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Abstract. A convex structure (dually, a concave structure) and a topological structure have many common
characters. This paper aims to apply the topological methods to the theory of convex structures. From a
categorical aspect, this paper first deals with the extensionality and productivity of quotient maps in the
category of convex spaces. It is shown that the category of convex spaces is not extensional, but productive
for finite quotient maps. Then the paper introduced the convergence approach via co-Scott closed sets on
powerset and proposed the concept of (preconcave, concave) convergence structures in concave spaces. It
is proved that the category of concave convergence spaces is isomorphic to that of concave spaces and the
latter can be embedded in the category of convergence spaces as a full and reflective subcategory. Finally,
it is shown that the category of convergence spaces is extensional and productive for finite quotient maps.

1. Introduction

A convex structure (also called an algebraic closure system) via abstracting three basic properties of
convex sets is an important mathematical structure. Explicitly, a convex structure on a set X is a subset C of
the powerset of X satisfying: 0, X € C; C is closed for any intersections; C is closed for any directed unions.
As a topology-like structure, convex structures are closely related to many other mathematical structures
[22]. Adopting the lattice-valued approach in topological structures, convex structures are also studied in
a lattice-valued viewpoint, which leads to several types of lattice-valued convex structures [11, 17, 19, 20].
To date, lattice-valued convex structures have been extensively studied in a topological approach, such as
closure operators [14, 18, 31], interval operators [12, 13, 21, 23], categorical relationship [9, 24] and so on.
This demonstrates the feasibility of applying the studying methods in the theory of topological structures
to that of convex structures.

From a categorical aspect, extensionality and productivity of quotient maps are important categorical
properties of topological categories [15]. But the category of topological spaces satisfies neither the exten-
sionality nor the productivity of quotient maps. This motivates us to consider if the category of convex
spaces satisfies these two kinds of categorical properties. Besides, convergence structures via filters [4, 16],
or lattice-valued convergence structures via lattice-valued filters [2, 5, 10, 25, 27-30] serve as an important
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tool of characterizing topological structures and possess better categorical properties than topological struc-
tures. This motivates us to introduce the concept of convergence structures in the framework of convex
spaces and study its relationship with convex structures as well as its categorical properties.

The aim of this paper is to apply the topological methods to the theory of convex structures. Concretely,
we will discuss the extensionality and productivity of quotient maps in the category of convex spaces from
a categorical aspect. Then we will propose convergence structures via filter analogues in a concave space
and study its categorical relationship with concave spaces as well as its extensionality and productivity of
quotient maps in a categorical sense.

The content is organized as follows. In Section 2, we recall some necessary concepts and notations.
In Section 3, we study the extensionality and productivity of quotient maps in the category of convex
spaces. In Section 4, we focus on co-Scott closed sets on powerset. In Section 5, we propose the concept
of convergence structures via co-Scott closed sets and establish its categorical relationship with concave
spaces. In Section 6, we explore the extensionality and productivity of quotient maps in the category of
convergence spaces.

2. Preliminaries

Throughout this paper, let X be a nonempty set and P(X) be the powerset of X. We say that {Aj}
is a directed (co-directed) subset of P(X), in symbols {A}i; € P(X) ({Aj}je) " P(X)), if for each
Aj1/Ajz € {A]'}]'E], there exists A]'3 € {A]'}]'EI such that Ajl/Ajz - Aj3 (Aj3 - A]'1/Ajz)- Let f: X — Y bea
map. Define f~ : P(X) — P(Y) by f~(A) = {f(x) | x € A} for each A € P(X) and f : P(Y) — P(X) by
f(B) = {x| f(x) € B} for each B € P(Y).

In [22], Van De Vel introduced the concept of convex spaces.

Definition 2.1. ([22]) A subset CX C P(X) is called a convex structure on X if it satisfies
(CE1) 0,X € C%;
(CE2) Y{Ai}ren S C*, Naea A1 €C5;
(CE3) Y{Aj}je/C?"CX, U Aj € CX.

For a convex structure CX on X, the pair (X, C¥) is called a convex space.

A map f: (X,C¥) — (Y, DY) between two convex spaces is called convexity-preserving if f~(D) € CX
for each D € DY.

It is easy to check that convex spaces and their convexity-preserving maps form a category, denoted by
Convex.

