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SEP elements in a ring with involution
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#School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, P.R.China

Abstract. In this paper, we provide many new characterizations of SEP elements in terms of exponentiation,
projection, and anti-Hermitian elements. Additionally, we investigate idempotent elements and one-sided
x—idempotence to characterize SEP elements. Finally, we discuss x-commutativity and one-sided x-equality
to characterize SEP elements.

1. Introduction

Throughout this article, Z* is the set of positive integers and R is an associative ring with identity 1. An
involution a = 4" in a ring R is an anti-isomorphism of degree 2, that is, for any a, b € R,

@) =a, (@a+b) =a”+b’, (ab)" = b'a’.

In this case, R is also called a *— ring.
An element e € R satisfying ¢? = e is called an idempotent element. The set of all idempotent elements
of R is denoted by E(R). If e € E(R) and ¢* = ¢, then e is a projection of R. The set of all projections of R is

denoted by PE(R). If a € R and a = aa*a, then 4 is said to be partial isometry (or PI) and we use R"! to denote
the set of all PI elements of R.

An element a € R is called group invertible if there is x € R which is the unique solution to equations:
axa = a, xax = x, ax = xa

such an x is determined group inverse of a [6, 7, 10], written x = a*. Denote by R* the set of all group
invertible element of R.

An element a € R is Moore-Penose invertible if there exists x € R satisfying the following equations:
axa = a, xax = x, (ax)" = ax, (xa)" = xa

such an x is called the Moore-Penose inverse (or MP-inverse) of a [8, 9], which is unique and denote by
x = a*. The set of all Moore-Penrose invertible elements of R will be denoted by R*.
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Leta € R* N R*. If a* = a*, then 4 is called an EP element. We denote the set of all EP elements in R by
REP . 1f a € REP N R, then 4 is said to be a strong EP element of R [2, 3, 8, 9, 13]. Let R°E” denote the set of
all SEP elements of R.

In recent years, many achievements have been made in the characterization of SEP elements. Mosi¢ and
Djordjevié characterized SEP elements in *—rings by some equivalent conditions in [2]. In [5, 11, 13], SEP
elements are characterized by equations. More results on SEP elements could be referred to [1, 3, 4].

Motivated by these results above, different methods are used in this paper to characterize SEP elements.
We use projection; x—idempotent; x—commutativity; x—equality and so on to characterize SEP elements.

2. Using the power to characterize SEP elements
Lemma 2.1. Leta € R* N\ R*. Then a € RSP if and only if (a*)?a* = a*a*a®.

PROOF. “ = ”Sincea € R°t?, 0" = a* = a*. Hence, (a*)?a* = a*a*a®.
“ &= " Assume that (a*)’a* = a*a*a®. Multiplying the equality on the right by 4, one gets a* = a*a*a.
Hence, a € RSP by [2, Theorem 1.5.3]. [

Theorem 2.2. Leta € R* N R*. Then a € RS if and only if (a*)?a™)k = (a*a*a®)t for k = 2, 3.

PROOF. “ = ”Itis an immediate result of Lemma 2.1.
“ =" Assume that ((a*)2a*)¥ = (a*a*a*)*, where k = 2, 3. Then

((ﬂ#)2ﬂ+)3 — (a*a+a#)3 — (a*a+a#)(a*a+a#)2 — (ﬂ*a+a#)((ﬂ#)2a+)2.

Multiplying the equality ((a%)%a*)® = (a*a*a*)((a*)?a*)? on the right by a®, one yields a* = a*a*a. Hence, by [2,
Theorem 1.5.3],a € R, O
Corollary 2.3. Leta € R* N R*. Then a € RSEY if and only if (a*)*a* = a*a*a”.

PROOFE. “ = ”Sincea € R°?, (a")2a* = a*a*a® by Lemma 2.1 and a* = a* = a*. Hence, (a*)?a* = a*a*a".

“ <= " Multiplying the equality (a*)?a" = a*a*a" on the right by (a*)*, one gets

(@")? =a'ata*a.
This gives
(@")? = aa(a*aTa"a) = ata(a®)? = aa’.

Hence, a € RE” by [2, Theorem 1.2.1]. It follows that

@ =aatata=aat =a'a".

By [2, Theorem 1.5.3],a € RSP, O
Theorem 2.4. Let a € R* N R*. Then a € RS? if and only if ((a*)?a*)* = (@*a*a*)f for k = 2, 3.
PROOF. “ = " Itis an immediate result of Corollary 2.3.
“ &= " From the assumption, we have
@aa’ = (@) = (@) (@) = @a'@a* a)’.
Multiplying the equality on the right by (a*)*, one gets

dataaataaat = @Naaataatat.

By [3, Lemma 2.11], one has a*a*a*a’a*a‘a* = (a*)?a’a*a*aa".
Multiplying the last equality on the right by (a*)*(a*)*, and then, by [3, Lemma 2.11], one yields

* 4k %

adataia = @ a'a.

