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Fractional integral inequalities for m-polynomial exponential type
s-convex functions

Muhammad Samraiz®*, Asad Saleem?, Saima Naheed?

?Department of Mathematics, University of Sargodha P.O. Box 40100, Sargodha, Pakistan

Abstract. In this article, we derive Hermite-Hadamard and Hermite-Hadamard-Fejér inequalities by
utilizing Riemann-Liouville fractional integrals with inclusion of m-polynomial exponential type s-convex
functions. The Holders and power mean inequalities are used to establish the results that have strong
applicability across a wide range of disciplines, including stochastic processes, computer science and
engineering. We employ particular functions to investigate these inequalities and displaying their 2D and
3D graphs along with relevant table values. This presentation serves as evidence supporting the validity
of the results obtained. We introduce trapezoid bounds as applications serving as error estimates for the
developed result.

1. Introduction

Fractional calculus offers a flexible mathematical framework for comprehending and analyzing phenom-
ena that traditional integer-order calculus cannot adequately describe. A subfield of mathematics known as
fractional calculus expands the classical operations of differentiation and integration to non-integer orders.
In fractional calculus, these operations are extended to encompass fractional or non-integer orders, whereas
ordinary calculus primarily concentrates on derivatives and integrals of integer orders. The importance of
fractional calculus lies in its wide-ranging applicability and relevance across diverse scientific domains and
practical situations. Fractional calculus is utilized in modeling physiological processes, biomedical systems,
signal processing, control theory, financial mathematics and various branches of physics and engineering.
The core concept of fractional calculus is to broaden the concepts of differentiation and integration beyond
whole numbers.

Moreover, correlation between convexity and fractional calculus presents an appealing research field,
linking classical calculus and mathematical analysis with the advancements made in fractional calculus.
Convex functions exhibit characteristics such as non-decreasing slopes and always lying above their chords.
Fractional calculus provides techniques to understand and represent these characteristics, expanding be-
yond the limitations of conventional calculus methods. The theory of convex functions falls within the
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broader scope of convexity. A convex function is defined by having a convex epigraph. However, it stands
as a crucial theory with implications across various branches of mathematics. Graphical analysis often
introduces the concept of convexity in mathematics. Additionally, calculus provides a valuable tool for
identifying convexity through the second-derivative test. Convexity theory provides a structured frame-
work for constructing highly efficient, compelling and robust numerical methods to address and solve a
wide array of problems across different mathematical domains. Convexity is applied across a wide range of
fields including optimization [15, 38], economics [12], geometry [13, 21], finance [36], statistics [6, 9, 35], con-
trol theory [46], signal processing and machine learning [16, 39]. The growth of inequality theory was also
influenced by convexity theory. The theory of convexity provides a basis for broadening and generalizing
classical inequalities. It has been shown that fractional integral inequalities are among the most effective
tools for advancing various fields in both pure and applied mathematics. It is useful in many different
areas of mathematical research. Inequalities are used in calculus [31], trigonometry [5], physics [37], engi-
neering [10], economics [32], finance [19], computer science [14], information theory [40] and differential
equations [1]. Some significant inequalities that have strong applicability include Jensen’s inequality [24],
Holder’s inequality [48], mean inequality [23], Hardy-type inequality [28], Gagliardo-Nirenberg inequal-
ity [18], Ostrowski-type inequality [26, 29], Olsen inequality [41], Steklov inequality [33] and Griiss type
inequalities [11] have strong applications in diverse fields of science.

The Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities [7, 27, 30, 34] are widely known
inequalities relevant to a convex function [4]. The Hermite-Hadamard and Hermite-Hadamard-Fejér
type inequalities are useful tools in mathematical analysis [43]. These inequalities are widely recognized
within the domain of convex functions and have been thoroughly explored and broadened across different
convexities, encompassing diverse scenarios and parameters. These inequalities have been utilized to
tackle diverse problems within the domain of fractional calculus [20]. Mathematician have investigated
inequalities involving different convexities, we refer the reader to [3, 25, 49].

In the present work, we utilize the definition of m-polynomial exponential type s-convex functions via
fractional calculus to establish Hermite-Hadamard-type and Hermite-Hadamard-Fejér type inequalities.
First, we need to recall the following definitions to understand the main finding of the present work.

