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On the monoid of all order-decreasing partial transformations
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YSchool of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China

Abstract. A partial transformation « on an n-element set n = {1,...,n} is called order-decreasing if xa < x
for all x € dom(a). The set of all partial order-decreasing transformations on n forms a monoid PD,.
In this paper, we determine the maximal subsemigroups as well as the maximal idempotent generated
subsemigroups of PD,. Furthermore, we investigate the abundance of the ideals of PD,, and characterize
the structure of the left (right) abundant principal ideal of PD,.

1. Introduction and preliminaries

Fix a positive integer nn. We write n for the finite set {1, ..., n}. We denote by 7, the monoid of all partial
transformations of n and by 7, the monoid of all full transformations of n. We say that a transformation
a € PT, is order-preserving [order-reversing] if x < y implies xa < ya [xa > ya], for all x, ¥ € dom(a), and a
is decreasing [increasing or extensive] if xa < x [xa > x], for all x € dom(a). Denote by O, the monoid of all
order-preserving full transformations, by 0, the monoid of all order-preserving partial transformations
and by POE,, the of all order-preserving and extensive partial transformations. We also denote by D, the
monoid of all order-decreasing full transformations and 9, the monoid of all order-decreasing partial
transformations.

Let ¢ = (c1,¢c2,...,¢t) be a sequence of f (t > 0) elements from the set n. We say that ¢ is cyclic if there
exists no more than one index i € {1,...,t} such that ¢; > c¢j;1, where c;;1 denotes ¢;. Let a € P7,, and
suppose that dom(a) = {ay,...,a:}, with t > 0 and a1 < --- < 4;. We say that «a is orientation-preserving if
the sequence of its image (21, . .., a;) is cyclic. We denote by POP,, the submonoid of PT,, of all partial
orientation-preserving transformations and by OP,, the submonoid POP,, N T, of PT ,, of all full orientation-
preserving transformations. We also denote by OPE&,, the monoid of orientation-preserving and extensive
full transformations and by POPE, of all orientation-preserving and extensive partial transformations.

Algebraic, combinatorial, and rank properties of various kinds of transformation semigroups have been
studied over a long period and many interesting results have emerged. In particular, Dimitrova and Koppitz
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[1] (2008) characterized the maximal subsemigroups of the ideals of O, as well as of the ideals of 0D, the
monoid of all order-preserving or order-reversing full transformations. Further, Dimitrova and Koppitz
[2] (2011) classified the maximal regular subsemigroups of the ideals of O,. Dimitrova, Fernandes and
Koppitz [4] (2011) characterized completely the maximal subsemigroups of the ideals of OP,. Dimitrova
and Koppitz [3] (2012) described the maximal subsemigroups as well as the maximal idempotent generated
subsemigroups of POE,. Zhao et al.[14] (2022) completely determined the maximal subsemigroups as
well as the maximal idempotent generated subsemigroups of the ideals of the monoid POE,. Li, Zhang
and Luo [9] (2022) characterized the maximal subsemigroups as well as the maximal idempotent generated
subsemigroups of the monoid OPE,.. Recently, Zhao and Hu [15] (2023) completely determined the maximal
subsemigroups as well as the maximal idempotent generated subsemigroups of the monoid POPE,,.

In 1986, Pin [10] proved that a finite monoid is R-trivial if and only if it can be embedded in D, for some
n. In 1992, Umar [11] showed that both the rank and the idempotent rank of the singular subsemigroup of
D, of all singular order-decreasing full transformations are equal to @ In 2004, Laradji and Umar [8]
studied algebraic, combinatorial and rank properties of certain Rees quotient semigroups of D,. Yagci [13]
(2023) investigated the maximum nilpotent subsemigroup of D, and determined the minimum generating
set as well as the cardinality of the maximum nilpotent subsemigroup of D,. Recently, Zhao and Hu [16]
characterized the maximal subsemigroups as well as the maximal idempotent generated subsemigroups of
the monoid D,,.

Regarding the monoid $£9D,, Umar [12] studied combinatorial and rank properties of certain Rees
quotient semigroups of PD,,. They showed that the ideals PD,, = {a € PD, : |im(a)| <1} (1 <7 < n)
of PD, are abundant (see [12, Corollary 2.4.3 and Theorem 2.2.5]). However, the results about algebraic
properties of the monoid PP, are very few. The main aim of this paper is to study the monoid D,. We
notice that each ideal of £, is not always the form D, ,, for 1 < r < n, and PD, is the principal ideal
PD,1,PD, generated by 1, (the identity transformation on n). In this paper, we determine the maximal
subsemigroups as well as the maximal idempotent generated subsemigroups of PO, in Sect.2. In Sect.3,
we characterize the abundance of the ideals of P9D,. Moreover, we characterize the structure of the left
(right) abundant principal ideal of PD,,.

Given a subset A of a semigroup S and u € S, we denote by E(A) the set of idempotents of S belonging
to A and by L} and R; the #-class and %-class of u, respectively. For general background on Semigroup
Theory, we refer the reader to Howie’s book [6].