Definition 2.2. ([22]) Let (X, CX) be a convex space and B C CX. If B satisfies
VCeC, ABc ™ B, st.C=| | B,

then B is called a base of (X, CX).
Definition 2.3. ([22]) Let (X, CX) be a convex space and A C CX. If
]BAz{ﬂA,-I{AiHeI}gA, 1¢@}
i€l
is a base of (X, CX), then A is called a subbase of (X, C¥).

Definition 2.4. ([1]) A concrete category C is called a topological category over Set with respect to the usual
forgetful functor from C to Set if it satisfies the following conditions:
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(TC1) Existence of initial structures: For any set X, any class A, any family {(X;, £1)}1ea of C-object and any
family {fy : X — X)}1ea of maps, there exists a unique C-structure £ on X which is initial with respect
to the source {f; : X — (X, £1)}aea, this means that for a C-object (Y,17),amap g: (Y1) — (X, &) is
a C-morphism if and only if forall A € A, fy o g : (Y, 1) — (X),€4) is a C-morphism.

(TC2) Fibre-smallness: For any set X, the C-fibre of X, i.e., the class of all C-structures on X is a set.
Proposition 2.5. The category Convex is topological over Set.

Proof. We only note that for a set X, the initial structure C*¥ on X with respect to a class {(Xa,C*)}ren of
convex spaces and a family {f; : X — X }1ea of maps, is generated by the subbase

{Uf/(\_(A/\)l\V,A €A, A, er,\}.
AeA

O

Since Convex is topological over Set, there are the product spaces and the subspaces of convex spaces
in Convex. Next, we recall the concepts of product spaces and subspaces of convex spaces.

Definition 2.6. ([22]) Let {(X), C**)}1ea be a family of convex spaces, {p, : HHEA X, — Xa}aea be a family
of projection maps. The convex structure [T,y C** on [T ¢y X) generated by the subbase |5 p (C*), is
called the product structure, the pair ([T ea Xa, [T1ea C*V) is called the product space of {(X;, C*)}aea.

Proposition 2.7. ([22]) Suppose that A is a finite index set. Let {(X),C*") | A € A} be a family of convex spaces.

Then
HCX/‘ = {HCA |V AeA, CyreCh.

AeA AeA
Definition 2.8. ([22]) Let (X, CX) be a convex space and Y C X. Define CX|y € P(X) by
Cly={AnY|AeC¥).
Then (Y,C¥|y) is a convex space, which is called a subspace of (X, CX).

By Proposition 2.5, final structures also exist in Convex. Let X be a nonempty set, {(X A,CXA)}/\EA be a
family of convex spaces and {f, : X, — X} ea be a family of maps. Then C* C P(X) defined by

BeCXe=VAeA, fr(B) eCX,

is the final structure with respect to the sink {f, : (X, C*) — X}iea. In particular, a quotient space of a
convex space can be defined.

Definition 2.9. ([22]) Let (X, C¥) be a convex space and f : X — Y be a surjective map. Define C¥ C P(Y)
by

BeC' < f~(B)eC*.
Then (Y, CY) is called a quotient space of (X,C%) and f is called a quotient map.

Concavity is dual to convexity. In a natural way, the concept of concave spaces can be defined as follows.

Definition 2.10. A subset CX C P(X) is called a concave structure on X if it satisfies
(CA1) 0, X e C%;
(CA2) Y{Ar}rea € CX, U ep Ar €CX;
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(CA3) V{Aj}jSrCX, Njey Aj € CX.
For a concave structure CX on X, the pair (X, CX) is called a concave space.
Amap f: (X,C¥) — (Y, DY) between two concave spaces is called concavity-preserving if f~(D) € CX
foreach D € DY.

It is easy to check that concave spaces and their concavity-preserving maps form a category, denoted by
Concave.

In a convex space, there is the concept of the closure of a subset A of X. Dually, the concept of the interior
of a subset A of X can be defined in a concave space.

Definition 2.11. Let (X, C¥) be a concave space. Define int(A) € P(X) by
int(A) = LJ B
BeCX, BCA
for each A € P(X). Then int(A) is called the interior of A.

Convex and Concave are isomorphic in a categorical sense, so in the following we will not distinguish
them when it comes to categorical properties.

3. Categorical properties of convex spaces

In this section, we will discuss the categorical properties of Convex, including extensionality and
productivity of quotients maps. We first recall the concept of partial morphisms in a topological category.
In a topological category C, a partial morphism from X to Y is a C-morphism f : Z — Y whose domain
is a subobject of X.
Definition 3.1. ([15]) A topological category C is called extensional if every C-object X has a one-point
extension X, in the sense that every C-object X can be embedded via the addition of a single point c into a
C-object X such that for every partial morphism f : Z —s X from Y to X, the map f : Y — X defined by

- (x), ifxeZ,
) = {f /
o, ifx¢Z
is a C-morphism.
It is well known that if a category is extensional, then quotient maps in this category are hereditary.