The concept of s-convexity can be categorized into two ways with the condition 0 < s < 1, which are
stated as follows.

Definition 1.1. [2] A function Y : [0, 00) — R is known as s-convex in the first sense if
V(e +(1-9)0) < ™ YV(G) + (1 - )Y (C2),

where C1,Cy € [0,00) and ¢* + (1 —¢)* =1 forall ¢ > 0.

Definition 1.2. [45] A function Y : [0, 00) — R is known as s-convex in the second sense if
V(i + (1 -9)C) < °Y(Cr) + (1 - <)Y (Ca),

where C1,Cy € [0,00)and ¢ + (1 —¢) =1forall ¢ 2 0.

Definition 1.3. [45] If ¢ € [0,1], i, C; € 1, then the function Y : I € R — R is said to be exponential type convex
if

Y(cCi+ (1= 9)C) < (¢° = DY(G) + (€' =YY (), (1)
holds.

Definition 1.4. [8] A non-negative function Y : I ¢ R — R is called as m-polynomial convex if

m

TG+ (-0 < = Y11= (1= IV + - Y- @

i=1

is true for all C1, C; € I and ¢ € [0, 1] where m € N.
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Definition 1.5. [42] The real valued function Y : I ¢ R — R is called as m-polynomial exponential type s-convex
function if the inequality

m

TG+ (=)0 < - Y (@ =T + - ;«f“—@) - )Y@, 3)

i=1
is true for all Cy, C; € L and ¢ € [0, 1] where m € N and s € [In2.4,1].
Davis stated the definition of the gamma function in [17] which is as follows.

Definition 1.6. The gamma function is stated as

rQ = f led, (4)
0

for Re(C) > 0.

Definition 1.7. [44]If Y € L[N, N;], then the Riemann-Liouville fractional integrals with order ¢ > 0 are expressed
as

1

C
o-1
e j; (€Y, 0N <0,

(50O =
and
1 (v
(RO = 55 [ -0 rere, 0sC<m,

These expressions are recoghized as the left- and right-sided Riemann-Liouville fractional integrals respectively.

Theorem 1.8. (Holder’s inequality [22]) Let Q, Y : [N1,8,] — R be functions such that |QF, [Y]7 € L[Ny, N,].
Then the following inequality

02 02 % 02 %
f Q)T < ( f |Q<g)|”dg) ( f mgwc) ,
holds where p > 1,  + % =1.

Theorem 1.9. (Power mean inequality [22]) Let Q, Y : [Ny, N2] = R be functions such that |Q|, Y17 € L[Ny, N,].
Then the following relation

02 02 1-1 0 ;
f |Q(cmc)|dgs( f IQ(C)Idc) ( f IQ(C)IIY(C)quc),
4 4} o0

holds where g > 1.

Lemma 1.10. [47] Let Y : [N1,N2] — R be a function such that Y exists on (R1,82). If Y € L[Ny, N,], then the
following identity

YR)+Y®R)  To+1)

[‘igTY(xz) + TUEY(Nl)]

2 2Ry —Ny)°
N, — N)2 11_1_ o+l _ o+l
- SR IO e+ (- e
0

with fractional integrals exists.
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Studying generalized versions of inequalities make possible to develop greater flexibility and applica-
tions across a range of mathematical and scientific fields. It often results in novel findings and deeper
understanding. The purpose of this study is to investigate new refinements of Hermite-Hadamard and
Hermite-Hadamard-Fejér inequalities in terms of m-polynomial exponential type s-convex functions via
Riemann-Liouville fractional integrals. Some useful applications to trapezoid bounds are provided that
are needful in developing effective method for approximating areas under curves, making them valuable
across various fields where integration is involved.

2. Main Result

This section focuses on employing m-polynomial exponential type s-convexity to investigate novel
mean inequalities. For this purpose, we utilize Holder’s inequality and power mean inequality to obtain
the following results.

Theorem 2.1. Suppose that Y : [0, 8] — R is a twice differentiable function. If the function [X"'|7 is integrable and
m-polynomial exponential type s-convex on [Ny, N,] for some fixedq > 1,0 < 8y < Nyandm € Nwiths € [In2.4,1],
then the following inequality

Y(Nl) + Y(Nz) F(O’ + 1) o o
T AR R |72, %) + T Y|
o(%: — N1) s : %
=20+ 1)(0+2)[ Z( — 1 (Pl + ) )] (5)

is true.