This induces a*a*a* = a*a*a*a*(a*)* = (a*)?a*a*(a*)* = (a*)%a*.
By Corollary 2.3,a € REP. [J
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Theorem 2.5. Let a € R* N R*. Then a € R°” if and only if (a*a*a®)F*! = (a*a?a*)* for some k € Z*.

PROOF. “ = ” Assume that a € R°EP. Then (¢*)%a* = a*a*a” by Lemma 2.1. Noting that a € REP.
Then
aa’at =aata® = (@ata®)a® = (@")ata® = aa®.

This implies that for any k € Z*, we have
(a*a+a2)k+l — aa# — (a*a2a+)k.

“ &= ” Multiplying the equality (a*a*a?)""! = (a'a?a*)* on the right by a*a, one gets (a*aa*)* = (a*a?a*)a*a

for some k € Z*.
Multiplying the last equality on the left by (aa*)*a*(a*)*, one obtains

(a*a2a+)k—1 — (a*a2a+)k—1a+a.

Repeating the process mentioned above, one arrives at a*a?a* = a*a®a*a*a.

This gives
aat = a* (@ )y a'alat = a* (@t aalatata = aatata.

Hence, a € RE?, this induces (a*a)"*! = (a*a*a®)**! = (a*a®a*)* = (a*a)* for some k € Z*, and
(@a)f = a* (@) (@a)*! = a* (@) @a)f = (@a).
This deduces (a*a)> = a*a. Hence, a € R and soa € RSEP. [
Corollary 2.6. Leta € R* N R*. Then a € R°EY if and only if (a*a*a®)(a*aa*))* = (a*a*a®)(a*a*a™)(a’a*a?).

PROOF. “ = " Assume thata € R°F’. Then a € RE” and (a*a)* = a*a.
It follows that ((a*2)?)? = (a*a)?*(a*a)? = a*a(a*a)® = (a*a)’a"a.
Noting that a € REP. Then (a*a*a?)(a*a?a®) = (a*a)(a*a) = (a*a)?, one obtains
(@*a*a®)(a"a*a™))? = ((a*a)*)? = (a"a)*a"a = (@a*a®)(@'a’at)a*a = (@'a*a®) (@' aat)(@'ata®).
“ <= " Suppose that ((a*a*a®)(a*a’a®))* = (a*a*a®)(a"a*a™)(a*a*a?).
Then, multiplying the equality on the left by a*a*(a*)*a*(a*), one gets
at(@ata®)(a*a®at) = atatata’.
+ 42 %42 4+

By [3, Lemma 2.11], one obtains a*a*a?a*a’a™ = a*a*a?, and so

atala’ata* = (@) atatatata’at = (@) atata® = ata®.

# # a0t 2 %22 2

Hence, a = a*aa*a® = a*aa*a’aa®a* = aa*a*a™ = (aa*a®a*)aa* = a(aa*) = a*a*, one yields a € REP and
a = aa*a’a* = aa’a, it follows that a € RF!. Thus, a € RSEP. O

Corollary 2.7. Leta € R* N R*. Then a € RSEY if and only if (a*a*a®)(a*aa*))? = (a*aa*)(a*a*a®)?.
PROOF. “ = " Sincea € R°tF, g € REP and by Corollary 2.6,
(@*ata®) (@ a*a™))? = (a'a*a®) @ a*a™)(a'ata®).
Noting that a € REP. Then (a*a*a®)(a*aa*) = a*aa*a = (a*a*a™)(a*a*a?).
Hence, ((a*a*a®)(a*a’a*))? = (a*a’a*)(a*a*a?)>.
“ < " Multiplying the equality ((a*a*a®)(a*a*a™))? = (a*a*a™)(a*a*a*)? on the right by aa®, one gets

(a*a*a™)(a"a"a®)? = (a*a*a™)(a*a"a?)aa*.
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Multiplying the last equality on the left by a*a®(a*)*, one obtains

ataatdtaata® = atatatatatatalat.

By [3, Lemma 2.11], one has a*a*a’a*a*a® = a*a*a’a*a*a’a”.
Multiplying the equality mentioned above on the left by a*a(a*)*a*aa*(a*)*, one yields a = a®a*.
Hence, a € RE?, it follows a*a?a™ = a*a = a*a*a?, and

(@ata®) (@ a*a™))? = (@'a’a®)a"ata®)? = (a'a)® = (@'a*a®) @ a*a™)(a'a*a®).
By Corollary 2.6,a € RSEP. O
Similarly, we can show the following Corollary 2.8.

Corollary 2.8. Leta € R* N R*. Then a € RSEP if and only if (a*a*a®)(a*aa*))? = (a*a*a*)*(a*a*a?).

3. Using the projections to characterize SEP elements
Theorem 3.1. Leta € R* N\ R*. Then a € RSP if and only if a*a®a* is a projection.
PROOF. “ = ”Sincea € RSP, (¢*)2a* = a*a*a* by Lemma 2.1 and a” = a*. This gives
ad?at =a'ata® = @ataa® = @"2ata® = dfa = ata

Hence, a*a%a™ is a projection.