Now, we will show quotient maps in Convex are not necessarily hereditary via the following example.

Example 3.2. Let X = {a,b,¢,d}, Y = {a,b,c}, CX = {0,{a,c}, {b,d}, X} and C¥ = {0, Y}. Then (X,C%) and (Y,CY)
are convex spaces. Define f : X — Y by
a, ifx=a,
flx)=4b, ifx=0,
¢, ifx=cd.
Then f is a surjective map and D € CY if and only if f~(D) € CX for each D € P(Y). So f is a quotient map.
Let A = B = {a,b} and let (A,CX|4) and (B, CY|) be the subspaces of (X,CX) and (Y,CY), respectively.
Then C¥|4 = {0, {a}, {b}, A} and C¥| = {0, B}. The restriction of f on A, denoted by f|4 : A — B, is defined
by

a, ifx=a,

ﬂ“mz{b if x=b.

Take any {a} € P(B). Then it is easy to check that f~({a}) = {a} € CX|4 and {a} ¢ CY|z. This shows that
fla : (A,CX|a) — (B,CY[p) is not a quotient map.
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By Example 3.2, we can obtain the following proposition.
Proposition 3.3. In Convex quotient maps are not hereditary.

Since quotient maps in an extensional category must be hereditary, we have
Theorem 3.4. The category Convex is not extensional.

In the following, we will go on exploring the productivity of quotient maps in Convex. The following
theorem illustrates that Convex is closed under the formation of finite products of quotient maps.

Theorem 3.5. Suppose that A is a finite index set. Let {(X),C*") | A € A} be a family of convex spaces. If
{fa: (XA, C*) — (Ya,C")}ren is a family of quotient maps in Convex, then the product map

[Ta:(I]x[1e*) = ([Tv]]e™)

AeA AeA AeA AEA AeA

is a quotient map in Convex.

Proof. Define

f=110 xey=(xu[]e*) ey =(]Tr[]c")

AEA AEA AEA AEA AEA
Let
(X,¢%) —L— (e

(XA/ CXA ) ﬁ (YA/ CY/\)

be the product communication diagram with respect to sets. Since {f; : (XA, C*) — (Y1,C")}jen is a
family of quotient maps in Convex, for each B) € P(Y,), we have

By € C™ & f(B)) € C*.
Let C! be the quotient structure of (X, CX) with respect to f. Then
C = {BeP(Y)| f~(B) € C¥).

It suffices to verify that C¥ = CY.
On the one hand, take any B € P(Y). Then

BeC' V)\EA,HBAGCY",S.LB:HBA
AEA

= vieAABeC st~ @) =(]]A) ([]81)=]] s .
AeA AeA AeA

It follows that

F(B) = H fo(By) € HCX/‘ =X

AeA AeA
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This shows that CY € CY.
On the other hand, take any B € P(Y). Then

BeC' < f=(B)ecCX
— VAGAﬂAAGCmﬁifﬂazllAA

AeA
= vierdaectstB=f([1a)=([1A) ([T4a) =] @)
AeA AeA AeA AeA
= vieadaect st @) =(]]a) ([]r@n) =10 @).
AeA AeA AeA

This implies that

@ =Ta =T @).

AeA AeA

Then it follows that f;~(f;”(AA)) = Ay € C* for each € A. Since f : (X;,C*) — (Y,,C") is a quotient
map, we have f7(A,) € CY+. This implies that B = [ ,cx ( fiA A)) € CY. By the arbitrariness of B, we have
crcce’. O

Extensionality is an important categorical property. Regretly, Convex is not extensional. This motivates
us to find an extensional structure that is closely related to convex or concave structures. Inspired by filter-
based convergence structures in topological spaces, we will consider convergence structures in convex
spaces or concave spaces. To this end, we need to determine the filter analogues as the tools to define a

convergence structure in a convex or concave space, which is exactly the co-Scott closed sets in the following
section.

4. Co-Scott closed sets on P(X)
In this section, we will focus on co-Scott closed sets on P(X).

Definition 4.1. A subset F C P(X) is called co-Scott closed on P(X) if it satisfies
(CSC1) A€ Fand A C Bimply B € IF;
(CSC2) V{Aj}jes C" F, N Aj € F.

