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Complete convergence for the weighted sums of random variables

Yu Miao®*, Zhen Li?

*School of Mathematics and Statistics, Henan Normal University, Henan Province, 453007, China

Abstract. In the present paper, we study the complete convergence of the weighted sums of independent
and identically distributed random variables, which include and improve some known results.

1. Introduction

The concept of complete convergence of a sequence of random variables was introduced by Hsu and
Robbins [9] as follows. A sequence {U,,n > 1} of random variables converges completely to the constant u
if

Z]P(llln —ul>¢) < oo forall e>0,
n=1

which, from the Borel-Cantelli lemma, implies that U, N y. The converse is true if {U,,n > 1} are
independent random variables.

Let {X,X,,n > 1} be a sequence of independent and identically distributed random variables and
Sy, = Xi + Xy + -+ + X,,. Hsu and Robbins [9] proved that if EX = 0 and [EX? < oo, then for any € >0,

Z]P(|5n| > &) < co.
n=1

(1.1)
The converse was proved by Erdos [7]. The result of Hsu-Robbins-Erdos is a fundamental theorem in
probability theory and has been generalized and extended in several directions. Spitzer [16] proved that
for any € > 0,

(o)

Z 1p s, > en) < o
n

n=1

(1.2)
if and only if EX = 0 and E|X| < co. Katz [13] and Baum and Katz [2] generalized the work of Spitzer [16]
and obtained thatfor0 <p <2andr > p,

nﬁ_zlP(lsnl > enl/p) < oo, for € >0
n=1

(1.3)
2020 Mathematics Subject Classification. Primary 60F15.

Keywords. Complete convergence, weighted sums, independent and identically distributed random variables.
Received: 13 June 2024; Revised: 06 December 2024; Accepted: 16 December 2024
Communicated by Biljana Popovi¢

Research supported by National Natural Science Foundation of China (NSFC-11971154).
* Corresponding author: Yu Miao

Email addresses: yumiao728@gmail.com (Yu Miao), 1z15903006318@163.com (Zhen Li)



Y. Miao, Z. Li / Filomat 39:4 (2025), 1355-1372 1356

if and only if E|X|" < co and whenr > 1, EX = 0.

Let {a,x,1 < k < n,n > 1} be an array of constants. The strong convergence results for weighted sums
Y r—1 40k Xy have been studied by many authors (see, for example, Bai and Cheng [1], Chen and Gan [4],
Cai [3]). Many useful linear statistics, for example, least-squares (LS) estimators, non parametric regression
function estimators and jackknife estimates are of the form of the weighted sums. Chow [5] has established
the following complete convergence result for the weighted sums.

Theorem 1.1. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX = 0 and E|XP < oo for some p > 2. Let {ayx, 1 < k < n,n > 1} be a triangular array of constants. If for each
n > 1 and for some finite constant K not depending on n,

n

Zaik <K and n'? max la,xl <K,
pcy , 1<k<n

then for all € > 0, we have

1

—_ a ka
1/p Z s

n k=1

> & < o0,

n=1

Li et al. [10] improved Theorem 1.1, and obtained

EX =0, and let {a,x, k € Z, n_z } be a sequence of real numbers.

(1) If

Theorem 1.2. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
1

Y a2, = 0(1) and EX?log(1 +|X]) < oo,
keZ

then for any € > 0, we have

Z Ak X

LA

n=1

> enl/z] < co.

(2) Let p > 2. If EIX|P < oo and for some 0 < 6 <2/p,2 < q <p, let
N2, =00 and Y la,l = O()),
kezZ kezZ

then for any € > 0, we have

Z A j X

b

n=1

> enl/”] < o0,

Theorem 1.2 has been extended and improved by many authors. Wang et al. [21] and Sung [19] further
generalized Theorem 1.2, and in particular, Wang et al. [21] discussed its necessity. Liang and Su [12]
and Liang [11] discussed the complete convergence for weighted sums of negatively associated random
variables, which generalized and extended the results on independent and identically distributed case
of Li et al. [10]. Wang et al. [20] generalized and improved the corresponding ones of Li et al. [10]
for independent sequences to the case of negatively superadditive dependent sequences. Miao et al.
[15] considered a sequence of independent identically distributed random variables with mild moment
condition and general dependence conditions, and established strong law of large numbers and complete
convergence for the partial sums. Du and Miao [6] and Miao and Shao [14] separately studied the strong
laws for weighted sums of some dependent random variables and the complete convergence of the weighted
sums for martingale differences. The aim of this paper is to continue to study the complete convergence
for the weighted sums of independent random variables, which include and improve some known results.
Throughout this paper, let C be a constant not depending on n, which may be different in different places.
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2. A general result
We begin with a general result on the complete convergence.