Proof. First, we consider the case g = 1. Utilizing Lemma 1.10, we acquire

TEYFTM)  T+D [, )
' ST [‘r Y(Ry) + ;T(Nl)]

Ry =N (H1-@Q-crt =,
< == fo YN+ (1 - )| de. ©)

Here we have (1 —¢)°*! — ¢o*! < 1 for each ¢ € [N1,N,]. Since the function )Tl is m-polynomial exponential

type s-convex defined on [N;,N,] and by utilizing the facts ¢ < ¢° and ¢!"? < ¢ that holds for any
0 <0 <1, we arrive at

'Y(Nl) ST T+1)
2Ny =Ny

N, — N
< (2?04_11)) f ‘1 —(1- g)c7+1 0+1|[ Z(esg 1)1 ”Y (N1)| + _Z(e s(1-¢) _ 1) |Y (Nz)|

(N -N o+ cr+ . S il s il
z,f(a+11) f 1-@-o - 1|[Z(6—1) I (x1>|+i;(e—1) r (Nz)\]dc

i=1

|70, %) + T Y|

o o(Ry = Ny)?
mze =1 () + [ %))

This confirms the result for g = 1.

Now, we consider the case g > 1. By employing Lemma 1.10 and then power mean inequality, we attain
TR)+YX) Tlo+1)

2 2Ry = Ny)°

[TgTT(NZ) + 'IOEY(Nl)]
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(N —Np)?
T 2(0+1)

_ 1

% (L‘l |(1 -(1- C)a+1 _ ga+1)

Since |Y| is m-polynomial exponential type s-convex, therefore we are able to have

‘Y(Nl) +YN,) T(o+1)
2 T 2R, — Ny

< (?;z(a—:cgz (f ‘ _ort g 1)‘)1—q (fol (1= (=gt = o)

1 - SC il 1 . s(1-¢ il %
4;;w—nhme+a;w“%4wrde%

(N N )2 Y 1_‘17 ! o+ o+
5 220 11) (O 2) (j(; (1 (1 C) 1 - 1)
dC]q

T
i=1
_RP s )
- (ZEG +x11)) (sz)l "( Z(e - |Y S+ &) )(j(; (1 —(1-c)* - GH))dCJ
Ny — N1 -1 1
) (2EO+11)) (ojz) (a+2) Z(E =D (@l + @) )]

_ G(NZ_Nl)Z 1 u S i B 7 . q q
‘Eﬁmﬁﬁ&;@*WNMMWmﬂﬂ

1
[Tla-a-om -l e+ q- ool
0

1
1‘7

1

Iftm+u—@&ny. (7)

[wgqr(&) ; 'IUEY(Nl)]

1

q

The proof is done. [

Remark 2.2. Ifwe substitutem = 1ands = 1in Theorem 2.1, we get the following inequality for exponential convex
functions
Y®)+YN)  T(o+1) [
2 2Ry = Ny)°
o(N = Np)?
T 20+ 1)(0+2)
Example 2.3. Here, we verify the validity of Theorem 2.1 through graphical representations. To do this, we substitute
Y(c) = e° to get the following integral values

T YO82) + YN

(e - D (@l + ' @8)["))’ ®)

1 (™
Teee™ = To) J, &2~ o) e, ©)
and
1
T = o) ) € N1)"levde. (10)
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By utilizing the expressions (9) and (10) in Theorem 2.1, we get
e+ e Ny — N1)?

N1 |7 N, |1
- s | Z(e = (" + [ l
o o— o— S
<y [ Mmoo
N (N — Np)? Z( 1]+ [ } (11)

- 2 20+ 1)(c+2) |m
By specifying the parameters m = 1, 81 = 0, Ny = 1, ¢ = 2, s = 1, in the double inequality (11), we derive the
following functions

3.7967¢
2(c + (o +2)
1
_ f _ ~\o-1 o-1
pi() = 5 fo [ -t + o7 ede,

3.79670
200+ 1)(c+2)

po(0) = 1.8591 —

pa(0) = 1.8591 +

Figure 1: The 2D graph exhibiting the inequality (11) for 1 < ¢ < 3 is shown in Figure 1.