The set of all co-Scott closed sets on P(X) is denoted by Cs(X) and for a co-Scott closed set IF on P(X),
the pair (X, IF) is called a co-Scott closed set space. An order on Cs(X) can be defined by F < G if and only
if F C G, then (Cs(X), <) is a poset. The infimum of a family of co-Scott closed sets {IFy} ea is given by
ArealFa = MaeaFa. Since P(X) is the maximal element in Cs(X), it follows that Cs(X) is a complete lattice.

Remark 4.2. Considering a directed complete poset as the background, Scott closed sets are extensively
discussed [6]. It is well known that P(X) is a directed complete poset. With the inclusion order between
subsets, a co-Scott closed subset in Definition 4.1 is exactly the duality of a Scott closed subset in P(X).

Example 4.3. Let X be a nonempty set. Then
(1) F = {X} is a co-Scott closed set on P(X);

(2 f0+#ACX, thenF ={F C X|A C F}is a co-Scott closed set on P(X), which denoted by (A). In
particular, if A is a singleton set, i.e., A = {x}, then we will use % to denote ({x}).

Proposition 4.4. Let IF),, IF,, be two co-Scott closed sets on P(X). Then F,, UTF,, is a co-Scott closed set in Cs(X).
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Proof. It suffices to verify that F,, U IF,, satisfies (CSC1) and (CSC2). (CSC1) is straightforward.

For (CSC2), take each {Aj}jg] cedir IFy, UF,,. LetAh ={Ay € {A]}]E] | Ay € IF/\l} and A]z ={A € {A]}]el |A; €
]F/\Z}' Then {A]'}]‘E] = Ah U A]z‘ If A]l ,¢_ Afz and A]z 1¢_ Ah. Then there exist Ak S Ah c ]FAl such that Ak ¢ A]z'
and A; € A}, C IF), such that A; ¢ Aj,. By the co-directedness of {A}} ], there exists A; € {Aj}e; such that
AjCArand A; C A;. If Aj € Aj,, then A; € IF),. This implies A; € Aj,, which is a contradiction. Similarly, if
Aj € A}, then Ay € IFy,. This implies Ay € Aj,, which is a contradiction. So we have A;, C Aj, or Aj, C Aj,.
Then {Aj}je = Aj, C" Ty, or {Aj}je = Aj, €7 F,. This implies that NjggAj € Fyor N Aj €Fy. O

For a family of co-Scott closed sets {IF1}1ea on P(X), U ea Fa in not the supremum of {F,} e in Cs(X).
The supremum of a family of co-Scott closed sets {IF;} e is given by

\/]FA = ﬂ{]FeCs(XH UIFA gu:}.
AEA AEA

Proposition 4.5. Let f : X — Y be a map and [F € Cs(X). Define f~(F) = {G|3F € F, s.t. f~(F) € G}. Then
f=(F) € Cs(Y).

Proof. It suffices to verify that f= (IF) satisfies (CSC1) and (CSC2). (CSC1) is straightforward.

For (CSC2), let {Aj}je) cedir f7(F). Then for each j € ], there exists F; € IF such that f~(F;) C Aj, or
equivalently, for each j € J, there exists F; € FF such that F; C f(A)). Since {A}}jej C“" f=(IF), we have
{f(Aj)}jey € F. Then it follows that F(Njg A = Nig f(A) € E. By f2(f7(NjeA)) € Njeg Aj, we
have ﬂjejAj e f7F). O

By Proposition 4.5, we know B € f7(FF) if and only if f~(B) € IF. The co-Scott closed set f~ (FF) is called
the image of IF under f.

Proposition 4.6. Let f : X — Y be a map and G € Cs(Y). Define f<(G) = {F|3 G € G, s.t. f~(G) C F}). Then
fE(G) € Cs(X).

Proof. 1t suffices to verify that f<(G) satisfies (CSC1) and (CSC2). (CSC1) is straightforward.

