods, namely, bigeometric-Euler
method, Taylor’s bigeometric-series method and bigeometric-Runge-Kutta method for approximation of
bigeometric-initial value problems together with examples; Uzer [48] for multiplicative complex calculus
and extention of some useful theorems in additive complex calculus to multiplicative complex calculus by
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using the newly defined operators. These studies show how research on the mathematical foundations of
non-Newtonian calculus can have practical implications for addressing real-world problems in a variety of
disciplines. In this context, the broad spectrum potential of non-Newtonian calculus represents an exciting
step towards providing innovative solutions by pushing the boundaries of mathematical thinking and
methods.

Arithmetic is a term usually associated with positive integers, but here the term ”arithmetic” refers to
an integer ordered field whose universe is a subset of the set of real numbers. There are an infinite number
of arithmetic systems. The generator of an arithmetic system generates real number classical arithmetic if
I is the identity function and geometric arithmetic if exp is the function. Non-Newtonian calculus deals
with different mathematical methods and systems from classical calculus. It is used in various applications
ranging from atmospheric sciences to petroleum engineering, and from nonlinear dynamic systems to
energy crisis. An arithmetic is a complete ordered field whose realm is a subset of R. Non-Newtonian
calculi utilize different types of arithmetic and their generators. Let a be a bijection whose domain R and
whose range is a subset U of IR. Then, it is called a generator with range U and defines an arithmetic. The
range of generator a is denoted by IR,. Also, every element of IR, is called a non-Newtonian real number.

a—arithmetic

Realm U(=R,)
a—addition r+s=ala’l(r)+al(s)
a—subtraction r=s=ala () —al(s)
a—multiplication rxs=ala™ (r)xa ' (s)
a—division rls=ta=a {“_1(r)} (s # O)
s a~l(s)
a—ordering r<se=al(r)<al(s)

IfreR,and 0 < r (orr < O), then we say that it is a a—positive number (or a—negative number).
Additionally, R} denotes the set of a—positive numbers. Also, a(-1) = a {—a‘l (r)} = —rforallr € R. On

the other hand, the number r X r is called the a— square of r, denoted by P.Ifre R} U {0}, then we say that

o [ Val (r)] is the a— square root of r, denoted by v/r [11, 26].

Non-Newtonian calculus offers a new perspective in mathematical analysis by overcoming the limita-
tions of classical calculus. In [16], the authors defined non-Newtonian Fibonacci and non-Newtonian Lucas
numbers. Inspired by [16] and extensive applications of Jacobsthal numbers and non-Newtonian calculus,
in this study, we will examine how non-Newtonian calculus can approach Jacobsthal and Jacobsthal-Lucas
numbers, especially the recurrence relations used in constructing these number sequences. The main ob-
jectives of this study are to understand the place of these number sequences in the mathematical world,
to establish a general mathematical structure, and to explore how they can be used in specific areas of
application.

2. Non-Newtonian Jacobsthal and Non-Newtonian Jacobsthal-Lucas Numbers with Some Properties

In this part, we introduce the notions of a non-Newtonian Jacobsthal number and a non-Newtonian
Jacobsthal-Lucas number with a new perspective on the concepts of a Jacobsthal number and a Jacobsthal-
Lucas number. We also discuss the non-Newtonian versions of some well-known formulas and identities
for classical counterparts.

Definition 2.1. The non-Newtonian Jacobsthal and non-Newtonian Jacobsthal-Lucas numbers are defined
NN, =a(J.)

and

NNjn = a(jn),
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respectively, where [, and j, are the n—th Jacobsthal and Jacobsthal-Lucas numbers, respectively. The sets of non-
Newtonian Jacobsthal and non-Newtonian Jacobsthal-Lucas numbers, which we denote by XN] and 8N j are as follows,
respectively:

NN] = (NNJ,:neN)

= {0,1,1,3,5,1'1,2'1,43,8'5,171,341,...,a(]n),...}

and

NRj = (NNj,:neNj)

{2, 1,5,7,17,31,65,127,257,511,1025, ..., a (j,), } .

Choosing the generator I defined by a (y) = y for each y € R, we obtain Jacobsthal and Jacobsthal-Lucas
numbers with respect to classical arithmetic, respectively.

Also, if we consider the generator exp defined by a (y) = ¢ for each y € R, we obtain Jacobsthal and
Jacobsthal-Lucas numbers with respect to geometric arithmetic, respectively, as follows:

NRG] = {a(J,):n €N}
= {e]" ‘ne ]N}
= {60,61,81,83,65,611,621,643, el }
and
NNGj = {a(jn):neN}

{e]”:nelN}
_ (215 7 17 31 65 ‘
= {e,e,e,e,e ,e’ e ,...,e]",...}.