“ <= " Assume that a*a%a" is a projection. Then

a'a’at = (@alat)a'alat) = a'dlatata.

Multiplying the equality on the left by a*a*(a*)*, one gets a* = a*a‘a. Hence, a € R°EP by [2, Theorem
153]. O

It is well known that e € R is projection if and only if ¢ is projection. Noting that (a*a*a*)* = aa*a‘a.
Hence, Theorem 3.1 implies the following corollary.

Corollary 3.2. Leta € R* N R*. Then a € RSEY if and only if aa*a*a is a projection.
Lemma 3.3. Let e € R*. If e is a projection, then e* is projection.
Lemma 3.4. Let a € R* "\ R*. Then (aa*a*a)t = a*(a*)".

PROOF. ltis a routine verfication. [
By Corollary 3.2, Lemma 3.3 and Lemma 3.4, we have the following corollary.

Corollary 3.5. Leta € R* N\ R*. Then a € RSEY if and only if a*(a®)* is a projection.

Noting that a*(a*)* = a*(a*)aa*. Then we have a*(a*)aa™ = a*(a*)*aa* whenever a € REP. This implies
the following corollary.

Corollary 3.6. Leta € R* N\ R*. Then a € R°EY if and only if a*(a*)*aa™ is a projection.

PROOFE. “ = ” Assume that a € R°*". Then a*(a*)'aa® = a*(a")" is a projection by Corollary 3.5.
Noting that a € REP. Then a*(a*)*aa* = a*(a*)*aa™ is a projection.
“ < " From the condition, we have

a* (@ )aa* = a* (@ )aat (@ (@) aa™) = at (@) aaTat (a*)".

This gives
ata’at = a*(aYaat = a'aa (@) aa" = a*aat(a*) aatat(a7) = atataTat (@t
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and

at =atad®atatat = atadtatalatat (@t = atat (@t = atat (@) ad® = atad®.

Hence, a € RE, it follows a*(a*)" = a*(a*)" = a*(a*)'aa® = a*(a*)aa* is a projection. By Corollary 3.5,
aeREP. O

If a = a', then a is called a Hermitian element [2]. We generally write RF" to denote the set of all
Hermitian elements of R.The following lemma is evident.

Lemma 3.7. Let a,b € RH". If ab is projection. Then ab = ba.

PROOF. Sincea,b € R, g* = q,b* = b. Then (ab)* = b*a* = ba. Assume that ab is projection. Then
(ab)* = ab. Hence,ab = ba. O
By Corollary 3.6 and Lemma 3.7, we get the following corollary.

Corollary 3.8. Leta € R* N\ R*. Then a € R°EP if and only if aa*a* (a*)" is a projection.

Noting that (aa*a*(a*)*)* = aa*a*a(aa*)'aa®. Then Corollary 3.8 and Lemma 3.3 induce the following
theorem.

Theorem 3.9. Let a € R* N R*. Then a € RS if and only if aa*a*a(aa*)*aa® is a projection.
Lemma 3.10. Let x,y € R are projections. If yxy =y, then xyx is projection.
PROOEF. Since x, y are projections,
x=x"=x,y=y"=y".
Clearly,
(xyx)? = xyx?yx = xyxyx = x(yxy)x = xyx;
(xyx)" = x"y*x" = xyx.

Hence xyx is projection. []
In Theorem 3.9, choose x = a*a, y = aa*a‘a(aa®)*aa*. Then xyx = a*a(aa*)aa®. If a € REY, then xyx =
a*a(aa®)* and yxy = y*. Hence, Theorem 3.9 implies.

Theorem 3.11. Leta € R* N R*. Then a € RSE if and only if a*a(aa®)* is a projection.

PROOF. “ = " Sincea € R°tF, a € REP and aa*a*a(aa*)'aa® = y is a projection by Theorem 3.9. Noting
that x = a*a is a projection and yxy = y* = y. By Lemma 3.10, xyx is a projection. Clearly,

xXyx = a‘a(aa®) aa® = a*a(aa®) aa™ = a*a(aa®)".

Hence, a*a(aa®)* is a projection.
“ &= " Using the assumption, one gets

a'a(aa®) = (a*a(aa®)Y'a*a(aa®y = aa*a*aa*a(aa®)".

# #

This gives a* = a*aa™ = a*a(aa®)'a* = aa*a*aa*a(aa®)a* = aa*a*aa*, and
at =a' @) at = ad*aaa (a)'a" = aa*a".

Hence, a € RSP by [2, Theorem 1.5.3]. [
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4. Using anti-Hermitians to characterize SEP elements

An element a € R is called weakly projection if a* = —a2. Denote the set of all weakly projections of R by
R"P. Theorem 3.11 inspires us to give the following theorem.

Theorem 4.1. Leta € R* N R*. Then a € R°” if and only if a*a — (aa®)* € RVP.