For (CSC2), let {Aj}¢; Cir £<(G). Then for each j € J, there exists Gj € Gsuchthat f(Gj) CA;. LetB; =
ULG; | f7(Gj) € Aj}. Then {Bj}j¢s cir G. This implies that iy Bj € G. Since f7(Bj) = U{f(G)) | f7(G)) €
Aj} € Aj, wehave f((jg Bj) = Mgy f(B)) €y Aj. This shows that (;g;Aj € f7(G). O

The co-Scott closed set f=(G) is called the inverse image of G under f.
Proposition 4.7. Let f : X — Y beamap, F € Cs(X), G € Cs(Y). Then
(1) f<(f(F)) C F. If f is injective, then f=(f=(F)) = F;
(2) G C f2(f(Q)). If f is surjective, then G = f=(f<(G)).
Proof. (1) Take any F € P(X). Then
Fe fS(f7(F) &= 3Gef7F)st. f(G)CF
— f(GeF f(GCF
— FelF

This shows that f<(f=(FF)) C F. If f is injective, then F = f<(f~(F)) € F. This implies that F C f<(f~ (F)).
(2) Take any G € P(X). Then
GeG < 1AG€G,st.G CG
= dG1€G, st fT(G) C fT(G)
= f(G)efT(G)
=

G e fZ(f7(G).
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This shows that G C f=(f=(G)). If f is surjective, then G1 = f~(f(G1)) € G. This implies that /= (f<(G))
G O

Remark 4.8. By Proposition 4.7, we know (f<, ) : Cs(Y) — Cs(X) is a Galois correspondence between
Cs(Y) and Cs(X). Moreover, f< is the left adjoint and f= is the right adjoint.

Definition 4.9. A map f : (X, F) — (Y, G) between co-Scott closed set spaces is called continuous if
f<(G) cF.

It is easy to check that co-Scott closed set spaces and their continuous maps form a category, denoted by
CSCSs.
For IF € Cs(X) and G € Cs(Y), by Propositions 4.4 and 4.6, we can obtain a co-Scott closed set F X G on
P(X X Y) in the following way:
F x G = px (F) U py (G),

where px : X XY — Xand py : X XY — Y are the projection maps.
Definition 4.10. For F € Cs(X) and G € Cs(Y), F X G is called the product of F and G.

Definition 4.11. For two co-Scott closed sets F and G on P(X), (X, G) is called coarser than (X, F) if idx :
(X, F) — (X, G) is continuous.

It is easy to verify that (X X V;F X G) is the coarsest co-Scott closed set space on P(X X Y) such that
px : (XX Y FXG) — (X, F)and py : (XX Y, F X G) — (Y, G) are continuous. The next proposition shows
that (X X ¥, IF x G) is exactly the product object in the category CSCS.

Proposition 4.12. Let (X, F), (Y,G) be two co-Scott closed set spaces. Then the pair (X X Y, [F X G) is the product
object of (X, IF) and (Y, G) in CSCS.

Proof. It suffices to verify that for each co-Scott closed set space (Z,IH) and two continuous maps f :
(Z, H) — (X,F)and g : (Z,H) — (Y, G), there exists a unique continuous map / : (Z,H) — (XX Y, F x G)
such thatpxoh = fand py oh = g. Leth = f X g, where (f X g)(z) = (f(2), 9()) for each z € Z. By Definition
4.9, we need to show h=(F x G) C H.

Since f<(FF) € H and g=(G) € H, we have

h=(F X G) h=(p% (F) Upy (G))

= (B) U= (G)) (by Remark 4.8)
(px o () U (py o )=(G)
= fFEUITG)
H.

This shows that #~(IF x G) € H. This completes the proof. [J

N

Adopting Definition 4.10, the product of arbitrary finite co-Scott closed sets can be defined.

Definition 4.13. Suppose that A is a finite index set. Let {X;}ica be a family of nonempty sets, p, :
HHEA X, — X, be the projection maps, IFy € Cs(Xa) (A € A). Then [ 4 Fa = Ujea py (IFa) is a co-Scott
closed set on P(] ] ca X1), which is called the product of {IF}jea.-

Proposition 4.14. Suppose that A is a finite index set. Let {X)}xen be a family of nonempty sets, px : I1,ep X —
X be the projection maps, F) € Cs(Xa) (A € A) and F € Cs([11en X1). Then the following statements hold:

(1) [Leapy F) € F;
@) Ey € pr(ITrea Fr):
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(3) Pz (Maea P (B) = py ().
Proof. (1) Take any A € P(J] ep Xa). Then
Ac]lm® = AelJperm®)

AEA AEA
& Il eA st.Aep) (py(F)=F (byProposition 4.7)
— AcF

(2) Take any A € P(X,). Then
AeF, = p,(A)ep;(F)
= el Jrrey

AEA

= aep((JrrE)
AEA

= Aep([[F)
AeA

(3) It follows immediately from (1) and (2). O

5. Convergence spaces and their relationship with concave spaces

In this section, we will use co-Scott closed sets to define convergence structures and study their rela-
tionship with concave structures.