Table 1: The Table 1 illustrates the comparative results between the double inequality in Example 2.3.

Functions 1 2 3 4 5
po(o) 1.54271 | 1.54271 | 1.57435 | 1.60599 | 1.63311
p1(o) 1.71828 | 1.71828 | 1.73226 | 1.74625 | 1.75825
p2(0) 2.17549 | 2.17549 | 2.14385 | 2.11221 | 2.08509

By specifying the parameters m =1,s =1, 0 = 1, g = 2, we get the following functions

[N

e+ ENZ (Nz - 81)2
2 T 12 (¢
1 N2
S -
(N2 —81)
Mope (R - Ry)?
< > + B ((e

— DI + 1)

ecdc

NI=

— DI P+ [e)*
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Figure 2: The 3D graph exhibiting the inequality (11) for 6 < 8; <10, 11 < N, < 15 is shown in Figure 2.

Theorem 2.4. Suppose that Y : [0,8,] — R is a twice differentiable function. If the function |X"|1 is integrable and

m-polynomial exponential type s-convex on [Ny, Ny] for some fixedq > 1,0 < 8y < Nyandm € N withs € [In2.4,1],
then the following inequality

Y(R)+Y®R2)  T(o+k)

[T, 7082 + 78|

2 2(Ry — Ny
(N2 = Ry)? 1 i, g
=20+ (1_p(a+l)+1) [Z;e = (sl (N|)] (12)
is true wzth + =1

Proof. By applying Lemma 1.10 and Hoélder’s inequality, we get

'Y(Nl) FY®) T+
2(Ro = Ny)?

L N2 - Ry f 1-(1-g-c
<=5

c+1
_ Ra= Ny f(l—(l_ ot ) g '% flhr”(x F1-0N)['d %
=20 +1) ) c c c ; G C)$%2 c

By using the relation

[wg;v(xz) + wggv(xl)]

Y7 (N1 + (1 - )Ny)|de.

(1 —(1- g)a+1 _ gg+1)p <1-(1- g)p(ﬁ+l) _ gp(0+l)/

forany ¢ € (0,1) and p > 1. Since |Y| is m-polynomial exponential type s-convex on [Ny, ;] and the facts
e < ¢® and e179) < ¢° are true for any 0 < ¢ < 1, therefore forany 0 < 0 < 1, we get

‘Y(Nl) +Y®) T+
2 2(R; — N1

(N -N )2 ! o+ o+ rl]
sﬁ(fo (1- 1=yl — ot 1))d(;)
x f 1 1Zm]<esg—1>" |Y"<><1>|q+1i(es<1-g>—1>" Y2 | de ;
o \"MiT M=
(N2 = N1)? 2 V(I et L ] )
= 2o+ 1) (1_P(0+1)+1) [fo [az@ S P Y e =1 ) ]dg]

[wg;y(&) ; ‘IUEY(Nl)]

i=1 i=1
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(R —Ny)? 2 (1 o il [ s i
C2(0+1) (1_p(o+1)+1) [Z;(‘e_l) (|Y (Nl)|f0d€+|Y (Nzlfodg)].

N = Ny)? (1 & s m)
T 20+ (1_p(a+1)+1) [EZ@S D (X)) + 7 (%)

i=1

Hence the result is proved. [

Remark 2.5. If we substitute m = 1 and s = 1 in Theorem 2.4 we get following relation for exponential convex
functions

YR)+Y®)  To+1) [, .
' 2Ny =Ny [-INA[(NZ) M -iNEY(Nl)]

(N2 — Ny)? 2 ; v v o
<Gy [ seees) (e nlrool « e (13)

Example 2.6. Here, we verify the validity of the Theorem 2.4 through graphical representations. To do this, we
substitute Y(c) = ¢? to get the following integral values

1

T = = T (Nz — o)1, (14)
and
1 (™
W = () (c =Ny ' Pde. (15)