PROOFE. “ = ” Assume that a € RS, Then a*a = aa" by [2, Theorem 1.5.3] and aa* = (aa®)* by [2,
Theorem 1.1.3]. Hence, a*a — (aa*)* = 0 € R"P.

g

“ <= " The condition “a*a — (aa*)* € R"?” gives
a'a—aa" = (@'a — (aa")) = —(a*a — (aa")")? = —(a"a)* + a*a(aa®)* + a*a — (aa®)".
ie.,
aa® = (a*a)? — a*a(aa®)" + (aa®)". (1)
Multiplying (4.1) on the left by a*a, one gets aa* = a*a. Hence, a € RE?, it follows from (4.1) that
(a*a)* = a'a.

Hence, a € R” by [12, Theorem 3.1]. Thus, a € REP. [
Clearly, a € R"? if and only if a* € R"?, then Theorem 4.1 implies
Corollary 4.2. Leta € R* N R*. Then a € R°EY ifand only if a*a — aa* € RVP.

It is well known that if 2 € R*, then a € R implies a*a = a*(a*)*. Hence Corollary 4.2 implies the
following corollary.

Corollary 4.3. Leta € R* N R*. Then a € RSP if and only if a*(a*)* — aa® € R,

PROOFE. “ = ”Itis an immediate result of Corollary 4.2.
” &= ” With the hypothesis, one gets

(a* (@) —aa®) = —(a*(a*) — aa®)>.
e.g.
at(@h) = (aa") = —at @ ) aT(@*) +a* @) +a* (@) - ad®,
it follows that
(aa")" = a*(a*)'a(@*) —a*(a") + aa®. @)

Multiplying (4.2) on the right by aa”, one arrives at (aa")* = (aa*)'aa*. By [2, Theorem 1.1.3], a € RE?, it
follows from (4.2) that
at(@tyat(at) =a*@at).
This gives (a)* = aa*(a*)* = aa*(a*)'a*(a*)* = (a*)*a*(a*)". Therefore
ata=a'(@*) =a'@)at (@) =a* (@),
and
a'=ataa’ =a*(@*)a =a*.

Hence, a € RSEP. O
Clearly, if a € R* N R", then a € RE? if and only if a*(a*)* = a*(a*)*. Hence, from Corollary 4.3, we have.

Theorem 4.4. Let a € R* N R*. Then a € RS if and only if a*(a*)* — aa® € R"P.
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PROOF. “ = ” This is a direct result of Corollary 4.3.
“ &= " Using the assumption, one yields

(a#(a#)* _ aa#)* — _(a#(a#)* _ ﬂﬂ#)2-

that is,
—(aa®y" = —a*(a")'a* (a")" + a* (a") aa" — aa®.

Multiplying the equality on the left by a*a, one gets (aa*)* = aa*(aa*)". Hence, a € RE? by [2, Theorem 1.13].
By Corollary 4.3, it follows that

at(a*) —aa® = a*(@*) — aa® € R"P.
Hence, a € RSP, O
Theorem 4.5. Let a € R* N R*. Then a € R°” if and only if a*a*a® — aa* € R.

PROOF. “ = ”Sincea € RS, a*a*a? = a*a and By Corollary 4.2, we yield a*a*a*—aa* = a*a—aa* € R".
“ &= " It follows from a*a*a® — aa* € R that

aata® — (ad®) = @'ata® — aa®) = —(a'ata® — aa®)?
= —a'ata’aata® + a'ata® + aa’atata® — aa®.
e.g.,
(aa")" = a*ata*a*a*a® — aa*a*a*a® + aa® 3)

Multiplying (4.3) on the right by aa*, one has
(aa™)* = (aa")*aa®.

Hence, a € RE?, this induces
a'a—aa® = a‘ata® — aa® € RMP.

By Corollary 4.2,a € RSEP. [

5. Using idempotents to characterize SEP elements

Observing Theorem 4.5, we can get the following theorem.
Theorem 5.1. Let a € R* N R*. Then a € RSP if and only if aa* — a*a®a* € E(R).

PROOF. “ = ” Assume thata € R°F’. Then a*a®a* = a*a’a* = aa*. Hence aa* — a*a’a* = 0 € E(R).
“ =" From aa" — a*a’a* € E(R), one gets

# % 2 _+

aa® — a'a’at = (aa® — a*a®a®)? = aa® — aa®aa’at — aa + (a*ata™)?.

ie.,
a'a’at = ad*a’alat + a'a — (a"aPa™)>.

Multiplying the last equality on the right by aa*a*, one obtains

ad'a* = a*alata’.

This gives
ad* = aa*ata = aad*a*(a) = a*atata (a) = a*atatata,
and

2 4 + * 2 4+ _+

ata = a*a(aa®) = ata(a*a*aata) = a'a*atata = aa®.

Hence, a € RE?, this induces

#

aa® = a*a?

atata=a"a.
Thus, a € RSP, O
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Corollary 5.2. Leta € R* N\ R*. Then a € R°EY if and only if aa* — a*a*a™ € E(R).