We denote by 0, the empty transformation on n. Let a € P7 ,\{On}, we will write

( Ay - Ay )

a =

al e am

to indicate that dom(a) = A; U --- U Ay, im(a) = {a1,...,4,) and Aja = a; for each i € {1,...,m} (the symbol

”l” denotes disjoint union). Usually this notation will imply that ay,--- ,a,, are distinct, but occasionally
this will not be the case, and we will always specify this. As usual, we denote the kernel of a € PT ,\{On} by

ker(a) = {(x, y) € dom(a) X dom(a) : xa = ya}.

We will sometimes write ker(a) = (A1]. . .|Ay) to indicate that ker(a) has equivalence classes Aj, ..., Ay, and
this notation will always imply that A; are pairwise disjoint and non-empty.

Let o € PD, with |im(a)| = r > 2. Then a can be expressed as

Ay
as

wherea; < --- <a,and a; < min A;, for 1 <i < r. Notice thatif 1 € A, thena; = 1. Notice thatif o« € E(PD,),
then a; = minA;for1 <i<r.
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2. Maximal (idempotent generated) subsemigroups of PO,

We shall say that a proper subsemigroup S of PD, is maximal subsemigroup (idempotent generated
subsemigroups) if any subsemigroup (idempotent generated subsemigroups) of PP, properly containing
Smustbe PPD,. In this section, we describe all maximal subsemigroups and maximal idempotent generated
subsemigroups of PD,,. For 1 <r <n, put

I ={a e PD, :|lim(a) =1}, E,=E(,) and D,, ={a € D, : |im(a)| < 1}.

Then the sets PD,, and D,,, are the two-sided ideals of PO, and D,, respectively. Clearly, PD,,, =
JoU J1 U---U ], where ]y consists of the empty transformation O,,.

Lemma2.1. Let0 <m <n—2. Then E;; C{E;11).

Proof. Let ¢ € E,, be arbitrary. To prove that ¢ € (E,..1), we distinguish two cases:

SHEEE!

Then n, & € Ej and € = né. Thus € = 1€ € (Ey).

Case 1. m = 0. Clearly, ¢ = O,. Put

Case 2. m > 1. We can suppose that

(A
a

Am
am |’
where a; = minA;, for 1 <i < m. Notice that dom(¢) = A; U --- U A,. Clearly, | dom(e)| > m. We distinguish

two subcases:

Subcase 2.1. |dom(¢)| = n. Since m < n—2, there exist 1 < p < msuch that|A,| > 2. Let x, = min(A,\{a,}).
Take y € n\{ay, ..., an, x,}. Put

n= Al Ap—l ap Ap\{ap} Ap+l Am

M ap—1 ap Xp Ap+1 a, |’
=@ ap1 | fap, xp} | apn am |y

M ap-1 ap Ap+1 am | Y )

Then 1, € € Ej41 and € = né. Thus € = né € (Ep1).

Subcase 2.2. |dom(¢)| < n — 1. Take x € n\ dom(¢) and y € n\{a, ..., a,,x}. Put

A
-( ¢ mas=( ')

X ay
Thenn,& € Ejyp1 and € = né. Thus e = né € (Ej41). O

Am
aﬂ‘l

Am
Am

Lemma 2.2. Let 0 <m < n. Then J,, C (E;;).
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Proof. Noticethat Jo = Eg = {On}and |, = E, = {1,}. Then J,, = (E,;), form = 0,n. Suppose that1 <m < n-1.

Let
a=(31 ‘ZZ)EI’"’

by
where b; < minB;, for 1 <i < m. Let q; = minB;, for 1 <i < m. Then b; < gq;, for 1 < i < m. We denote by S,
the symmetric group on {1,...,m}. Then there exists 0 € S;, such that g1, < g25 < *** < me. Thus

bio < Gko <+ < Gmo, forl <k <m.

Put
_ ( Bis By -+ Bue ) _ ( {b1,, 1110} Q26 -+ Gmo )
T= , 11 =
5]1(7 lha e Qma bl()‘ q2o ce qma
and
= bio ... bictye b, Gic} qi+e oo Gmo
! bis ... biciye bis Qi+)s -+ Gmo

for 2 <i < m. Clearly, 7, t1,...,Tm € E;. It is easy to verify that
a=1TT1...Tm-

Thusa € (E,;). O

Notice that PD,,, = JoU 1 U---U ], for 1 <r <n-1. As an immediate consequence of Lemmas 2.1 and
2.2, we have the following result:

Lemma 2.3. Let 1 <r <n—1. Then PD, , = (E,).
Let S € {7, D,). Put
]S ={a €S :|im(a)| = r} and ES = E(JS).

Then ;" C J, and E? " C E,. Now, recall that Umar [8, Theorem 1.3] proved:
Lemma24. Let1 <r<n-1. Then D,, = (E?”).