Theorem 2.1. For each n > 1, let {X,,x,1 < k < n,n > 1} be a sequence of independent real random variables.
Assume that the following condition holds:

n
Z Xk 5 0. @.1)
k=1

Let {by,n > 1} be a sequence of positive constants. For every € > 0, assume that there exists a sequence of positive
constants {c,,n > 1}, which may depend on ¢, and define Y, x = X, xlix, 1<c,) for every 1 <k <nandn > 1, such
that the following conditions are satisfied:

> ) t2 n ) t4 n A tSetCﬂ n 5
Y buinfexp| ~te + 5 Y EY + 1 ) EY + = Y BVl | <o 2.2)
n=1 k=1 k=1 k=1
and
(o) n
Y b0 Y P (Xil > ) < . 2.3)

1l
—_

n k=1

Then for any € > 0, we have

n=1

n

X g > e] < 0. (2.4)
1

k=

Remark 2.1. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with

EX = 0 and EX? < co. For any e > 0,eachn >1and 1 <k < n, let X, = n Xy, b, = 1and c, = €/4, then
Yok = 07 Xelyx, <ne /2y Hence it is easy to check that

. P
Y Xk 50
k=1

and for any € > 0, we have

S t2 n ) t4 n 4 tSEtC" n 5
Z 1tr>1§exp —te + 0} Z ]EYn,k + i Z ]EYn,k + 5 Z E|Y )l
k=1 k=1 k=1

t4€2 ]EX2 . t5€3et8/4]EX2)

. 2,
< Z inf exp (—te + EIEX sy S,

o 2log’n  log*n log’ n ’
< Zexp (—Zlogn+( 25 + 4eln + 51425172 EX

where we take t = (2/¢)logn. Furthermore, we have

Yy n’(|xn,k|>cn)=iin’(|xk|>%)

n=1 k=1 n=1 k=1
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<Y P (x> 5 < CEX® < o,
n=1
Hence the following Robbins-Hsu theorem holds: for any € > 0,
2P Z X
n=1
Remark 2.2. Let {X,X,,,n > 1} be a sequence of independent and identically distributed random variables with

EX = 0 and E(X|log" |X|) < . Forany ¢ >0, eachn > 1and 1 <k < n, let X,y = n"' X, b, = n"'logn and
cn = /8, then Y, = 7 Xil|x,|<ne/s). Hence it is easy to check that

n
Y Xk 50
k=1

and for any € > 0, we have

>€n]<oo

= log S eye L POy
; - 1tr>15exp[ té+—Z]EY”k 4!;1131/%,( Z]E|Ynk|
> 2 Cnc t* Clncy)’
f te + — E(1X| L X E(X|log™ |X
Z mexp( 8+2nlg( » (IX|log™ | |)+4'31 o) (IXIlog™ IXI)

toeter C(nc,)*
5!n# log(nc,)

E(X|log" IXI))

= logn Cl4/eY(/8
<) P8 exp 4toglogn + SN toglog nPE(X log' X)

C(4/e)*(e/8)°
4!log(ne/8)
C(4/¢)°(¢/8)*(log n)"/?
5!log(ne/8)

(loglog n)*E(IX|log ™ |X])

(loglog n)°E(|X|log* |X|))
<00,
where we take t = (4/¢)loglogn. Furthermore, we have

2 EP(|Xnk|>cn) Z g”; (1% > )

=1

<Y lognp (|X| > %) < CE(IX|log" [X]) < co.
n=1

Hence the following Baum-Katz theorem holds: for any € > 0,

Zlogn [ZXk

n=1
Remark 2.3. Letr > 1,p € (0,2) and {X, X,,, n > 1} be a sequence of independent and identically distributed random
variables with E|X|" < oo (let EX = 0 for pr > 1). Foreachn > 1 and 1 < k < n, let X, = n"'/PXy. From
cr-inequality for 0 < pr <1, von Bahr-Esseen inequality for 1 < pr < 2 and Rosenthal inequality for pr > 2, we get

n pr n pr
E ;Xn,k —E ;‘Xk

>én]<oo
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LY EIXr = T8 L EIXr, for 0<pr<1
JEVILEIXIT = -5 for 1<pr<2

pr/2
S (T X)) + T BIX) < S BIXP,  for pr>2

which implies that

< P
Y Xux 50,
k=1

Let b, = n'"2. For the case pr < 2and forany e > 0,letc, = €/2,r—1 < a < 2(r—=1),and Y, = =P Xl iixc j<uive )
foreachn > 1and 1 <k < n. Then we have