PROOF. “ =" Assume thata € RS’ Then a* = a* and aa* — a*a®a* € E(R) by Theorem 5.1, it follows
that aa* — a*a?a* € E(R).
“ <= " The condition aa* — a*a’a* € E(R) implies

2 *2+)2:aa+ + o+ 2 4+ * 2 _+ (*2+)2

aa*t —a‘a“a® = (aa* - a*a*a —aata‘atat —a'a“a + (a'aa
ie.,
aata‘aat = (a'a’at)?

Multiplying the last equality on the right by a*aa*(a*)*a, one gets

a=aa.
By [2, Theorem 1.5.3],a € REP. [
Since e € E(R) if and only if ¢* € E(R), Corollary 5.2 leads to the following result.

Corollary 5.3. Leta € R* N R*. Then a € R°EP if and only if aa* — aa*a*a € E(R).
Noting that a € R°” if and only if a* € R°EP. Then instead a by a* in Corollary 5.3, we have

Corollary 5.4. Leta € R* N R*. Then a € RSP if and only if a*a — a*a’a* € E(R).

6. Using one-sided x—idempotency to characterize SEP elements

Leta, x € R. Then a is called left (right) x—idempotent if 2> = xa (4> = ax).

Example 6.1. Let R be a ring and a € R. Then
(1) a is left and right a—idempotent.
(2) The following conditions are equivalent:
(a) a is idempotent;
(b) a is left 1—idempotent;
(c) a is right 1-idempotent;
(d) a is left 2a — 1-idempotent;
(e) a is right 2a — 1-idempotent.
(3) The following conditions are equivalent:
(a)a® = 1;
(b) 1 — a is left 2-idempotent;
(c) 1 — a is right 2-idempotent;
(d) 1 + a is left 2-idempotent;
(e) 1+ a is right 2-idempotent.
(4) a is nilpotent if and only if a is left a* + a-idempotent for some k € Z*.

Theorem 6.2. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEF;
(2) (a")?a* is left a*a*a®-idempotent;
(3) (a")?a* is right a*a*a*-idempotent.

PROOF. (1) =>(2) The assumption of a € R°E” implies (a*)?a™ = a*a*a* by Lemma 2.1. Hence, (a*)%a*
is left a*a*a*-idempotent.
(2) =(3) From the hypothesis, one gets

((ﬂ#)2ﬂ+)2 — ax-a+a#(a#)2a+'
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This gives
El# — (ﬂ#)261+612 — (ﬂ#)2ﬂ+(ﬁl#)2{l+ﬂ5 — a*a+a#(a#)2a+a5 - El*ﬁl+ﬂ-
By [2, Theorem 1.5.3],a € REP and
((@*Ya*)a'a*a®) = ((@*)’a*)(a"a*a)(a®)* = ((a*)’a*)a*(@")? = ((@*)a*)((@")a™).
Hence, (a*)?a* is right a*a*a*-idempotent.
(3) =(1) By the condition, we have ((a*)?a*)? = ((a*)?a*)(a*a*a"), and

ﬂ+(ﬂ#)zﬂ+ — a+a3(a#)2a+ (ﬂ#)zﬁl+ — a+a3((a#)2a+)(a*a+a#)

So,
aat = a*at(@*)a" = a*a* (a")? = aa®.
Hence, a € RE?, it follows that

a' =aaa" = a(ata*ata®)a? = a(at(a*)’a)a® = a”.

Thus, a € RSP, O

Lemma 6.3. Leta, x € R. If ais left x idempotent, then
(1) xa is right a*~idempotent.
(2) ax is left a>-idempotent.

PROOF. Since a is left x idempotent, a*> = xa. Then
(1) (xa)* = (xa)(xa) = (xa)a>. Hence, xa is right a>-idempotent.
(2) (ax)* = (ax)(ax) = a(xa)x = aa*x = a*(ax). Hence, ax is left a>-idempotent. [J

Theorem 6.4. Let a € R* N R™. Then the following conditions are equivalent:
(1) a € RSEP;
(2) a*a*(a*)%a* is right (a*)*a® (a*)*a"-idempotent;
(3) a*a*(a*)* is right (a*)?a* (a*)?a*-idempotent.

PROOF. (1) = (2) Assume thata € R, Then (a*)?a* is left a*a*a*-idempotent by Theorem 6.2. From
Lemma 6.3, we have (a*a*a®)((a*)%a") is right ((a*)*a™)?-idempotent. Noting that a* = a*. Then a*a*(a*)%a* is
right (a*)?a*(a*)?a*-idempotent.

(2) = (3) From the assumption, we have

(@at@Yat)? = (@'a* (@a) (@)t (@) a?).
Multiplying the equality on the right by a*a, we get
(@a*(@)’a*)? = @a* (@")a*)ata.
Multiplying the last equality on the left by a*a®(a*)*, we obtain
ataat(@)’at = atatat(@*)’atata.