5.1. Convergence spaces

Definition 5.1. A binary relation lim* € Cs(X) x X is called a convergence structure on X if it satisfies
(CS1) (%,x) € lim%;
(CS2) If (IF,x) € im* and F C G, then (G, x) € lim*.

For a convergence structure lim* on X, the pair (X, 1im*) is called a convergence space.

Amap f: (X lim*) — (Y, 1im") between two convergence spaces is called continuous if (f~(IF), f(x)) €
lim" for each (F, x) € lim*.

It is easy to check that convergence spaces and their continuous maps form a category, denoted by CS.
Proposition 5.2. The category CS is topological over Set.

Proof. Firstly, we prove the existence of initial structures. Let {(X,,lim;)} e be a family of convergence
spaces and X be a nonempty set. Let further {f) : X — (X}, limX")} 1ea be a source. Define lim* ¢ C s(X)x X
by
(F,x) € im* & VA € A, (f7 (F), f1(x)) € lim™

for each IF € Cg(X) and x € X. Then (X, lim*) is a convergence space. Let (Y, lim") be a convergence space
and g: Y — X. If f, o g is continuous for each A € A, then we have (f;” o g7(G), fa o g(y)) € lim** for each
G,y € lim”, or equivalently, (97(G), g(y)) € lim*. So g is continuous.

Secondly, we prove the fibre-smallness. The class of all convergence structures on a fixed set X is a
subset of PP(X) X X, which means that the CS-fibre of X isaset. O

Since CS is a topological category over Set, there are the product spaces and the subspaces of convergence
spaces in CS. Next, we introduce the concepts of product spaces and subspaces of convergence spaces.
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Definition 5.3. Let {(XA,limX")} rea be a family of convergence spaces and {p, : [] perXy — X 111ea be the
family of the projection maps {pi}iea. The initial structure with respect to the source {py : [1,er Xy —

(X, lim" )}aea is called the product of {lim**} e, denoted by [T e AlimX". The pair ([T eaXa, I se AlimX") is
called the product space of {(X}, limXA)}AEA. Concretely, for each IF € Cs([T1eaXn) and x € [T eaXa,

(F,x) € H Em* e VA € A, (b7 (F), pax)) € im*".
AeA

Definition 5.4. Let (X,lim”) be a convergence space, Y C X and iy : Y — X be the inclusion map. The
initial structure with respect to the source {iy : ¥ — (X, limX)} is called the sub-convergence structure,
denoted by lim* |y. The pair (Y, lim* ly) is called the subspace of (X, limX). Concretely, for each G € Cs(Y)
andy ey,

(G, y) € lim"y & (i (G), y) € lim*.

By Proposition 5.2, final structures also exist in CS. Let X be a nonempty set, {(X;,lim,)} s be a family

of convergence spaces and {f) : X3 — X} ea be a family of maps. Then the binary relation lim* C Cs (X)xX
defined by

(F,x) € lim* & [x] CFor 3\ € Aand F; € Cs(Xy) s.t. fi(x2) = x, f°(F1) € Fand (Fy, x;) € im™,

is the final structure with respect to the sink {f, : (Xj, limX") —> X})ea. In particular, a quotient space of a
convergence space can be defined.

Definition 5.5. Let (X,lim*) be a convergence space and f : X — Y be a surjective map. Define lim” C
Cs(Y) X Y by

(G,y) elim" & Axe Xand F € Cs(X) s.t. f(x) = y, f~(F) C G and (F, x) € im*,
Then (Y, lim") is called a quotient space of (X,1im*) and f is called a quotient map.

5.2. Concave convergence spaces

In this subsection, we will propose the concept of concave convergence spaces and establish its relation-
ship with concave spaces.

In a convergence space (X, lim*), a special co-Scott closed set that is a counterpart of neighborhood filter
in a topological space can be defined in the following way.

Proposition 5.6. Let (X, lim®) be a convergence space and x € X. Define Ni x S P(X) by

NX

lim*X

= ﬂ [F e Cs(X) | (F,x) € lim*}.

Then Nl’i‘mX € Cs(X) and Nl’i‘mX (S

Proof. It follows immediately from (CS1) in Definition 5.1. [

Definition 5.7. A convergence space (X, lim*) is called preconcave if it satisfies
(P) (Nl’i‘mx,x) € lim* for each x € X.