00 tz n

=2 _ v 2 P 5
E]n 1tr>1§exp[ te + > E EY, + E ]EY n,kl]
pr p

2 2—pr t4 2)4-pr 13(e/2)oPrptel2
<Z '21nfexp( fe + (21/1 "X + —(Z/n S pixpr o DED T ]EIler)

© 2 2—pr 2 4 4—pr 4
< anfz exp [—alogn N ((04/8) (5422_1” log™n . (a/e) (51!27)17_’; (logn)

(Of/é?)5(€/2)5 Pr(logn)°n “/Z)qup,)
5inr-1

< 0o,

2
where we take t = (a/e)logn. For the case pr > 2, let ¢, = %(IZ - 1) for some o > r—1, and Y, =

n‘l/”XkI“XHg,upg/m} foreachn > 1and 1 < k < n. Then we have

oo ten o
r—=2 _ E - °
Z mfexp{ te + Z ]EY Z ]EY = kz; E[Y) 4 J
- p -
o 2 t4c2 £cefen
r=2 2 L 2 1 2
SZ n 1tr>1fexp( te + T —— EIX|" + A2 IX] 517,2/p-1 1X] )

(o)

_ (a/e)log’n  (a/e)*ci(logn)*
r=2 n
< 1 nCexp (—Oflog” * [ T R T

503(1 5,.271(2p71-1)
+(0{/€) Cn( Ogi’l) n ]E|X|2
5!n2/p-1

7

where we take t = (a/€)logn. Furthermore, we have

in”zz]n’uxnkbcn) Zf ”Z (|Xk|>—(__1) w)

n=1
SZnHIP x> 5 (2 2 1) nt) < CEIXPT < .
— 2a \p

Hence we can obtain the following Baum-Katz result: for any € > 0,

n=1

k=1

> en””] < oo.
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In order to prove Theorem 2.1, we need to recall the following lemma.

Lemma 2.1. [8] If {Y,,n > 1} is a sequence of random variables with Y, L 0asn — oo, then for all t > 0 and
sufficiently large n,
P (Y, >t) <2P (Y| > t/2),

where Y, = Y, — Y, and Y, is an independent copy of Y,,.

Proof. [Proof of Theorem 2.1] Applying Lemma 2.1, we can assume that for eachn > 1, {X;,x,1 < k < n} is
a sequence of symmetric random variables. From the condition (2.3), it is enough to check that

k=1

n=1
First we note that for x > 0,

> e] < 00, (2.5)

(9]

1 1 14 5 L ks
e =l+x+—x*+ x+4. +x Z‘Hx

|

2! 3! e

1 1 1 15
< — e,
1+x+2x +3x +4x +5

Forevery 1 <k <nandn > 1, since Y,,x is a symmetric random variable, then for any t > 0, we have

Ee'r <1 +0 + ]EY2 10+ Eyik + 5']E(|Yn,k|53tly”’kl)

t5
<exp( SEY;, + ,IEY‘* —e“"IElY,,klf’)

4! 5!

Hence the following upper exponential inequality holds:

Lt Seftn <&
[ZY k >e)<21nfexp[ te+—ZIEY2 +—Z]EY 5] ZIE|Yn,k|5]r
k=1 k=1

which, by the condition (2.2), implies the claim (2.5). O

3. Complete convergence of weighted sums

3.1. Weighted sums
In the subsection, we state some results on complete convergence for weighted sums of independent
and identically distributed random variables.