By [3, Lemma 2.10], we yield
aat(@*)’at = a'a* (a*)atata.
Hence,
at = @ @) @at(@)’a) = (ata®(@*))a'at (a")atata) = atata,
it follows that a € R¥” and so a* = a*.
Thus, by (2), we have a*a*(a*)* is right (a*)?a™ (a*)?a* -idempotent.
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(3) = (1) Using the hypothesis, we have

@a* (@Y = (@'a* @)H(@)2at @)2ah).

Multiplying the last equality on the left by a*(a*)", we obtain
datat @)t = @)’at @)t = (@)a*.
This gives
@ha* = ata'a* @ = (@aat @Had" = (@")a*aa® = @)

Hence, a € REP by [2, Theorem 1.2.2], which implies

dta @) = dtaat @) = @at = @,
It follows that

a=a@)a =a@a(a")’a’) = a’a®.

Hence, a € RSP by [2, Theorem 1.5.3]. [

Theorem 6.5. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEP;
(2) a*a*a® — (a*)?a* is right a*a*a*-idempotent;
(3) a*ata® — (a*)?a” is left a*a*a*-idempotent.

PROOE. (1) = (2) Sincea € R5F, (a*)%a* is left a*a*a*-idempotent by Theorem 6.2, that is ((a*)%a*)? =
(a*a*a®)((@")?a"), it follows that

[ﬂ*ﬂ"—a# _ (ﬂ#)2ﬂ+]2 — (a*a+a#)2 _ (a*a+a#)((a#)2a+) _ ((a#)2a+)(a*a+a#) + ((ﬂ#)zﬁl+)2
— (aaea+a#)2 _ ((a#)2a+)(ax-a+a#) — (ﬂ*lf—ﬂ# _ (a#)2a+)(a*a+a#)'

Hence, a‘a*a® — (a*)%a™ is right a*a*a*-idempotent.
(2) = (3) From the assumption, we have

(@ata® — (a")?a*)? = (a'a*a® — (@")at) (@ ata®).
By computing, we obtain
((a#)2a+)2 — (ﬂ*ﬂ+a#)((ﬂ#)2ﬂ+).
By Theorem 6.2, a € R°EP. Again, by Theorem 6.2, (a*)?a* is right a*a*a*-idempotent. Then it is easy to show
that a*a*a® — (a*)%a" is left a*a*a*-idempotent.
(3) = (1) From (3), we have
(ﬁl*lf—ﬂ# _ (ﬂ#)261+)2 — (a*a+a#)(a*a+a# _ (a#)2a+).
This induces
((a"?a"))? = (a*)’a*)(a'a*a").

By Theorem 6.2, 4 € R°EP. [
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7. Using x—commutativity to characterize SEP elements

Let R be aring and a,b, x € R. Then 4, b are called x—commutativity if xa = bx.

Clearly, (1) a, b are always 0—commutativity for any a,b € R;

(2) a,a are a—commutativity for eacha € R;

(3) e € E(R) if and only if e, 1 are e—commutativity;

(4) e € E(R) if and only if e, 2¢ — 1 are e—commutativity;

(5) a € N(R) if and only if xa, a* + ax are a—commutativity for any x € R and some k € Z*;
(6) a is left b—idempotent if and only if a, b are a—commutativity;

(7) a is right b—idempotent if and only if b, a are a—commutativity.

Theorem 7.1. Let a € R* N R™. Then the following conditions are equivalent:
(1) a € RSEF;
(2) (a")?a*, a*a*a® are a—commutativity;
(3) (a")?a*, a*a*a® are a*—commutativity.

PROOE. (1) = (2) Since a € R°?, (a*)2a* = a'a*a® by Lemma 2.1. Noting that a € RE’. Then
a((a*)?a*) = ((a*)*a™)a. Hence (a*)?a*, a*a*a® are a—commutativity.
(2) = (3) From (2), one gets
a#((a#)2a+) — a#a#(a(a#)zaJr) — a#a#(a*aJra#a)
=d*d*(@ata®a®)a® = a*a? (a(a*)2aaad® = o (") aTad® = (a*)

and (a*a*a*)a* = (a*ata*)aa*a® = a(a*)?a*ata® = (a*)*.
Hence (a*)%a*, a*a*a* are a*-commutativity.
(3) = (1) Using the equality, one gets

a*((@*)?a") = (@ata®)a® = (@ata*a®)ata = (a*)’atata.
This gives
aat = a*(@")’a" = a*(a")atata = aataa.

Hence, a € RE?, it follows that
a=@ata® = (@atd®a®)a’® = a'a?.

Thus, a € R°E? by [2, Theorem 1.5.3]. [
Lemma 7.2. Leta,b,c € Rand b, c are a—commutativity. Then b, c are ab—commutativity.

PROOEF. Since b, c are a—commutativity, ab = ca. This implies (ab)b = (ca)b = c(ab). Hence, b, c are
ab—commutativity. [

Corollary 7.3. Leta € R* N R*. Then a € RSP if and only if (a*)*a*, a*a*a® are a*a* —commutativity.