We start by obtaining generating functions of the non-Newtonian Jacobsthal numbers and non-Newtonian
Jacobsthal-Lucas numbers.

Theorem 2.2. The generating function gxxy : Ry — {%a, —1} — R, of the non-Newtonian Jacobsthal numbers is
defined as

1
GNN] (s) = P EE——— 2
1-s5s—-2xs?
where1 ~s-2x82 # 0.
Proof. Let the generating function of the non-Newtonian Jacobsthal number 8NJ, has the form

o)

gy ) =0 ) (T, x5"1),

n=1

where the symbol , ), denotes the non-Newtonian real number series which can be found in [19, 33]. After
n=1
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some arrangements and employing (1), we arrive at the following results:

gxny (s)

§ X gRN] (s)

52 X gKN] (s)

This implies that

5 (NN]n % s“)
n=1
iis+ aZ(NNh—l xsﬂ*i)mx az(xm_z xsﬁ*)}

n=3 n=3

a

(N8 xs") =5+ . 3 (xx]n,l Xs";i),

n=3

[ i1

a

(NN]H X s"’H) =4 i (NN]n_z X s";i).

n=3

B
I
—_

(145425(52)5(9&&](5)

= gxyy(s) — (S X xRNy (S)) 2% (S2 X xRNy (S))

= L

Hereupon, we get the function gxxj (s) =

[i +s+ "‘Z (NN],H X s’m) +2x
n=3

;[H

L

i (xxfn_1 x s“)l S [ D (xx]n_z X sﬂﬂ

n=3

— _1. —a which finishes the proof. [
1-s-2xs?

Theorem 2.3. The generating function gsx;j : Ra —{%(x, —1} — R, of the non-Newtonian Jacobsthal-Lucas numbers

is defined as

NN (s) = -

where1 ~s-2xs2 # 0.

1+4xs

a

1is-2xs2

Proof. Suppose that the generating function of the non-Newtonian Jacobsthal-Lucas number 8Nj, has the

form

i ) =0 ), (N x 5771},

n
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Then, considering (2) with the needed calculations, we arrive at the following equations:

Iunj(s) = aZ (ijn X qu;i)
n=1
= 145xs+ aZ (NNjn,l X sf‘;i) +2x [“Z (xxan % sn;i)l ,
n=3 n=3
o = L e) oo o5 o)

n=3

[ i1

& x gxx; (s)

|
=3
=
I
A
3
1l
@

So, in this stage, we get

(i;s;Z'XSZ)XgNNj(s)

gxn;j (s) = (S X g8N; (S)) S2x (52 X g8N; (S))

[1 F5xst .Y (xx o1 X SH) 1% [Z (NN]'”_Z * SM)H
n=3

n=3
- [s by (NNj,,_l x sh*i) o {Z (ijn_z x s'“')l
n=3 n=3
= 1+4xs.
This implies that gxx; (s) = %a as the desired result. [

In the next theorem, the Binet formulas for non-Newtonian Jacobsthal numbers and non-Newtonian
Jacobsthal-Lucas numbers are deduced.

Theorem 2.4. The Binet formulas for non-Newtonian Jacobsthal numbers 8X],,’s and non-Newtonian [acobsthal-
Lucas numbers 887j,’s for n > 0 are as follows:

NNJ, = —arx (v” - aﬂ)
3
and

NNj, ="+ @,

where v =2 and & = ~1.

Proof. Taking into account the subtraction and division of non-Newtonian real numbers and by virtue of
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Binet formula (3) for Jacobsthal numbers, we get

n times n times

= alat a{ZiE;;}]xal (1595 58) = (i 0% . o)

oo (o oo 6 o )
= a {% " - a)")}

= a(Jn)
— NNJ,.

Also, using Binet formula (4) for Jacobsthal-Lucas numbers, we observe that

= o

o (af(@™ () ]+ a[(a™ () ])]

- ol ol (Ol ) )
— 2

= NNj,.

n times n times
e o e S
vV +tw ala VXVYPX..XV|+|lwXwX...Xw
= a[

The next theorem consists of Simson’s (Cassini) identities for new types of numbers we discuss in this
article in non-Newtonian sense.

Theorem 2.5. Simson’s (Cassini) identities for 8N], and 8N, for n > 1 are as follows:

. =1

1) RNJ1 X RNJ,p = 8NJ2 = (£1) %27

TS AN R

2) RN je1 X N7t = 8R72 = 9% (<1) %2 = 29 % (NNJ1 X NNJu_1 = NRJ2).
j j r
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Proof. 1) We get the result

by utilizing Simson’s (Cassini) identity (5) and doing some necessary computations.