Theorem 3.1. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX = 0and {a,, 1 < k <n,n > 1} be a triangular array of real numbers. Let p > 2, r > 1, A > 0 and assume that
there exist two finite constants C > 0 and 0 < 6 < 2/p not depending on n such that foralln > 1,

n

Y a2, <cn @3.1)
k=1

and
n! max 2, .l < C. (3.2)

1<k<n
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If one of the following conditions holds:
(1) Let 0 < A < (pr + p — 2)/2p and E|XPe+D/1+PD) < oo,
(2) ]Elep(r+b+2)\)/(1+p/\) < o0,

then for any € > 0, we have

i n’—l]P[

n=1

n

Z Ak Xk

k=1

> enl/p] < co. (3.3)

Remark 3.1. In the proof of Theorem 3.1, we need the condition E|X|> < co. The condition 0 < A < (pr +p —2)/2p
in (1) is to guarantee p(r + 1)/(1 + pA) = 2. For the condition (2), by the condition r > 1, it is easy to check
p(r+6+2A)/(1 + pA) > 2 for all A > 0. Furthermore, under the condition 0 < A < (pr +p —2)/2p, if EIX|f < oo,
where

B = max {p(r+1)/(1 + pA), p(r+ 5 +21)/(1 + pA)},

then (3.3) holds.
In fact, the condition r > 1 is only used for the case (2). If (r + O)p = 2, then p(r + 6 + 2A)/(1 + pA) = 2 for all
A > 0. So we can weaken the restriction on the condition r > 1.

Remark 3.2. Theorem 3.1 is an interesting supplement to Theorem 1.2 by comparing their conditions. Let r = 1. For
the case p > 2 (p = 2), if the parameters 6 and A satisfy 6 < (p — 2)A (for any 0 < 6 < 1), then from (2) in Theorem
3.1, the moment condition in Theorem 3.1 is weaker than Theorem 1.2.

Theorem 3.2. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX = 0and {ay, 1 < k < n,n > 1} be a triangular array of real numbers. Let 1 <p <2,r > 1, A > 0 and assume
that there exist two finite constants C > 0 and 0 < 6 < 1 not depending on n such that foralln > 1,

Y lansl < Cr? (3.4)
k=1

and
nt {1<1ka<>7<1 2, .l < C. (3.5)

If one of the following conditions holds:
(1) Let 0 < A < r/p and BIXP+D/A+PD) < oo,
(2) ]Elep(r+b+p)\)/(1+p/\) < o0,

then for any & > 0, we have

i n’—l]P[

n=1

n

Z Ak Xk

k=1

> enl/p] < co. (3.6)

Remark 3.3. In the proof of Theorem 3.2, we need the condition E|X|P < oco. The condition 0 < A < r/p in (1)
is to guarantee p(r + 1)/(1 + pA) > p. For the condition (2), since r > 1 and 0 < 6 < 1, it is easy to check
p(r+ 06+ pA)/(1 +pA) = p forall A > 0. Furthermore, under the condition 0 < A < r/p, if E|X|P < co, where

B =max p(r+ 1)/(1 + pA), p(r + 6+ pA)/(1 + pA)},
then (3.6) holds.

Theorem 3.3. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX =0, EX? = 1 and {ayx, 1 < k < n,n > 1} be a triangular array of real numbers. Letp > 2,r >0, A > 0 and
assume that there exist two finite constants C > 0 and p > 0 not depending on n such that foralln > 1,

n

lim log n Z afl,k =p (3.7)

n—oo
k=1
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and

n’ max la, .l < C. (3.8)
1<k<n

If one of the following conditions holds:
(1) Let 0 < A < (r +1)/2 and E[|X|log™ |X[]"*V/* < oo,

2)E [|X|2+(’/A)(10g+ |X|)1+(r/)t)] < oo,
then for any e > \2r (1 + 1271 +¢- 60-1) p, we have

i n”l[’(

n=1

n

Z A j X

k=1

> &) <o,

Remark 3.4. In [18, Theorem 4.1.3] and [17, p. 1556], Stout proved the following result. Let {X,X,,n > 1} be
a sequence of independent and identically distributed random variables with EX = 0 and E|X[** < oo for some
0 < a < 1. Suppose that {a,x,1 <k <n,n > 1} is a sequence of constants with

max |a, ;| < Cn™
1<k<n

for some C > 0 and
n

. 2 _
;}g?olognZan,k =0.

k=1
Then for any € > 0, we have
(o] n
Z]P[ Zan,ka > E] < 00.
n=1 k=1
For the case A € (0,27Y), it is easy to check that
r r+1
24 - < —,
A A

then, from Theorem 3.3, the moment condition in (2) is weaker than (1). When r = 1 and p = 0, for the case
A € (0,271Y), the moment condition in Theorem 3.3 is weaker than the above Stout’s result.