Notice that each idempotent ¢ of Ez—jl has a form (‘;) for some a,b € n, a # b, which maps a to b and x to
itself for x # a. Then

EPn = {(;) 11, j € nwithi > j).
For 1 <i < n, we denote by 6; the identity mapping on X,,\{i}. Put
Fpa=1{6:1<i<n}
Then E,_1 = E- U F,q.

Let S be a semigroup. We say that an element « € S is undecomposable in S if there are no f,y € S\{a}
such that a = fy. Given a subset U of S, we say that U is a undecomposable subset of S if each element of U
is undecomposable in S. Let A be a subset of n. We denote by 14 the identity mapping on A. Clearly, 1, is
undecomposable in PD,. In fact, we have the following lemma:

Lemma 2.5. The elements of the idempotent set E,_1 are undecomposable in PD,,.
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Proof. Let ¢ € E,_; be arbitrary. Suppose that there exist g,y € D, \{¢} such that ¢ = fy. Notice that
E,1 =E2 UF,.
We distinguish two cases:

Case 1. ¢ € EnD_”l. Then there exist 7,j € n with i > j such that ¢ = (;) Assume that there exist
B, v € PDy\{e} such that ¢ = By. Clearly, dom(B) = n. Let x € n\{i}. Then x = xe = (xB)y < xp < x. It follows
that

xB =xy =x, forx en\{i}. (2.1)
If ip =i, then p = 1, and so y = By = ¢, a contradiction. If if # i, then, by (2.1), (iB)y = ip and so
i =iy = ie = j. Thus, by (2.1), = (;) = ¢, a contradiction.

Case 2. € € F,_1. Then € = §; for some 1 <i < n. Let x € n\{i}. Then x = xe = (xf)y < xB < x. It follows

that

xB =xy =x, forx en\{i}. (2.2)
If i ¢ dom(y), then, by (2.2), y = 0;, a contradiction. If i € dom(y), then dom(y) = n. It follows from
0; = € = py and (2.2) that i ¢ dom(pB). Then, by (2.2), B = 0;, a contradiction. [

We can now present one of the main results of this section.
Theorem 2.6. Let n > 3. Then each maximal subsemigroup S of PD,, must be one of the following forms:
S=PDyn-10rS=PDy\le}, forsomee € E,_.

Proof. Notice that 1, is undecomposable in PD,. Let ¢ € E,_; U {1,} be arbitrary. Then, by Lemma 2.5,
we obtain the set D, \{¢} is a maximal subsemigroup of PD,,. Let S be a maximal subsemigroup of PD,,.
Notice that PD, = PD, -1 U{l,}. Ifl, ¢ S, then S € PD, 1 € PD,. Thus, by the maximality of S,
S=PD,,. If 1, €S, then, by Lemma 2.3 and S € PD,, E,_1 € S. Then there exists ¢ € E,_; such that
e ¢S. Thus S € PD,\{e} € PD,. Hence, by the maximality of S, S = PD,\{e}. O

Fori,j e nwithi > j, put

G(,',]') =lae ]”D_”l vl # ]}

Notice that Efl)_”l\{(;)} C G j)- Recall that Zhao and Hu [16, Lemma 2.6]) proved the following result:

Lemma 2.7. Let n > 3. Then G ;) = (ED» \{(;)}) N ]f_"l,for i,j e nwithi>j.

n-1

A product €;¢;. .. €y of idempotents in P, will be called irreducible if i1 # €, €i€i1 # € (@ =
1,...,m—1). Now, recall that Howie [7, Lemma 4] proved:

Lemma 2.8. Leta € ]nle. Ifa= (2)(;22) S (;'”) is irreducible. Then i,y = j, and j,_1 # iy, for 2 <r < m.

Notice that ]n@_”1 c ]Z—’_’l. What is clear is that if a is expressible as a product of idempotents then the
product can be ‘pruned down’ until it is irreducible (see [7, page 2]). Thus, by Lemma 2.8, we immediately
deduce the following result:

Lemma2.9. Let] C EnD_"l. Ifae)yn ]D” then a can be written as

n-1/
X1\[X2 Xm
a = oo ,
Xo/\X1 Xm—1

where all (") €1, for 0 <k <m — 1.



P. Zhao, H.B. Hu / Filomat 39:4 (2025), 1149-1162 1154
Fori,j e nwithi > j, put

G(A,:,j) ={ae Ju1 tia # ]}/ Ai={ace Ju1:i ¢ dom(a)}
and
PG = Gg

Clearly, G j < Gé/].) and F,,-1 € PG ). Leta € PD,, we put

LI A;.

Shift(a) = {i € dom(a) : i # i}.
Lemma 2.10. Let n > 3. Then PG j) = (En_l\{(j.)}> N Ju-1, fori, j € nwithi> j.