NNTi1 X NNt — NNJ2

NNLﬁl X NN]n—l - ijn X NN}n

a (]n+1) X a (]n—l) - o (]n) X a (]n)

a {a-la (Just) X a”'ax (1}1,1)} ~afaa () xaa ()
alaafaa (i) xaa (i)} —ata o a () x aa ()}

fo!
a(]n+1]n 1— )
a(( 1)" 2n- 1)

n times n—1 times
——
al(=1)...(-1) 2.2

n times n—1 times

alat(@a(=1)..at@=D)a (@®)..a (@)

n times n—1 times

a(-DX.xa(-)xa@)x..xa2)

(;i).x >< (;i) x(2) x..x(2)
(<1)'x2""

2) Proof follows directly by using the identity (6). [

Now, we want to find the Catalan identities for |, and j, in non-Newtonian sense.

Theorem 2.6. The Catalan identities for NN], and NNj, forn,v > 1and n > r are given as follows:

e

n+1-7 Lo
1) RNJer X NN, = 882 = (1) X2 "% NNJ2.
2) KNjer X RNjuy = NR2 =95 (22) 5 NNJ2.

Proof. 1) (7) and some needed computations imply the following expression:

NNTo-r X NNy = NNJ
NNJ,r X NNy, = NNJ, X 8NJ,
a (Ju-r) X & (Jnsr) = @ (Ju) X & (Ju)
afaa (o) x a”'a ()} = afa'a (1) x a”'a (1)
afatalaa () xa a ()| —atafaa () x aa ()}
a(Jurluer = J2)

(v2p)

(;i)””:’ <3 XN

[24

1102
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The proof is reached.
1) After some elementary calculations, it can be computed similar to the property 2) in Theorem 2.6
taking it into account (8) and the proof is straightforward. [

In the following theorem, the d’Ocagne identities for non-Newtonian Jacobsthal and non-Newtonian
Jacobsthal-Lucas numbers are given.

Theorem 2.7. The d’Ocagne identities for XN], and NN j, are as follows:
1) NNJo1 X N8 = 88T, X R a1 = (22)" % R8Ty

) . PRI 75 B
2) RNt X N = NR]NR e = 9% (41) % 2" % RN,
forn,m>0and m=>n.

Proof. 1) The assertion follows by applying (9) to

NRTus1 X NRT, = 8RT, X KN4

a (Jne) X & () = & () X @ (Jis1)

afaa(u) x ala ()} = afa e (1) X a7 a (Jne))
afataloa () x o a ()]~ o afa e () x a”'a () )
a (st = JuJmar)

a((=2)" J-n)

(<2)" 5 NN

2) From (10) we reach the expected result. [

We are now ready to introduce Gelin-Cesaro identities including non-Newtonian Jacobsthal and non-
Newtonian Jacobsthal-Lucas numbers.

Theorem 2.8. For n > 2; the Gelin-Cesaro identities of NN],, and NN j,, are given as
1) KT RRJ,0 X RRJ,1 X 88Jpar X 882 = 2 X ((;iy"*i X RNJ2 + 2"_1).

2) RR7A = NNz X NNy X Njpar X NRjnaz =9 %2 x ((;i)ﬁ X NN72 4+ 9 % 2"‘1).

Proof. 1) Based on the Gelin-Cesaro identity (11) of Jacobsthal numbers, we get the desired result:

NNTE NN, X NN X N8t X NN
NNJ,, X 8T, X NRT, X MR, = N80 X NRT1 X Rt X R0
a (]n) X a (]n) X o (]n) X a (]n) - &4 (]n—2) X o (]n—l) X a (]n+1) X o (]n+2)
aflaa () xa”ta () xaa () x a”a(],)
~afala (fua) x @t (1) X a7 a () X @' (o)
alafa e (o) x a”la () x a”la () x a”a (],)
N\ —oatafata (s X a7 a () X @7 (uer) X a7 ()
(X( ﬁ - ]n—2]n71]n+1]n+2)
a (211—2 ((_1)n+1]% + 2n—1))

3" % ((41‘)"”i < NN + 2"‘1).
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2) The Gelin-Cesaro identity (12) explains the proof. [

Theorem 2.9. nl_ligl N:?ﬁ’}“ nhm x:é’]’“ a=2.
Proof. Let ?:::;{: a = T,. Then, by the definition of non-Newtonian Jacobsthal numbers we have

NN];Hl LA NNL’!—l

=1+4+2X
8K, ¢ RN,
This can be written as T,.1 = 1+2x —oc So, we get ,limT,,; = 1+2x hmT a. Making
n—oo nﬂoo

T = ,limT, = ,limT,,y, it follows that T = 1 + 2 70( and equivalently T2 2T -2 = 0. Thus, we see that

n—)OO n—)OO
T=2and T = -1. Since (NN],,) is strictly increasing, the limit value T can not be Z1. It results that
T=, hmx:g’};l a=2.

n—oo

The similar proof holds for XNj,. O

Theorem 2.10. hm ::}" a=3.