By utilizing the expressions (14) and (15) in Theorem 2.4, we achieve

2, Q2 ; . %
N AR (% - 82 [1— 2 ] [% ;@s_ni((z)mzm}

2 2(0+1) plc+1)+1

N
o | [0 -wy s

<—
T 2Ry =Ny
RI+R (N - Ny)? 2 1 s i %
=72 "2+ [ _p(o+1)+1] Z;(e - D@+ @) (16)

By specifying the parameters m =1,5s =1, 81 = 0,8, =1, p = 2, q = 2, in the double inequality (16), we derive the
following functions

1.8538
o+1

pi(o) = g f [(1= o)t + 7] e,

1 1.8538 [(20+1)]

(20+1)
20+3 |’

po(0) = % -

p2(0) = E c+1 | 20+3
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Figure 3: The 2D graph exhibiting the inequality (16) for 1 < ¢ < 2 is shown in Figure 3.

Table 2: The Table 2 illustrates the comparative results between the double inequality in Example 2.6.

Functions 1 1.2 1.4 1.6 1.8 2
po(o) -0.21797 | —-0.16863 | —0.12522 | —-0.08684 | —0.05273 | —0.02225
p1(0) 0.33333 | 032955 | 0.32843 | 0.32906 | 0.33083 | 0.33333
p2(0) 1.21797 1.16863 1.12522 1.08684 1.05273 1.02225

By specifying the parametersm =1,s =1,0 =1, g = 2, q = 2, we get the following functions

2 + NZ 1
L2 - 09269(N; - xl)z(g)z

1 N

< - -
SR-R) s, ¢

2 2 1
2

2dC

N2+ N
< 5 2 +0.9269(N, —Nl)Z(g)

W L1, x2)
H M(x1, x2)
W R, %2)

Figure 4: The 3D graph exhibiting the inequality (16) for 1 <N; < 5,6 <N, < 10 is shown in Figure 4.

Theorem 2.7. Suppose that Y : [0,8,] — R is a twice differentiable mapping. If the function || is integrable and
m-polynomial exponential type s-convex on [Ny, Xy] for some fixedq > 1,0 < 8y < Nyandm € N withs € [In2.4,1],
then the following inequality

'T(Nl) +T(N,) I'c+1)
2 B 2(&2 - Nl)”

[W;’;TY(NZ) + wggmq)]

L R Ny)? "
2(0+1)

- e r o)
i=1

holds.
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Proof. Utilizing Lemma 1.10 and Hoélder’s inequality, we attain

[‘rgfv(xz) + wggmcl)]

'Y(Nl) +Y(N)  T+1)
Y7 (R + (1= )Ny)| de.

2Ry = Ny)7
2 ol
< (N2 —N1) f
2 0

1-— (1 _ C)a+1 _ Cu+1
=82 (N[ b e}l e 1)
s—fldg) f(l—(l—g) -c )‘T(CN1+(1—C)N2)| dc
0 0

c+1
2(0+1)

By using the relation
(1 _ (1 _ g)a+1 _ gcﬂ—l)q <1- (1 _ g)q(a+1) _ gq(a+1)

forany ¢ € (0,1) and g > 1. Since )Y‘”) is m-polynomial exponential type s-convex on [N1, X,] and the facts
e < ¢® and e179) < ¢° are true for any 0 < ¢ < 1, therefore forany 0 < 0 < 1, we get

1
0

1

m m 1
x [% Y-yl s - Yt -1y |Y”<Nz>|q]

(N —Ny)?
2(c+1)

2
(_q(a+1)+l)
1y iy 1y, iy %
{E;M—DWmW+a;w—DWmW]

Ny —Ny)?
20 +1)

1 !
(1 q(a+1>+1)[aze-1> (" @+ X" )’ )J

i=1

Thus, we obtain the desired outcomes. [

Remark 2.8. The following result is a special case for exponential convex functions, corresponding to the choice of
parameters m = 1 and s = 1 in Theorem 2.7.