Proof. Let a € PG be arbitrary. Notice that PG ;) = Gé HU A;. To prove that a € (En_l\{(;.)}> N J._1, we
distinguish two cases.
Casel. a € G@ It Thenia # jand a € J,-1. If |dom(a)| = n, then a € G j. Thus, by Lemma 2.7,

aeGgp= <E;’)_"1\{(;.)}> N2 <En_1\{(;)}> O et
If |dom(a)| = n — 1, then dom(a) = n\{k} for some k € n\{i}. (i) If 1 € im(«), we define a* by

o = 1, x=k
] xa, x#k

Then a” € G;j and a = 6ka”. Thus, by Lemma 2.7,
. i i
a =5 € 8- G = O - [(EDY, {(].)}> N Ju-1] € <En—1\{(]-)}> N Jn-1-
(i) If 1 ¢ im(ar), then k = 1 otherwise 1o = 1. Thus, by a € J,-1, dom(a) = im(a) = n\{1}. It follows from
a € PD, that
=23 0 M emapn
0é—2 3 ... op T n-1 j Ju-1.
Case 2. a € A;. Then dom(a) = n\{i}. Notice thati > j > 1. If i > 3, then there exists s € {1, 2} such that
s # j. Now, we define o" by
c_ ) s x=i
e = xa, x#1i.
Then a* € G; ) and a = 6;a". Thus, by Lemma 2.7,
" i i
a=0ia" €06;-Ggj=0i- [(Eﬁ)_"l\{(].)}) N Ju-1] € <En—1\{(]-)}> N Ju-1.
Notice that if i = 2, then j = 1 since i > j. (i) If i = 2 and 2 ¢ im(«a), then dom(a) = im(«) = n\{2}. It follows
from a € PD,, that
1 3 -+ n i
a= (1 3 - n) - 62 € <E11—1\{(])}> m ]Vl—l'

(i) If i = 2 and 2 € im(a), then we define a* by
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Then a* € G; ) and @ = 6,a". Thus, by Lemma 2.7,

a=0a" €3Gy =02 [(EnD_”l\{(;)D NJual € (En—l\{(;)b N Jn-1-

It remains to prove that (En_l\{(;-)}> N Ju1 € PGy Leta € (En_l\{(;.)}) N Ju-1 be arbitrary. To prove that
o€ PG(i,j), we distinguish two cases.

Dy

Casel. ae]™.

Then, by Lemma 2.9, a can be written as

A v i L
Yo/\W1 Yi—2J\Vt-1
where Shift(a) = {y1,y2,...,y:} and y1 < y» < --- < y; such that (y;f) # (;) forall0 <k <t—1.1Ifi ¢ Shift(),
thenia =i> j. Ifi = yq € Shift(a) for somek € {0,1,...,t -1}, then j # yx and so

Q) £} )
Yo/\W1 Yk Yi-1

Case2. a € J,1 \]f_"l. Notice that E,_1 = Ef_”l UF,jand a € (En_l\{(;.)}> N Ju-1. Then, by Lemma 2.8, o
can be written as

Thus a € G jy € PG j-

a =0 forsomel <k<n

e=s ) o))

where Shift(a) = {y1,¥2,...,y\{s} and y1 < y» < --- < y; such that (y;f) # (;) forall0 <k <t-1,and
1 <s<n Ifa= 0 forsomel <k <n, then clearly a = 6, € F,-1 C PG j. Notice that dom(a) = n\{s}. If
a= 65(53)(55) e (ﬁ)(ﬁl)f to prove that a € PG j, we distinguish two subcases.

or

Subcase 2.1. s = i. Then clearly @ € A; C PG j).

Subcase 2.2. s # i. Then i € dom(a). If i ¢ Shift(a), then ioc =i > j. If i = y4q € Shift(a) for some
ke{0,1,...,t =1}, then j # yx and so

O R o F R Gy R A
Yo/\V1 Y2 J\Yt-1 Yo/\1 Yk Ye-1

Thus a € Gé,j) c PG(Z',]‘). (|

For1l <i<n, put
Q;={a€J,—1:i€dom(a)l.

Lemma 2.11. Let n > 3. Then Q; = (E,1\{6:}) N Ju-1, for 1 <i < n.

Proof. By Lemma 2.4, we have D, ,_1 = (Ef_’a). Notice that ]nD_’“1 C Ju-1. Then ]WD_’“1 C Dyp-1N Jpo1 =
(E?_"Q N Ju-1. Let a € Q); be arbitrary. To prove that a € (E,,—1\{0:}) N Ju—1, we distinguish two cases.

Casel. a € ]nD_”l. Then
ae P C(ED YN Juey C(Euq MO N Tt
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Case 2. a € [,-1\ ]?_”1. Then dom(a) = n\({k}, for some k € n\{i}. We distinguish two subcases.
Subcase 2.1. 1 € im(«). We define a* by

. |1, x=k
e = xa, x#k.

Then o € ]nDjl and a = Ora*. Thus
a=8at €8T SOk (E) N Juct € (Enmt M) N Tt
Subcase 2.2. 1 ¢ im(a). Then k = 1 otherwise 1a = 1. Thus, by a € J,,_1, dom(a) = im(«) = n\{1}. Notice

thati # k = 1. It follows from a € PD,, that

0‘=(§ S Z)=616<En_1\{5i}>m1n_1.