Definition 5.8. A preconcave convergence space (X, lim*) is called concave if it satisfies
(T) Foreach U € N1 ’i‘mx, there exists V € N1 ’i‘mx such that U € N1 fmx foreachy e V.

(T) has an equivalent form which can be stated as follows:
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(T”) ForeachU e N l’i‘mx, there exists V € P(X) suchthatxe VC Uand Ve N gmx foreachy e V.
The full subcategory of CS consisting of concave convergence spaces is denoted by CaCS.
Lemma 5.9. Let (X, C) be a concave space. Define Uc(x) C P(X) by
Uc(x)={AeP(X)|ABeC, st.x e BCA).

Then the following statements hold:

(1) Ue(x) € Cs(X);

(2) AeCifandonly if A € Ug(x) for each x € A.

Proof. (1) (CSC1)isstraightforward. For (CSC2), let {A}¢; C%ir Ug(x). Then for each j € ], there exists B j€C
such thatx € B; C A;. Let B; = int(A;). Then {Bj};¢j cir C. So we have N BjeCandx e mje] Bjc ﬂjejAj.
This shows that (1j¢; A; € Uc(x).
(2) The necessity is obvious. It remains to verify the sufficiency. For each x € A, there exists B, € C such
that x € B, C A. Then it follows that
A= Jmcl| JB.ca

xeA xeA

J€l

This shows that A = J,ea Bx € C. O
Next, we establish the relationship between convergence structures and concave structures.
Proposition 5.10. Let (X, C) be a concave space. Define lim¢ C Cs(X) x X by
lim® = {(F, x) | Ug(x) C F}.
Then (X,1imC) is a concave convergence space.

Proof. Itsuffices to verify that 1im® satisfies (CS1), (CS2), (P) and (T). (CS1), (CS2) and (P) are straightforward.
For (T), since (X, C) is a concave space, we have U¢(x) € Cs(X). Furthermore, we have

N = ﬂ F = ﬂ FF = Ug(x).

(F,x)elim® Uc(x)CF

Then for each A € Nl’;mc = Ug(x), there exists B € C such that x € B € A. By Lemma 5.9, we have
A € Ue(y) = N1 ?mc for each y € B. This shows that for each A € Nl’i‘mc, there exists B € P(X) such that
xeBCAand A e}\/gmc foreachyeB. O

Proposition 5.11. Let (X,1im”) be a concave convergence space. Define Clim* ¢ P(X) by

Cim* — (A e P(X)|Vx e A A e N

lim* b
Then (X, Chmx) is a concave space.

Proof. It is straightforward and is omitted. [

Proposition 5.12.

(1) If f : (X,CX) — (Y, CY) is concavity-preserving, then f : (X, limCX) — (Y, limcy) is continuous.
y-P g

@) If f : (X, lim*) — (Y, lim") is continuous, then f : (X, Ci™") —> (Y, C'™") is concavity-preserving.
y-P g
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Proof. (1) Take any (F, x) € 1im€", ie., Ucx(x) € F. In order to prove (f=(FF), f(x)) € 1im€’, i.e., Uer(f(x)) €
= (F), take any M € Ugr(f(x)). Then there exists D € C¥ such that f(x) € D € M. This implies that
x € f7(D) C f=(M). Since f : (X,C¥) — (Y,CY) is concavity-preserving, it follows that f~(D) € CX. By
definition of Ucx(x), we obtain f (M) € Ugx(x) C [F. Then it follows that M € f=(IF). By the arbitrariness of
M, we obtain Ugr(f(x)) € £~ (F). That s, (f=(F), f(x)) € lim . This shows that f : (X, imC") — (¥,1im®")
is continuous. y .

(2) Take any D € C'™ ,ie., Yy € D,D € Ngmy = (g yeiim” G- In order to prove f~(D) € C'"™, take any
x € f7(D),ie., f(x) € D. Then

®)
DeN™ = () Gc () F£mc (| £F®=C () B=f0N0
(G, f(x))elim” (f= (), f(x))elim” (IF,x)elim® (IF,x)elim®
This implies that f~(D) € Nl’i‘mX for each x € f~(D). Thatis, f~(D) € Clim®, By the arbitrariness of D, we
obtain £ : (X,Cim") — (Y, D™") is concavity-preserving. [
Proposition 5.13. Suppose that (X, C) is a concave space and (X, lim) is a concave convergence space, then cim® = ¢
and 1im®" = lim.
Proof. For C'm® = C, take any A € P(X). Then
AcCim® — VreA Ac N ¢

e VYxeA Ac ﬂ F = ﬂ F = Ug(x)
(F,x)elim® Ue(x)CF

— VxeA, AeUc(x)