Remark 3.5. By the Borel-Cantelli lemma, Theorem 3.3 (for the case r = 1) implies

n

Z Ak Xk

k=1

lim sup < \/2 1+1271+e-6071)p as.

n—oo

Theorem 3.4. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX = 0and {ayr, 1 < k < n,n > 1} be a triangular array of real numbers. Let 1 <p <2,r > 1, A > 0 and assume
that there exist two finite constants C > 0 and p > 0 not depending on n such that for alln > 1,

lim (log ny' ™ Y lawul’ = p (3.9)
n—oo k:1
and
n’ max la, .l < C. (3.10)
1<k<n

If one of the following conditions holds:
(1) Let 0 < A < (r + 1)/p and E[|X|log™ |X[]"*+V/* < oo,
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]oo

where ¢ is the minimum value satisfying the following inequality

&2 ePAlP
-4
"TA 2

) E [|X|P+(r/)\)(1og+ |X|)1+(r/}\)] < o0,
then for any € > ey, we have
Z n’_lll’(

n=1

n

Z (9.0

k=1

<0 (3.11)

and
A= (1 +127 +e- 60-1) pE|X]P.

Remark 3.6. From the proof of Theorem 3.4, for the case p = 0, we can take €y = 0.

Next we consider a special weighted sum, which was studied in Li et al. [10]. Let § > -1 and
{anr, 1 <k <n,n > 1} be a triangular array of real numbers such that

n

Y ane=1 forall n>1 (3.12)
k=1

and we can write
e = Cui(k/n)P(1/n) (3.13)
with 0 < ¢ < ¢, < C < oo for every 1 < k < n for some constants c and C.

Theorem 3.5. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX = 0and {an, 1 < k < n,n > 1} bea triangular array of real numbers satisfying (3.12) and (3.13). Let E|X|P < oo
forsomel <p <2andlet 0 <r <p—1, then for any € > 0, we have

i n’—l]P[

n=1

n

Z Ak Xk

k=1

> ¢ < . (3.14)

Theorem 3.6. Let {X, X,,,n > 1} be a sequence of independent and identically distributed random variables with
EX = 0and {ayx, 1 <k <n,n > 1} be a triangular array of real numbers satisfying (3.12) and (3.13). Let r > 0 and

B
1+p

E[X|™ log* [X| < co  for

E|X|™F <
1X] oo for T+p

E|X/*! < 0o for T+ 5

Then for any € > 0, we have

[ee)
n P
n=1

Remark 3.7. Lietal. [10] proved the following result. Let {X, X,,,n > 1} be a sequence of independent and identically
distributed random variables with EX = 0 and {a,, 1 < k < n,n > 1} be a triangular array of real numbers satisfying
(3.12) and (3.13). If

n

Z A j Xk

k=1

> e < oo, (3.15)

E| XY < oo for pe(-1,-1/2)
EX?log(1+|X|]) <o  for f=-1/2 ,
EIXP < o0 for p>-1/2
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then for any € > 0, we have

ol
n=1 k=1

Theorem 3.5 gives the convergent rate of the complete convergence, which shows that the moment conditions are
independent on the parameter B in the weight {a, x, 1 < k < n,n > 1}. Theorem 3.6 is a meaningful supplement of the
work in Li et al. [10]. When r = 1, Theorem 3.6 deduces (3.16).

A j X

> e] < 0. (3.16)

3.2. Proofs
In this subsection, we shall give the proofs of those theorems in the subsection 3.1.

Proof. [Proof of Theorem 3.1] For any ¢ > 0,eachn>1and 1 <k <, let

_ e (2
=X, by=n"", ¢, = P (l; - 6) and Yk = Xprlyx, i<c,)-

(3

Xn,k 1/p

From the condition (3.1), we get

1 n n )
E WZ“MXk <— Zan EX2 = o(1)
k=1 k=1
which implies
. P
Y Xux 50,
k=1
Moreover, we have
00 n t e
Z = 1mfexp[ t£+—Z]EY 'Z]EYflk+ ,,/k|5}
n=1 4 k=1

o PEX? -~ , HEEX2yh ,  POEX2S &G,
< " : 2 ’ Z - Z
< E 1 n 1r1f exp|—te + 2277 @, + YT @+ B L, @,y
n= =