'Y(Nl) +YN)  T+1)

TR [‘I;;Y(Nz) + T“;Y(Nl)]

1

(N2 = Ny)? 2 PN NN &
<G |- g (ot frosa)| @)

Example 2.9. To verify the validity of the Theorem 2.7 through graphical representations, we make substitution
Y(c) = &3 to get the following integral values

SO Sy (VNS ES (18)
I'(0) ’
and
1 (®
W= [ (-8 e (19)

2 F(G)
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By utilizing the expressions (18) and (19) in Theorem 2.7, we achieve

1
m q

% Z(ES - 1)1 (1 - m) ((681)‘1 + (6&2)51)
i=1

N+RD (Ra—N)?
2 2(c +1)

N2
; _ ~\o-1 _ o-1] -3
< gy L [t mso]

< N?7Lt'<g_’_(3’<2—?'<1
=7 20 +1)

1 v g
Zze _1)( gl +1) +1)((6N1)q (%))

1=

(20)

By specifying the parameters m = 1,s =1, 81 = 0, Ny = 1, g = 2, in the graph of the double inequality (20), we
acquire the following functions

3.9325 (20 +1\?
P =5 -2 (s )

1
2 o+1 \20+3

pi(0) = g[[ o+ e,

1 3.9325 (20+ 1)2
2 c+1 \20+3

p2(0) =

— po(@
0.8

7@
0.7
—
06

0.5

0.3

0.2

Figure 5: The 2D graph exhibiting the inequality (20) for 10 < ¢ < 40 is shown in Figure 5.

Table 3: The Table 3 illustrates the comparative results between the double inequality in Example 2.9.

Functions 10 20 30 40 50
po(0) 0.15839 | 0.31715 | 0.37518 | 0.40525 | 0.42365
p1(o) 0.38636 | 0.43506 | 0.45464 | 0.46516 | 0.47172
p2(0) 0.84161 | 0.68286 | 0.62483 | 0.59476 | 0.57636

By specifying the parametersm =1,s =1, 0 = 1, g = 2, we get the following functions

NO+RT 38— Ny)? (
2 2
1 Xz
S —_—
(N2 —Ny)
A B Vi
- 2 2

1
1.03097(83 + 82))*
dc

1.03097(8% + 82))° .
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B L(x1, x2)
B M(xq, x2)
B R, x2)

Figure 6: The 3D graph exhibiting the inequality (20) for 6 < 8; <10, 11 < N, < 15 is shown in Figure 6.

In the upcoming theorem, we establish a new general form of Fejér-type inequality in the context of
m-polynomial exponential type s-convex function.

Theorem 2.10. Let the function Y : I = [Ny,8;] € R — R be m-polynomial exponential type s-convex with
m e N, s € [In2.4,1]. Then the inequality

_ o N> N>
(2 —e2)m Y(N1+?’<z)fN W(Cl)dQ—T(CZ)L w(C1)dly

(ez —1)(1 — (ez — 1)m) 2
N>
< fN Y@@
1 v« ) . IR oW .
< Z [T(Nl) (e ™™ —1)'w(C)dCr + Y(Ry) (™™ — 1)Zw(51)dC1]- (21)
mi= Ny Ny

is satisfied, where C1,Cy € 1, ¢ € [0, 1] and w is a non-negative, symmetric and integrable function.

Proof. Substituting ¢ = % into the Definition 1.5, we obtain

G+G\_ 1wy, : .y Ly i _ 1y
Y(T) < ;(e - )Y(@) +— ;(e - 1)V(C)
1o,
= Z“(eE = 1)'(Y(C1) + () -
i=1
Now we substitute {; = ¢ + (1 — )Ny, (& = ¢Ny + (1 — ¢)Ny, therefore
N N 1 m . .
Y( . 2) < a;(ez ~ D YR+ (L= Rp) + 1 (N + (1= N

Since w is non-negative, symmetric and integrable function, we have

Y(Nl ;“2)w<gxl =N
<@ oD@ 2D (R4 (1= ) (@ + (1= IN)
2-e2)m
AT (eRa + (1= N (S + (1= )] @)

Integrating the inequality (22) with respect to ¢ over [0, 1], we acquire

1
fo r(@)wm +(1— N de
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_ (=D € - 1)
(2—e2)m

1
" f T (R + (1= R w (N + (1 - c)xz)dg].
0

[f Y (N1 + (1 =0)R)w (N1 + (1 = ¢)Ny) de

It can also be write as

N1+ 8o N w(C1)
Y( > )Lz Nl—deC1

e - - -1 [ ™ W RRIESIIEY ]
= @2 —ed)m Ux o fx S

2 2

@ - D—( -1
N2
< fN Y(C)w(C)dC. (23)