PROOF. " = ” Assume thata € RtF. Then (a*)?a*, a*a*a* are a—commutativity by Theorem 7.1. By
Lemma 7.2, one gets (a*)%a*, a*a*a” are a*a* —commutativity.
” &= " From the assumption, we have

(a*a")@a"?at = a*ata® (aa").

It follows that
a* =a*ata = a'at (@")atat) = a'ata’ (aPa)at = aaa.
Hence, a € RSP by [2, Theorem 1.5.3]. [

Lemma 7.4. Let x,y,z € Rand y, z are x—commutativity. Then xz, xy are z—commutativity.
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PROOE. Since y, z are x—commutativity, xy = zx. One gets z(xz) = (zx)z = (xy)z. Hence, xz, xy are
z—commutativity. [J

Corollary 7.5. Let a € R* N R*. Then a € R°EP if and only if aa*a*a®, a*a* are a*a*a®—commutativity.

PROOF. 7 = ” Assume that a € RE’. Then (a*)%a*, a'a*a* are a—commutativity by Theorem

7.1. By Lemma 7.4, one gets a(a‘a*a®), a((a")?a*) are a*a*a*—commutativity, that is, aa*a*a®, a*a* are

a‘a*a®—commutativity.

” &= " Using the assumption, we get
(@*ata®)aa*a*a®) = (a*at)(@*ata®).
Multiplying the equality on the right by a%a*, we have

a'atatanta® = d*atatat.

By [3, Lemma 2.10], we obtain

# #

a‘ata’aa = a"ata’,

and
aatata = a'atataa* @ty = afatat @ty = afatata
Multiplying the last equality on the left by a*a, we yield

atatata = atadtatata,

and

#

datat = at # o+ + + o H# o+ o+

atataat =atad"atataat = ataa"atat.

Again, by [3, Lemma 2.10], we have
a*at = ataa*a*.

It follows that

a=data

Hence, a € REP by [2, Theorem 1.2.1]. Now we have

3 #_+ 3 2

=ataad"ata’ = ata”.

a' = @a*a*a)a = (@*ata*a)a = a*.
Thus, a € RSEP. O
Theorem 7.6. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEP;

(2) a*a*a®, (a*)?a* are at —commutativity;
(3) a*a*ta®, (a*)?a* are (a*)*—commutativity.

Proof. (1) => (2) Assume that a € R°EP. Then (a*)%a*, a*a*a” are a*—commutativity by Theorem 7.1 and
(a")?a* = a*a*a* by Lemma 2.1. Noting that a* = a*. Hence, a*a*a”, (a*)%a* are a* —commutativity.
(2) = (3) From the assumption, one gets
atarata® = (@*atat = (@) ataN)aat = ataatataat.

By [3, Lemma 2.10], one yields a*a*a* = a*a*a*aa*, so

a* = aa*a® = a(@a®) (a*a"a") = a(a") (a*aTa"aa™) = a*aa”.
Hence, a € R, this induces a*a*a*a* = ataata® = (a*)?ata* = (@*)* and a* = aa
a(a*)*a* = a*. Hence,

*aata = a(a*a'a®a®)a® =

(a#)*(a*ﬂ-'—ﬂ#) — u(a*a+u#) — {Illl#ll+ll# — ﬂ#ﬂ# — (Cl#)zﬂ+ﬂ — (ﬂ#)zﬂ*—(ﬂ#)*.
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(3) = (1) According to the hypothesis, one obtains (a*)*(a*a*a*) = (a*)*a* (a*)",

e.g.,
a+a# — (a#)2a+(a#)x—'

and
a=a’ata® = a®(@*)?a* (a") = aat (a*).

So, a* = a*aa*. Hence, a € RSP by [2, Theorem 1.5.3].

Theorem 7.7. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEF;
(2) (a*)*a®,a*a*a® are a*—commutativity;
(3) ata*a®, (a*)?a* are (a*) —commutativity.

PROOF. (1) = (2) Suppose thata € RSEP Then, by Theorem 7.1, (a*)?a*, a*a*a* are a*—commutativity.
Noting that a* = a* = a*. Hence, (a*)*a*,a*a*a" are a*—commutativity.
(2) = (3) Using the hypothesis, one gets a*(a*)?a* = a*a*a*a*, this gives

(a+)2 # — (ﬂ#)*a*(a+)2 # — (a#)*a*a+a#a* — a+a#a* — a*a#a*af — (a*)za#af.

*aa*, and a = a®ata® = aPatataat = a%a*. Hence, a € RE?, this leads to

By [3, Lemma 2.10], one has a*a” = a*a
(a)*a*(a") = ata’a*(a") = atata*(a") = atat = (@*)Vaatat = (@) aata’.

Hence, a‘a*a*, (a*)%a* are (a*)'—commutativity.
(3) = (1) With the assumption, one gets

ata® = (@"yaata® = ()" (@") = ((a7)*a (@*))aat = ataaat.
Hence, a € REP by (2) = (3), it follows that
a=aatd® = (@) @") = aPatadt(at) = (at)

This induces a € RL. Thus,a € RSEF. O

8. Using one-sided x—equality to characterize SEP elements

Letx, y, z € R. Then y, z are called left (right) x—equality if xy = xz (yx = zx).
Clearly, (1) y is right z—idempotent if and only if y, z are left y—equality;

(2) e € Ris idempotent if and only if ¢, 1 are left e—equality;

(3) e € Ris idempotent if and only if e, 2¢ — 1 are left e—equality.