EX? Z ai’k]

k=1

0 , 2 . 4 , 3(3-0
Y e @r/ePlogin @rfefClogin  (2r/e)PS(logn)nili-)
2n2/p 4!n2ly 5!n2/p

n=1

<00,

where we take t = (2r/¢)log n. Furthermore, from the condition (3.2), we have

8] n

7Y P (Xl > )
k=1

o1

n=1

) n
1 e (2
r-1
n Z]P(Mlllnlkal > E (; - 6))

n=1 k=1

n'P (C|X| > £ (2 - 5) nﬂ/P)”)
— 4r \p

SC]Elx|p(r+1)/(1+p/\) < 00
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and

=

1 ]P(|Xn,k| > Cn)
k=1

1 - (2
]P(l—/lﬂn,kal > i (— - 6))
= \nr 4r \p

n

r—1-2 2 2
n /P Zﬂn,k]EX I{|X|>Cl’l(l/p)+}‘]

i ol
2
= |l

I
gk
:w
|

=

IN

n=1 k=1
(] (o]
—1+6-2 2
<C n'~1ro=2/p Z EX I{Ck(l/p)M<‘X|Sc(k+1)(1/p)+,\]
n=1 k=n
(o]

SC Z kr+572/p1E:X2I{Ck(1/p)+,\<|X|Sc(k+1)(1/p)+/\]
k=1
SC]E|X|p(r+O+2A)/(1+p/\) < 0.
Hence from Theorem 2.1, the desired results can be obtained. [

Proof. [Proof of Theorem 3.2] For any ¢ > 0,eachn>1and 1 <k <, let

Ank -1

X, =
‘Vl,k nl/p

From the von Bahr-Esseen inequality and the condition (3.4), we get

4
1 n
E|—- 1/P Zankxk < _Zlanklp _0(1)
k=1
which implies
n
Y Xk 50,
k=1
Moreover, we have
. 2 tS v 5
r JE— —_—
Zl 1tr>1(1)?exp —te + Z]EY + Z ]EY Z E|Y )kl
o

(o)

) 2 VE|IXP
< E n! 1nfexp[—ts+ "—H E la, kP
>0 2n
n=1 k=1
HEPEIXP Z o . B TEXpet Z )
+ |an,k| + | |an,k|
4!n 5In
k=1 k=1

= @r/eyc P log?n  (2r/e)tcy P logtn
r—1 n n
< Z n exp [[ o + i

27r/e)3 (1 51,3(1-0) -
@/ Gognyn ]mx#’Z |an,k|P]

5'n
k=1

—X, by=n", c,= — (1 0) and Y x = Xuilix, 1<c,)-

1365



Y. Miao, Z. Li / Filomat 39:4 (2025), 1355-1372

where we take f = (2r/¢)log n. Furthermore, from the condition (3.5), we have

n

WY P (Xid > €2)
k=1

n

1 €
r—1 - < _
n E P (nl/P |€l,,/ka| > I (1 5))

<

[ 1D 111

WP (CIXl > i 1-0o) nﬂ/ﬂw)
n=1

<CE[XPr+D/0+PY) < oo

and

n

n'! ]P(lxn,kl > Cn)

1 €
-1
n P (mmn,kXH > E (1 - (3))

-2
! |ﬂn,k|p]E|X|pf{\x|>cn<l/p)+/\}

k=1

IA

IA
DA 1D iDs 3D 1D
Iy

+0-2
n' Z ]E|X|p1{k(l/p)+}\<|X|§C(k+1)(l/p)+/\}
k

[eS)
=n

o-1
< K IElepI{k(l/p)+/\<|X|SC(k+1)('l/p)+/\}

=~
—_

SClElx|p(r+5+p)\)/(1er/\) < oo,

Hence from Theorem 2.1, the desired results can be obtained. [

Proof. [Proof of Theorem 3.3] Forany ¢ > /2r (1 + 121 +e-6071)p,eachn >1and 1 <k <1, let

_ -1 __¢ _
X?’l,k = an,ka, bn = ni’ , Cn = w and Yn/k = Xn,kI“X”lk‘Sg”},

where

&2

b= .
(1+1271+e-601)p

From the condition (3.7), we get

2 n

= Zai/k =o(1)

k=1

E ﬂn,ka

k=1

which implies

n
Z Xux = 0.
k=1

Since ¢ > 4/2r (1 + 1271 + ¢- 6071) p, there exists a positive constant 0 < ¢; < 1 such that

7

\/2r(1+12—1 +e-6071)p
&>
1—61
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which yields

(b/e)? (
1
2

Hence for this ¢; and all # large enough, we have

r-1-b+ +—+—)p(1+€1)<—1.