Proof. Since 8N, = 2 ;(:) « and NNj, = 2 i (41);1 , We can write

RN
NN 2 +(-1)
n—li.?NN]n - 0;,,_{1;1 Zr‘z;(;i)h a
P
no. .\
= ,lim|3x 2, +(_1),0c
n—oo 211 _ (_1)11
L\l
= Dthm 3)( (_2)—_Ha
. n
I+ (_?10(
= alirn 3)( _
n—00 . . n
1+ (%a)
= alimS =3
n—oo

as desired result. [J
Let’s give the Honsberger’s identities of NNJ,,’s and 8Nj,’s.

Theorem 2.11. The Honsberger’s identities of NN J,,’s and 8Nj,’s for m,n > 1 are
I)NN]m+Tl = NN]m X NNL’Hl + 2 X NN]m—l X NR]m
2NN jen = NRj, X 8N Jp1 4+ 2 X NNj, 1 X NN,
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Proof. 1) By some straightforward calculations and the Honsberger’s identity (15) of 8],,’s, one can easily
reach that

N X N1 + 2 X N8 o1 X NN,
= a(Jm) X (Jur1) + @ (2) X (1) X a(J)
= afaa(n) xaa ()} +afa @ @) x a a () x a7 (])
alafa e () x a”ta (Jue)
N +ala {a‘la @) xala(Ju-1) X a ta (]n)}

= (X(]m]n+1 +2]m—1]”)
= a(]m+n)
= NNIm-%—n‘

2) The result is similarly revealed. [

The followings are properties satisfied by non-Newtonian Jacobsthal and non-Newtonian Jacobsthal-
Lucas numbers.

Theorem 2.12. The following equalities are satisfied for n > O:
1) 8N j, X 8X], = NN,
2) 8Rjie1 + 88y = 3 X (NR]41 + RN,).
3) NN ot = NNjiy = 35 (NN, = NNJ,) +d5 (1)
4) RN js1 =2 X NRj, = 6 X NN, = 3 X NNJ41.
5) RN, = 3% NN, + 2% (41)".
6)3 % NNJ, + 8Njy = 2"
7) NNJ, + NNj, = 2 X NRJ,11.
8) NN +9 X NRJ2 = 2 X NNja,..
9)NN72 = 9% NNJ2 = (1) x 2",
Proof. 2) If we use (18), we obtain that
3 X (NNJ11 + NN,
= a@ x(a(wm) +a ()
= a@xafaa () +a " a ()
= «a {aila (3) x [aila {ofla (Jus1) + @ ta (],,)}]}
= a@(ue1+]n)

= a(jn+1 + ]n)
= NNju1 + 8Njo.

The remaining relations are easily proved with the formulas (17) and (19)-(25). O

Theorem 2.13. The following equalities hold for n > 1:
1) NNj, = NNJ,01 + 2 X NRJ, 1.
2) 9 X RNJy = NNjye1 +2 X 81
3) 2 X RNt + NNjuot = 6 X NNt +3 X RN,y 4 6% (<1)



I Yesilyurt, N. Degirmen / Filomat 39:4 (2025), 1093-1109 1106

Proof. Based on the addition and multiplication properties of non-Newtonian real numbers, from (27) and

(28), the proofs of 2) and 3) are clear.
1) By (26), we deduce that
NNTwe1 +2 X 88

= a(Ju1) + @) X a(J-1)
= a(Ju) +afala@) xa @ ()
= a {a‘la (Jus1) + @l {a‘la ) xala (],,_1)}}
= a(Jn+1 +2Jn-1)
= a(jn)
= NNj,

which is the desired result. [

Theorem 2.14. The following equality holds for n > 2:

NN jn2 X NNJyo2 = 8872 = 29 5 RNJp0 X NNJ,_2 +9 X RNJ2.

Proof. The proof is obtained with some calculations by using (29).