It remains to prove that (E,—1\{6;}) N [,-1 € Q;. Let a € (E,—1\{0;}) N J,—1 be arbitrary. To prove that
a € Q;, we distinguish two subcases.

Casel. a € ]nD_”l. Then clearly a € ]1?_”1 c Q.

Case?2. o € ],1_1\]1?_“1. It is obvious that, for all 8 € J,—1 and 6; € F,,_1, if f0; € J,—1, then clearly B6; = B.

Notice that E,,_ = En@_"1 UF,_1 and a € (E;-1\{6;}) N J,—1. Then a can be written as a = §; for some k € n\{i}
or
a =051 &m,

wheres e n\{i}and ¢1,...,¢&, € EHD_"l. Then clearly i € dom(a). Thusa € Q0;. [
We are now ready to prove the main result of this section.

Theorem 2.12. Let n > 3. Then each maximal idempotent generated subsemigroup S of PD,, must be one of the
following forms:

(1) S =PDy 1.
2)S=PDyno U PG(,',]‘) U {1n},f01’ 1<j<i<n
B)S=PDy2UQ;U{1,}, for1 <i<n.

Proof. Notice that PD,, = PD,,,-1 U {1,} and PD,,, = (E,) = (E(PD,,)), for1 <r <n—1 (by Lemma 2.3). It
is clear that D, ,_1 is a maximal idempotent generated subsemigroup of £D,,. Put

M,‘,]' = P.'Dn,n_Q U PG(Z',]') Ufl,}, 1< ] <i<m,

Nl‘ = PDn,n—Z U Qi U {1n}r 1<i<n
Then, by Lemmas 2.10 and 2.11,

M, = PDypz U [<En_1\{(;)}>> A Jua] U {1,]
= P-Z)n,n—Z U <En—1\{(;)}> ) {171}

— (EPDyp) U [Enl\{(;.)}] U (L)
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_ <E<¢>@n>\{(;.)}>,

Ni = PDyu-2 U [(Ep-1\{6i})) N Ju-11U {1}
=P D2 U (Ep1\{6i}) U {1}
= (EPDyn-2) U [En-1\[6:}] U {1}
= (EPDn)\{0:})-

Thus clearly M;; and N; are maximal idempotent generated subsemigroups of £D,,. Let S be a maximal
idempotent generated subsemigroup of PD,,. Notice that PD,, = PD,, ,-1U{1,}. If1,, ¢ S,thenS C PD,,,,-1 C
PD,. Thus, by the maximality of S, S = PD,,,_1. If 1, € S, then, by Lemma 2.3 and S € PD,, E,-1 € S.
Then (;) ¢ Sforsomei,jenwithi> jord; ¢ Sforsomel <i<n. ThusS C (E(PZ)H)\{(;)D = M;; Cc PD,
or S C(E(PDn)\{6i}) = N; € PD,. Hence, by the maximality of S, S = M;jor S=N;. [

Notice that |E,_1| = "("TH) By Theorems 2.6 and 2.12, we have the following result:

Corollary 2.13. Let n > 3. Then the semigroup PD,, contains exactly @ + 1 maximal (idempotent generated)

subsemigroups.

3. Abundance for the (principal) ideals of PD,

A subset [ of a semigroup S is an ideal if it is closed under multiplication by arbitrary elements of S: for
all x € Sand y € I, we have xy, yx € I. The principal ideal generated by an element a of the semigroup S is
the set SaS = {xay : x, y € S}. Notice that D, is the principal ideal PD,1,PD, generated by 1,,.

In 1992, Umar [12] showed that the ideals PD,,, (1 < r < n) of PD,, are abundant. In this section, we
give necessary and sufficient conditions for the ideals of D, to be abundant. Moreover, we characterize
the structure of the left (right) abundant principal ideal of PD,,.

On a semigroup S the relation .Z* is defined by the rule that (a,b) € .£” if and only if the elements a, b
of S are related by Green’s relation . in some oversemigroup of S. The relation %" is defined dually. A
semigroup S is called left abundant if each of its £*-classes contains an idempotent. Dually, a semigroup S
is called right abundant if each of its Z*-classes contains an idempotent. A semigroup S is abundant if it
is both left and right abundant (see [5]). Given a semigroup S, we denote by L;° and R’ the .#*-class and
H*-class, respectively, of an element u € S.

The following lemma and its dual give a characterization of .Z* and %" [5, Lemma 1.1].
Lemma 3.1. Let S be a semigroup and let a, b € S. Then the following conditions are equivalent:
(1) (a,b) e 2.

(2) for all x,y € S, ax = ay if and only if bx = by.

Now, recall that Umar [12, Corollary 2.4.3, Theorem 2.2.5 and Lemma 2.2.6] proved:

Lemma 3.2. Let1 <r <mn, andlet a,p € PD,,. Then
(1) (o, B) € £ if and only if im(a) = im(p).

(2) (a, B) € Z* if and only if ker(a) = ker(p).