12 60
n,k|5}

k=1
PEX? v HAEX? v B EX%el
r=1: _ 2 e 2 = 2
SZ{H %Egexp[ te + > Z‘an/k+ 1 Z”n,kJr 5 Z”n,k
n=

k=1 k=1 k=1

o 2
SCZ n'"!exp (—blogn + G /26) ( tt —)p(l + el)logn)
n=1

<00

(o)

Z rlmfexp[ t€+—Z]EY 'iEY§,k+te
‘k:l

n=1

7

where we take t = (b/¢) log n. Furthermore, from the condition (3.8), we have

(e8] n

2 )P > )

k=1

r—1 &
n Zﬂ’(|ﬂnkxk|>blogn)

k=1

r n/\
P (le Cblogn)

Il
A

X
I
—_

=

IN
O ]
»Mg —_

e i ek + 1)
Cbl = Chlog(k + 1)

SC]E[le log™ [X[]7V/* < o0

and

i n'! i P (an,kl > Cn)
k=1

n=1

00 n

r—1 &
Zn le(mn,kxu > blogn)
n=1 k=1

[eS) n

< 11002 Z 2 2
_CZ n'""log n L a, JEX IlX\>c§i’0gn}
n=1

8

<Y - 1lognZIEXZI€ i e

Thlogk < Chlogk+1)

<C Z K log KEX?I

£ e(k+1)t
{ Chlogk <IX|< Chlog(k+1)}

Z kHM <IX| < e(k+1)"
logk Cblogk logk ~ Cblog(k +1)

<CE [le2+(r/A)(10g |X|)1+(r/)\)] < 00,

Hence from Theorem 2.1, the desired results can be obtained. [
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Proof. [Proof of Theorem 3.4] For any ¢ > 0,eachn>1and 1 <k <, let

—1 &
Xk = ani X, by=n", ¢, =
blogn

and Yk = Xy klyx, si<c.)/

where
2

T A+127 e 60 1) pEXP

From the von Bahr-Esseen inequality and the condition (3.9), we get

p

n

Z Ak Xk

k=1

E <CY ol =o(1),

k=1

which implies

. P
Y Xux 50,
k=1

From the inequality (3.11), if € > ¢y, then there exists a positive constant €1 > 0 such that

&2 U’Al 4

-+
"TA

(1+61)<0

which yields

b
F-1-b+ (/26) (1+E+_) (1 + enEIXP < —1.

Moreover, we have

o t4 n tSEtC”

r=1 4 5
E 1tr>1§exp[ be+ E EY?, + i E EY,  + 5 nkl
=1 k=1 k=1

= t2c2 ”1E XP v
< Z n't mfexp[ te + "TH Z |2 il?
n=1 k=1

HETEIXP A > ”IE|X|”etC" S
Pt ) Ll + o
’ k=1

- o/ey (,, 1
SZ{n 1exp(—blogn+ > (1+12+60
ool

<

) (1 + &)E|X)P logn)

where we take t = (b/¢) log n. Furthermore, from the condition (3.10), we have

0o n

Yo 1ZH’(IXnkI > c,)

n
n

-1
5 r—1 €
n Z]P(|an,ka| > blogn)
n=1 k=1
- ent
WP (|X| > )
— Cblogn

<

n
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e ekt ek +1)!
Sck;k ]P(Cblogk ||_Cblog(k+1)

<CE[|X]log" |X|]"*/* < oo

and

8

Z ! Zn: P (1 Xkl > 1)
k=1

n=1
(o) n E
r=1

= n ]P(|an,ka| > )

; };4 blogn
< -1 P
_C;n log n; 0n P EIXP Ty

r—1
<CZ log”;HX' ottt s ety
<CY KIogkEIXIT |\ e
; CBREIXPL s taty
ek? etk + 1N

< r+pA 1-p I e

Czk (log ) ]P(Cbl ogk < X< Glog+ 1)