Theorem 8.1. Let a € R* N R*. Then a € R if and only if (a*)*a*, a*a*a® are left x—equality for some
X € Xa=1a, d", a*, @, @), (@)}

PROOF. " = ”Sincea € R5?, (a*)2a* = a*a*a® by Lemma 2.1.
Hence, (a*)?a*, a*a*a® are left x—equality for any x € x,.
” &= " If there exists some x € x,, such that (a*)%a*, a*a*a" are left x—equality. Then
xo(@)2at = xoa*a*a® = (xoa*ata®)ata = xo(a*)2ata"a.
Noting that if xo € 7, = {a, a*, (a*)*}, then x¥xo = aa*. It follows that
@"?a* = a*a@*a* = xixo(a*)a* = xxo(a*)?atata = a*a(a*)atata = (@) 2a*ata,

this gives aa* = a®(a*)?a* = a®(a*)?a*a*a = aa*a*a. Hence, a € REP.
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Also, if xg € y, = {a*, a*, (a*)"}, then x¥xo = (aa*)*. Hence,
(aa*y(a*)2a* = xhxo(a*)?a* = xixo(a*)?atata = (ad*) (a*)’a*a*a,
and
aat = a*at(a")?a" = a*at (aa®) (a*)?a" = a*at (aa®) (0" ?aTaTa = aatata.

Hence, a € REP.
In any casewe havea € REP and xgxo = aa” for x € x,. Thus, we have

@?a* = (aa*)(@*)2a* = (xixo)(a*)’a* = xixoa'ata® = aa*a*ata® = a'ata®.

By Lemma2.1,a € RSEP. O

Theorem 8.2. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEP;
(2) (@*)?a*, a*a*a® are left (a*)?a* —equality;
(3) (a")?a*, a*a*a® are left a*a*a®—equality.

PROOE. (1) = (2) It follows from a € R°F” and Lemma 2.1 that (a*)?a* = a*a*a*. Hence, (a*)%a*, a*a*a*
are left (a*)%a* —equality.
(2) = (3) From the assumption, one gets (a*)?a* is right a*a*a*-idempotent. By Theorem 6.2, a € R°?,
it follows from Lemma 2.1 that (a*)%a™ = a*a*a” and so (a*)?a*, a*a*a* are left a*a*a*—equality.
(3) = (1) From the hypothesis, we have
(a'a*a®)@")?at = (@a*a*)? = (@'ata®)?ata = (@atd®) (@) atata.
Multiplying the equality on the left by a°(a*)*, one has
aa* = aa*a*a.
Hence, a € REP, this gives
a*(a#)5 — (a*a+a#)(a#)2a+ — (a*u+a#)2 — (u*a#a#)Z'
Multiplying the last equality by a*(a*)* on the left, one gets
(LZ#)3 — ﬂ*(ﬂ#)z.
It follows that
a= (a#)3a4 — u*(a#)2a4 — a*az'
Thus, a € R°? by [2, Theorem 1.5.3]. [

Theorem 8.3. Let a € R* N R*. Then the following conditions are equivalent:
(1) a € RSEF;
(2) (a*)?a*a*, ata*a*a® are left a*-equality;
(3) (a*)?a*a*, ata*ata® are right a*-equality.
PROOF. (1) = (2) Sincea € R°EP, a* = g% = a7, this gives

ataata® = a*aata = (a")atat.

Hence, (a*)?a*a*, a*a*a*a® are left a*-equality.
(2) = (3) Using the assumption, one gets
at(@atat = atatataa® = @TatatataPNata = at (@) atatata

atat = ataatat = atatat (0" atat = atatat (@*)aTaTata = atatata.
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By [3, Lemma 2.11], a* = a*a*a. Hence, a € RE?, it follows that
@ = a*(@"Vatat = atataata’ = (@)a (@)}
a=a*@"’a® = i(@*)a* (a")?a® = aa’a.

Thus, a € RE?, which implies (a*)?a*a* = a*a*a*a®. Therefore, (a*)?a*a*, a*a’a*a® are right a*-equality.
(3) = (1) With the assumption, one has

(@?atatat = atatatatat = ata(atatatata™) = ata((@*)atatat) = atatatatat.
By [3, Lemmma 2.11], one gets (a*)%a* = a*a*a*, and

#)2{1+{14 + # 4+ 4 _ 4+ 2

a=(a =a'a'ata® =a‘a".

Hence, a € REP and so

+ ok o+ H# o+

@")° = (@"?atatat = atatatatat = a'a (")

and
a = a?(a")°a* = a*a*a* (a")3a* = aa'a.

Thus, a € RS, O
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