() the semigroup PD,, , is abundant.
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Notice that the idempotents in E, are exactly of the following form:

(& “)
&= P
C1 Cr

where ¢; < c; < --- < ¢ and ¢; = minA;, for 1 <i < r. Notice that ker(¢) = (A1|Az]- - - 1A,). Thus, we have:

Ar
2

Lemma 3.3. Let1 <r <nand e, n€E,. Then ker(e) = ker(n) ifand only if ¢ = 1.

It is well known that the Green relations on 7, can be characterized as a.Zf < im(a) = im(f),
aZp & ker(a) = ker(f) and a_#f < |im(a)| = |[im(B)|. Using Lemma 3.1, we can prove the following
lemma:

Lemma 3.4. Let S be a subsemigroup of PT ,, and let m = max{|im(a)| : @ € S). IFE(LY"")NS = 0 for some a € S
with |[im(a)| = m, then S is not left abundant.

Proof. Assume that S is left abundant. Then there exists an idempotent in L;?, say ¢. It follows from Lemma
3.1 that
as=a

since € - ¢ = ¢ - 1, and so im(a) C im(e) which implies that m = |im(x)| < |im(¢)|. By the maximality

of m, we have |im(¢)| = |im(a)] = m and so im(¢) = im(a). Thus (a,¢) € £*7" and ¢ € E(LZ)T”) NS, a
contradiction. [J

Lemma 3.5. Let S be a subsemigroup of PT ,, and let m = max{|im(a)| : a € S}. IFE(RE7")N S = 0 for some a € S
with |im(a)| = m, then S is not right abundant.

Proof. Assume that S is right abundant. Then there exists an idempotent in R;°, say e. It follows from
Lemma 3.1 that

ea=a
since € - ¢ = 1, - . Thus dom(a) € dom(e) and ker(e) € ker(a) which implies that m = |im(a)| =
| dom(ar)/ ker(a)| < |dom(e)/ ker(e)| = |im(¢)|. By the maximality of m, we have |im(¢)| = |im(a)| = m and
so ker(e) = ker(a). Thus (a, &) € Z*7 " and € € E(RZ;T“) NS, a contradiction. [

Now, it is easy to prove the following result:
Theorem 3.6. Let I be an ideal of PD,,. Then I is abundant if and only if there exists r € {0,1,...,n} such that
I =PD,,.

Proof. Notice that PD, = PD,, -1 U{1,} and PD, is abundant (by Lemma 3.2). Suppose that 7 is abundant.
If1, € 7. Thenclearlya =a-1, € 7, for alla € PD,,. Thus I = PD,, = PD, . If 1, ¢ T, we put

r = max{|im(a)| : a € T}.

Thenclearly 0 <r <n-1and I € PD,,,. Notice that PD, o = {On}. If r =0, then clearly 7 = PD, 0. If r > 1,
there exists @ € 7 with |im(a)| = r. Suppose that

A,

ar )’

az(Al A,
5]

ap
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wherea; < ---<a,and a; <minA;, for 1 <i <r. Noticethata; <n—r+i,forl <i<r. Put

(n-r+1 | n—-r+2 . n

p= min A; min A; <o+ | minA, |’
£ n—r+1 ‘ n-1|n

- gl ar_l ar :

Then & = Ba € T since 1 is an ideal of PD,,. Notice that clearly [im(&)| = |im(«)| = r. By Lemma 3.5 and 1
is abundant, we have E (RZ:D "YN I # 0. Then there exists 7 € E(J) such that ker(n) = ker(&). Notice that

Ar:(n—rJrl n)eEr.

n—r+2 |-
n—r+2

n—-r+1 n

Then ker(n)) = ker(&) = ker(A,) and so 1 = A, by Lemma 3.3. Now, let

A A
é,:( 1 2 AV)EE,,
C1 (0)) Cr
wherec; < ¢ <---<c¢,and ¢; =minA;, for 1 <i <r. Noticethat¢; <n—r+i,forl1 <i<r. Put
[(n-r+1 ’ n-11r
Y 1 oo o )

Since n € 1 and 1 is an ideal of PD,,, we have y = A,y =y € 1. By Lemma 3.4 and 7 is abundant, we have
E(Lfﬂ ")N I # 0. Then there exists 0 € E(J) such that im(0) = im(y). Suppose that

=( !
cr

1
Since 0 € E(J), we have ¢; = min B;, for 1 <i < r. Itis obvious that ¢ = €6 and so ¢ € I (since 1 is an ideal
of PO, and 6 € ). Then we have proved that E, C 7. Thus, by Lemma 2.3, 7 = PD,,,.

Conversely, if I = PD,, o, then clearly I is abundant. If there exists 1 < r < n such that 7 = PD,,,, then,
by Lemma 3.2, 7 is abundant. [J

B,
2

For any a € PD,,, we denote by A, the principal ideal
PD,aPD,
generated by a. Notice that if & = 1,,, then A, = PD,,; if |im(a)| = 1, then o = (‘11) Notice that if « = 1,,, then
Ay = PD,. Let p € A, be arbitrary. Then there exist y, 0 € PD,, such that § = yad. Clearly, |im(g)| < |im(a)|.
Notice that @ = 1,al, € A,. Thus |im(a)| = max{|im()| : f € A}

Lemma 3.7. Let o € PD,, and «a is not an idempotent. Then ELX")y N Ay # 0 and ERYT") N A, # 0.