<CE [IXI’”(M)(log IX)0V] < oo,

Hence from Theorem 2.1, the desired results can be obtained. [

Proof. [Proof of Theorem 3.5] For any ¢ > 0,eachn >1and 1 <k <, let

_ &
Xug = anpXe, by=n"", c, = » (r—1) and Yy = Xirlyx,i<c,-

From the von Bahr-Esseen inequality and the conditions (3.12) and (3.13), we get

" P
C
E|) anXie| < CZ WEIXE <~
k=1 k=1
which implies
- P
Y Xux 50,
k=1
Moreover, we have
) o t2 n t4 n i’5 te, M
Z n! 1tr>1§exp [—te + 0 Z ]EYﬁ,k + o Z ]EYﬁ/k Z E|Y,, e
n=1 k=1 " k=1

0 2—, n
¢y PEIXP
<Y wlinfexp|—te + —L Y Ja,
_Z; 1t£10exp[ € 7 ka| nkl
n= =
te, TEIXP plElepetC" -
et Y gl 2 2
’ k=1
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= Q@r/e)2> log’n  (2r/ )it log*n
r—=1 _ n n
S;n 1tr>1§exp( t€+( > + 1

+(2r/e)5c;”;"(1ogn)5eff~ E|XJP
5! np-1

o o) 22_P1 2 2 44—P1 4
San_l exp[—2rlogn+[( r/e) C; o8 1 +( r/e) CZ' g 1

n=1

/e3> (log n)*n2 (1) ) 1E|X|v]
+
51 np-1

<00,

where we take t = (2r/¢)log n. Furthermore, from the conditions (3.12) and (3.13), we have

n

WY P (Xl > €)
k=1

n

_ €
n'! ]P(lﬂn,kal > (r- 1))
=1 r

s 10

=

1l

e
=

-

7’lr71 aZ,kE|X|p1[|X|>Cnl+ﬁ} for —1< ‘B <0
1

IA
=
ii
A
-
ii

D1 i1

nr—l

@

aZ,k]E|X|p1[|X|>Cn} for >0

[1: 1P-

C nP ]E|X|pI[Ck]*/5<|X\SC(k+1)”f3l for —1< ‘B <0
< no=01 ko:on
C Z n'r Z EIXPLickaxi<ciern)) for >0
n=1 k=n
CZ ]EIleI[Ckl+/5<|X\SC(k+l)l+ﬁ} for —1< ‘B <0
< ko:ol
CZ EIXIIick<ixi<ck+1)) for B> 0
k=1
<CE|XJ < oo.

Hence from Theorem 2.1, the desired results can be obtained. [
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Proof. [Proof of Theorem 3.6] The proof is as similar as Theorem 3.5. Firstly, it is easy to check that for the

B
case ﬁ

any ¢ >0,eachn>land1<k<mn,

_ €
Xk = @i Xy, by=n""1, ¢, = . (p-1) and Y i = X ilyx, ,1<c,)-

It is easy to check that

n
Z Xox 5 0.
k=1

< -1, we have 75 > 1. Let p = 135 for the case % < -landp =r +1 for the case % > —1. For
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and

(o)

Z rlmfexp te+—ZIEY ZIEYnk

n=1

5
n,k| < 00,

Furthermore, from the conditions (3.12) and (3.13), we have

(o)

Yo 1i P (X, > cn)

n=1

sci r-1 Z]P 1Xil > CnPiF)

n=1
SCf f xr‘lIP(le > Cx“ﬁy_ﬁ) dydx.
1 J1

Let u = x'*fy= and v = y, we have

00 X
f f X 1P (|X| > Cx”ﬁy’ﬁ) dydx
1 D

=1 j“B f f (uvﬁ)%]l)(lxl > CM) (Z)u_l)%d'gdu

U 8
=1+3 F f o P (X] > Cu) v dudu.

1B
5 =

f f x"llP(le > Cx“ﬁy_ﬁ) dydx
1 J

:ﬁfl u%logu]l’(le > Cu)du

<CEIX|™ log" |X].

For the case 7 = —1, then we have

For the case % < —1, then we have

00 X
f f xH]P |X| > Cx”ﬁy’ﬁ) dydx

L 1+1]
- T8 T+ P (X C d
rﬁ 1 +ﬁf u —-u (X| > Cu)du

<CE|X|™F.

For the case % > —1, then we have

00 X
f f x’_l]P |X| > Cx“ﬁy"g) dydx

f u 1+;3 u“/* ]IP(IXI > Cu)du
rﬁ + 1 +p
<CE|X|"*L.

Hence from Theorem 2.1, the desired results can be obtained. [
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