Theorem 2.15. The following equalities are satisfied for n,m > 0 and m > n:

N

1) NN + N = 3 X (NN + N8un) + 4% (<1)

2) NN i = NNy = 3 X (N = N8

3) NN, X RRj, + RNJ, X 8Ny = 2 X NN

4) RNy X NRj, + 9 X NN, X RRT, = 2 X 8N e

5) N, X NN = 8N X X8 = (21) % 2" X 8N o

6) NNy X RN =9 X 88T, X 8, = (1) % 2" X 8o
Proof. 1) From (30), we have

3 3¢ (NNTpan + NNToy) + 4% (<1)"

m—n times

= @@ X (anen) +a () F e @ X @ (=) X X @ (=1)

m—n times

= aB)xa {a‘la Jman) + L (]m,n)} +alala@xala(-1) x..xata(-1)

= a {a_laz (B)xa™t (a {a‘la (Jiman) + L (]m_n)})} +a {a‘la (4) x (a‘la (—1))m_n}

ala (el @) x alafa e () + @7 0 (o)}

o e

= a(3(n — ) +4(=1)"")

= o (jm+n + jm—n)
= ijmﬂq + xx]’m—nl
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which is the desired result.
The proofs of others can be done similarly to the proof of 1) using (31)-(35). O

While examining the relevant literature, we observed that the Melham identity is also given for classical
Jacobsthal and classical Jacobsthal-Lucas numbers. So, at the end of the study, we filled the gap in here and
transferred the identity, we found, to the non-Newtonian version.

Theorem 2.16. The Melham’s identity of Jacobsthal numbers |, and Jacobsthal-Lucas numbers j, is given as
1) ]n+1]n+2]n+6 - i+3 = _% (3]71 + ]n) (]3: - 9]% + 5)

2) jn+1jn+2j;1+6 - ]';13 = 9(3]n + ]n) (];21 - 9]% - 5)
forn > 0.

Proof. 1)Using Binet formula, (22) and (25) we compute the following expression:

]n+1]n+2]n+6 - ]ﬁ+3
on+l _ (_1)Vl+1 n+2 _ (_1)n+2 on+6 _ (_1)n+6 (2n+3 _ (_1)”"‘3 )3

3 3 3 3
8 10
= —2(-1 n22n__2n
3( ) 3

— _%znﬂ ((_1)11 N2 5)

= G+ i) (7 -9 +9)

which is Melham'’s identity for Jacobsthal numbers.
2)Using Binet formula, (22) and (25) we compute the following expression:

Jrstjne2fnee = Jora
— (2n+1 + (_1)n+1) (2;1+2 + (_1)n+2) (2n+6 + (_1)n+6) _ (2n+3 + (_1)n+3)
= 72x(=1)"2%"-90 x 2"
- 9x 2n+1((_1)n N2 _ 5)
= 9@, +jn) (-9 -5)

3

which is Melham'’s identity for Jacobsthal-Lucas numbers. [

Theorem 2.17. The Melham'’s identity of non-Newtonian Jacobsthal numbers NX],, and non-Newtonian Jacobsthal-
Lucas numbers 8NN j, is given as

1RN1 X N800 X 8] ,46 — NNJ?

n+3 =
28]t X RRjuz X BNjuss = N7 = 29 X (3 X NNJ, + NNj, ) X (NNj2 =9 X NNJ2 = 5)
forn > 0.

1% (3 X RNJ, + 8Rj,) X (RN72 =9 X NNJ2 +5)
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Proof. 1) By 1) in Theorem 2.16, we have the following:

NNt X N s2 X NN uvs = NP2, 5
= NNJui1 X N2 X N6 = N3 X N85 X N8 13
= a(us) X @ (us2) X @ () = @ (J13) X @ (Jns3) X @ (Jus3)
= afa @ () X a7 @ (ue2) X @7 (use)} — a o a (uia) X a7 (Jsa) X @7t (Js))
ala{ata (i) X a7 a (Jusa) X a7t (Juss)|
—atafaa (us) X a7 a (fuss) X a7 (Jss)|

= «a (]n+1]n+2]n+6 - ]2+3)

= a(-3 G+ i) (- 9% +5))

=

= L (BX NN, NNj) (xxj,% COXNNT + 5).
3

2) The conclusion is easily reached using 2) in Theorem 2.16. O

3. Conclusion and Future Works

This study provides insights into the mathematical properties of non-Newtonian versions of Jacobsthal

and Jacobsthal-Lucas numbers within a broader context. It is a relatively new addition to the existing
literature and generalizes known Jacobsthal and Jacobsthal-Lucas numbers. By presenting significant
formulas and identities derived from the classical properties of these numbers, we extend the role of these
sequences in mathematical literature. The findings of this study may serve as a valuable resource for
researchers interested in these new types of numbers. Moreover, they can pave the way for future research
endeavors in the analysis and applications of these sequences.
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