Proof. Suppose that |im(a)| = r. Then r > 1 since « is not an idempotent. Thus we can suppose that

A A
a= ( 1 r ),
al a,
wherea; < a; < --- <a,and a; < minA;, for1 <i <r. Letc; = minA;, for 1 < i < r. Since a is not an
idempotent, there exist m € {1,...,r} such that a,, < c,,. Clearly, a,, € Ay. Then aya # a,, (if a,, € dom(a)).

Ay
ap
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Assume that E(LY"") N A, # 0. Let ¢ € E(LY”"") N A,. Then there exist 8,y € PD, such that ¢ = pay and
im(e) = im(a) = {ay, ..., a,}. Since ¢ is an idempotent, we have a; = a;¢, for 1 <i <r. Then

Ay = e = (@nPa)y < (@uPla < amP < ay.

It follows that a,, = a,,f = (a,f)a and so a,,a = a,,, a contradiction. Thus E(L";DT“) NA, =0.

Assume that E(RfT”) NAy #0. Let e € E(Rfr”) N A,. Then there exist 8,y € PD, such that ¢ = fay
and ker(e) = ker(a) = (A1]---|A,). Notice that ¢; = min A;, for 1 <i < r. Since ¢ is an idempotent, we have
cie =ciforl <i<r. Then

Cm = € = (cpPa)y < (CmPla < cuP < Cpe

It follows that ¢, = cf = (cwP)a and so ¢, = ¢ = a,, a contradiction. Thus E(RfT”) NA,=0. O

Using Lemmas 3.4, 3.5 and 3.7, we can prove the following result:

Lemma 3.8. Let a € PD,, and « is not an idempotent. Then A, is neither left abundant nor right abundant.

Proof. By Lemma 3.7, we have
ELX")Y N Ay # 0 and ERYTY N A, # 0.

Then, by Lemmas 3.4 and 3.5, A, is neither left abundant nor right abundant. [

Letx,y e nwithx <y. Theset[x,y] = {z€n:x <z <y} of nis called a closed convex set. Similarly, we
can define the convex sets of other kinds, such as (x, y], (x, ¥) and [x, y).

For1<r<mn, put
E2 = (e € E, :im(e) = [1,7]}.

Then clearly E5 = {1,}. Let a € PD,. It is easy to see that « € E{(a = 1,) if and only if A, = POE, = {a €
POE,, : im(a) C [1, n]}. In fact, we have the following result:

Theorem 3.9. Let 1 <r <n-—1. Let o« € PD,, with |im(a)| = r. Then the following statements are equivalent:
(1) Ay is left abundant.

(2) a € EX.

B) Ay ={p € PD, :im(B) C [1,r]}.

Proof. (1) = (2) Suppose that A, is left abundant. Then, by Lemma 3.8, « is an idempotent. We can
suppose that
[
a =
1

wherec; < ¢ <+ <c and ¢; = minA; for 1 <i <r. Letcy = 0. Assume that @ ¢ E2. Then im(a) # [1,7].
Then there exists m € {1,--- ,r} such that ¢,, — c,—1 > 2. Clearly, ¢, — 1 ¢ im(a). Put

Ay
C2

( Ay A, A, ) me1,

c1—1 Cr . cr

&= Ay Am—l Am Am+1 Ar , 2<m<r-1,
1 Cn-1 | en—1 | cm Cr
Ay A Ay =7
€1 G1 | =17/ -
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Then & = a& = 1,a& € A, and & # &. Notice that clearly |im(&)| = |[im(a)|. Assume that E(L?r”) NAy # 0.

Let ¢ € E(L?T") N A,. Then there exist 5,y € PD, such that ¢ = pay and im(e) = im(&). Notice that
cm —1 €im(&) and A, € PD,. Since ¢ is an idempotent, we have ¢,, —1 = (¢, — 1)¢. Then

cm—1=(cw—1)e=[(cm — 1)ﬁ0€]7 < [(ewm — 1)5]0‘ <(cm— 1),8 <com—1
and so (¢, — 1) = ¢y — 1. Thus
en =1 = (6w — e = [ — Daly < [(en - Dla = (cn - Dar < e — 1

and so (¢, — 1)a = ¢, — 1. Hence, ¢, — 1 € im(a), a contradiction. We have proved that E(L?T”) NA, =0and
so A, is not left abundant by Lemma 3.4, a contradiction.

(2) = (3) Let M = {f € PD,, : im(B) C [1,7]}. Suppose that @ € E2. Then im(a) = [1,7]. Let & € A, be
arbitrary. Then there exist 8,y € PD,, such that & = ay. Clearly, im(&) C im(a)y = [1,r]y. It follows from
y € PD, that ry < r and so im(&) C [1,7] = im(a). Then & € M. Thus A, € M. Conversely, let f € M be
arbitrary. Then im(B) C [1,r]. Since a € E2X C E, and im(a) = [1,7], we have xa = x, for 1 < x < r. Then
B = pa = pal, € A,. Thus M C A,. Hence, we have proved that M = A,.