_ % xz NZ
@—cijm Y(ng&) fN ()G - Y(C) f ()G
1 Ny

which is the left side of the inequality (21). Now for the right side of the inequality (21), substituting {; = N,
(> = 8, in Definition 1.5, we can write

m

TN+ (198 < ) e - TR+ ) -1/

i=1
Since w is symmetric and integrable function, we have
YRy + (1 =R w(eRy + (1 - )Ry)
1 m i A 1 m ) ‘
<— ;(ess DY wER + (1= R +— ;@50 = DY RJw(cRy + (1= ONy). (24)

Integrating the inequality (24) with respect to ¢ over [0, 1], we acquire
1
[ v+ a- s+ - osde
f Z(e“ DIYR)w(eR1 + (1 — c)N8a)dc + f Z(«f(1 9 — 1) Y (Rp)w(cNy + (1 — c)Ra)de.

Now we substitute {; = ¢N1 + (1 — ¢)N; to obtain

f*‘l Y(C1)w(Ch)
N

NN, o

2

-G N1 s(G-81)
< —m(Nl %) Z [T(N1) (e 5= ?"1 — 1)'w(C1)dC + Y(Ry) . (e ™™ N 1)ZW(C1)EZC1]

N
f Y(C)w(C1)dCy

Ny

N> s(8p—Cq) N2 (G =8q)
] (25)

%Z [T(Nﬂ (e ™™ N - 1)'w(31)dC; + Y(R,) €™ = 1)w(C1)dG

i= 8
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Which is the right side of the inequality (21). Ultimately, by combining the inequalities (23) and (25), we get

_ % Nz NZ
@ - e%)m Y(&**ﬁyﬁ w@oal—Y@ﬁl;zmqmg

@ —D-(@ -m | 2
N>
< fN Y(C)(C)E
<1Zm][v<x) Ry + 1) [ ) (C)dC]
<= e ™ —1)w + e ™ —1)w
mi= ! Nq v ’ Ny .

Hence the proof is done. [J

3. Applications

In this section, we establish a connection between the main results and bounds of the trapezoidal
type. In numerical computation, trapezoidal inequalities for various functions are helpful. By using
these inequalities bounds and constraints on the parameters of trapezoids are obtained. Trapezoid type
inequalities play a vital role for deeper understanding of trapezoids. They are extensively applicable in
the fields of optimization, physics and analytical geometry. They are helpful tools for solving a lot of
mathematical problems and related practical areas.

Proposition 3.1. From Theorem 2.1, we choosem = 1,s = 1,and 9 = 1, then the following trapezoid type inequality

YR)+X®) 1 (™
2 TR Jy, O
— 2 g
< BB e o + 1 s

holds.

Proposition 3.2. From Theorem 2.4, we choose m = 1,s = 1 and § = 1, then the following trapezoid type inequality

T(R1) + Y(N) 1 N
l > "M oRy Y(v)dv
o Mo =Ry (2p 1) 2 2 ;
o (Zp 1) [(e = 1) (" ®)I7 + X" ®)17)|

holds.

Proposition 3.3. From Theorem 2.7 withm = 1,5 =1, and 9 = 1, then the following trapezoid type inequality

Y(Ry) + T(Ry) 1 "
| 5 CEDD)) Yieydo
R )(nr o+ v oson)|

holds.
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4. Conclusions

In this presented work, we have discovered novel fractional integral inequalities via m-polynomial
exponential type s-convex functions. We employ the Holder’s inequality and power mean inequality to
arrive at our main goals. Both of these inequalities have remarkable usefulness for studying and analyzing
a variety of inequalities. These are major tools across the various fields of practical problems including
mathematical economics and data analysis. Moreover, m-polynomial exponential type s-convex functions
are used to provide new refinements of Hermite-Hadamard and Fejé Hermite-Hadamard inequalities
involving Riemann-Liouville fractional integrals which makes it more flexible for different studies. It has
wide applications in probability theory, functional analysis and finding of numerical bounds. The newly
established findings are presented by 2D and 3D graphs and corresponding tables by utilizing specific
functions which confirm our results. Hopefully, our novel results may encourage to study more advanced
concepts and development of further generalized inequalities.
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