(3) = (1) Suppose that A, = { € PD, : im(B) C [1,r]}. Notice that a = 1,a1, € A, and |im(a)| = r.
Then im(a) = [1,7]. Let p € A, be arbitrary. Then im(f) C [1,7] = im(a). Put ¢ = 1jnp). Then clearly
¢ € E(A,) and im(e) = im(B). Thus (¢, B) € .£*7 . Hence, ¢ € %(AQ) NEA). O

)

. Let a € PD,. Itis easy to see that a = A,(= 1,) if and only if
[1,7]}. In fact, we have the following result:

For1<r<n, put

n—r+2

n—-r+1
A’_( n—-r+1

n—r+2 ‘

Then clearly A, € E, and A, = 1,
Ay =PD, ={a e PD, : dom(a) C

Theorem 3.10. Let 1 <r <n—1. Let a € PD,, with |im(a)| = r. Then the following statements are equivalent:
(1) A, is right abundant.

(2)a= A,

@) Ay ={pePD, :dom(p) C [n—r+1,n]}.

Proof. (1) = (2) Suppose that A, is right abundant. Then, by Lemma 3.8, « is an idempotent. Suppose that

(A1 Ay Ar)
a = ,
1 C2 Cr
wherec; < ¢y <---<¢,and ¢; =minA;, for 1 <i <r. Noticethat¢; <n—r+1i,forl <i<r. Put
= n-r+1 |n—-r+2 |-+ | n
- 1 1) o I

Then ker(¢) = ker(A,) and & = &a = &al, € A,. Since A, is right abundant, then Z;(Ax) N E(Aq) # 0.
Then there exists n € E(A,) such that ker(n) = ker(&)(= ker(A,)). Thus, by Lemma 3.3, n = A,. Since
n € A, there exist ,y € PD, such that A, = n = Bay. Clearly, im(A,) C im(a)y and |im(a)y| < |im(a)|.
Notice that [im(A,)| = [im(a)|. Then im(A,) = im(a)y. It follows from y € PD,, and im(A,) = [n —r + 1, 1]
that im(a) = [n —r + 1,n]. Let x € dom(a) be arbitrary. Then x > xa > minim(a) = n —r + 1. Thus
dom(a) C [n —r+1,n] = im(«). It follows from |dom(a)| > |im(«)| = r that dom(a) = im(a) = [n —r + 1,n].
Thus, by o € PD,, a = A,.
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(2) = (3) Let M = { € PD,, : dom(pB) C [n —r + 1,n]}. Suppose that « = A,. Let & € A, be arbitrary.
Then there exist §,y € PD, such that £ = fay. Assume that there exists 1 < j < n — r such that j € dom(&).
Then j& = jBay and so jf € dom(a) = dom(A,) = [n — 7+ 1,n]. Since p € PD,, wehave jB < j<n-r,
a contradiction. Then dom(é) € [n -7+ 1,n]. Thus A, € M. Conversely, let § € M be arbitrary. Then
dom(B) € [n—r+1,n]. Since a = A,, we have xa = x, forn —r +1 < x < n. It follows from g € PD, that
B = Pa = pal, € A,. Thus M C A,. Hence, we have proved that M = A,.

(3) = (1) Suppose that A, = { € PD, : dom() C [n —r + 1,n]}. Notice that o = 1,01, € A, and
lim(a)| = . Then dom(a) = [n —r + 1,n]. Let & € A, be arbitrary. Then dom(&) C [n —r + 1,n]. Take
¢ € E(PD,,) such that ker(¢) = ker(£). Then clearly (¢, &) € #%7* and dom(¢) = dom(&) C [n—r+1,n]. Then
e€{pePD, :dom(B) C[n—r+1,n]} =A,andso € € E(A,). Thus e € %g(Aa) NEA). O

Theorem 3.11. Let o € PD,,. Then A, is abundant if and only if @ = O, or « = 1,,.

Proof. Suppose that A, is abundant. Then, by Lemma 3.8, a is an idempotent. We claim that |im(a)| = r €
{0, n}. Notice that a = 1,al, € A,. Assume that 1 <r < n —1, then, by Theorems 3.9 and 3.10, im(a) = [1,7]
and dom(a) = [n —r + 1,n]. Since a is an idempotent, we have xa = x, for x € im(a). It follows that
im(a) € dom(e) and so [1, 7] = im(a) € dom(a) = [n — ¥ + 1, n], a contradiction. Thus r € {0, n}. If r = 0, then
clearly a = Oyn. If r = n, then clearly a = 1,,.

Conversely, if @ = 1, then A, = PD,,. Thus, by Lemma 3.2, A, = PD, is abundant. On the other hand,
if @ = Oy, then clearly A, = {0y} is abundant. [
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