< Ae€C. (byProposition5.9)

For lim¢ " = lim, take any A € P(X). On the one hand,

AcUpm(x) & 3dBeC'™ xeBCA
& VyeBBeN/ ,xeBCA
= AeN}..
It follows that Upim(x) C Nﬁm On the other hand, since (X, lim) is concave, for each U € Nl’i(m, there exists

VePX)suchthatxe VCc Uand V € Ngm for each y € V. This implies V € C'"™ and x € V C U. Then it
follows that U € Ugim (x). This shows that N | € Ugim(x). So we obtain N} = Ugim(x). This implies that

(F,x) € lim &= Af CF & Ugin(x) C F & (F,x) € lim®".
Hence, we obtain 1imC™ = lim. O
Now we obtain the main result in this subsection.
Theorem 5.14. The categories Concave and CaCS are isomorphic.
Proof. It follows from Propositions 5.10-5.13. [

Note that using the inducing methods between concave spaces (X, C) and concave convergence spaces
in Propositions 5.10 and 5.11, concave spaces and convergence spaces can also be induced by the other.
Also, it is easily observed in Proposition 5.13 that Cim® = ¢ and im®" ¢ lim for a concave space (X,C) and
a convergence space (X, lim). Then combining the compatibility with respect to morphisms in Proposition
5.12, we can obtain the following result.

Theorem 5.15. The category Concave can be embedded in the category CS as a full and reflective subcategory.
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6. Categorical properties of convergence spaces

In this section, we will discuss the categorical properties of CS, including extensionality and productivity
of quotients maps.

Firstly, let us explore the extensionality of the category of convergence spaces.

For convenience, let (X, limx) be a convergence space, X = X U {co} with oo ¢ X and ix : X — X denote
the inclusion map.

Proposition 6.1. Let (X,1im*) be a convergence space. Define lim* ¢ Cs(X) x X by
(F,x) € im* < x = o0 or (iC(F), x) € im*.
Then (X, limX) is a convergence space.

Proof. It suffices to verify that lim* satisfges (CS1) and (CS2). B
For (CS1), if x = oo, then (0, ) € lim*. If x € X, then i (*) = ¥ and (%, x) € im*. So (%, x) € lim*.
For (CS2), let (F, x) € lim* and IF C G. If x = oo, then (G, x) € lim*. If x # oo, then (i (F), x) € lim*. By

i (F) C i (G), it follows that (i (G), x) € im*. So (G, x) € lim*. O

Theorem 6.2. The category CS is extensional.

Proof. Let (X,1lim*) be a convergence space. By Proposition 6.1, we obtain a convergence structure lim* on
X. It suffices to show that (X, lim*) is a one-point extension of (X, lim®).

Firstly, we show that (X, lim*) is a subspace of (X,1im®), that is, lim* = limil x. Take any FF € Cs(X) and
x € X. Since i§ (i3 (F)) = F, we have

(F,x) € im¥|x &= (i (F), x) € im* & (£ (05 (F)), x) € im* & (F,x) € im*.

Next, let (Y, lim")bea convergence space, (Z, lim?)bea subspace of (Y, lim")and f:(Z lim%) — (X, lim*)
be continuous. For the inclusion map iz : Z — Y and the extensional map f : Y — X of f defined by

f(y) = f(y) for each y € Z, and f(y) = oo otherwise, there exists a commutative diagram in the category Set
of sets as follows:

N
>~

iz ix

>-<
o]

T SN
7

In order to prove j_f S (Y, limY) — (X, limi) is continuous, it suffices to verify that (f:(G), ]_C(y)) € im*
for each (G, y) € lim”. Now we divide into two cases:

Case 1: f(y) = o, ie., y € Y/Z;

Case 2: 7(y) #o00,ie,y €

For case 1, by the definition of limi, we have (?:(G), j_f(y)) e lim*.

For case 2, take any (G,y) € lim?, it follows from G C i7 (i5 (G)) that (i7(i5 (G)),y) € lim". Since
(Z,lim?) is a subspace of (Y, limyk_)we have (i5(G),y) € lim?. By the contin1_1i=t>y of f, it follows that
(f705(G)), f(y) € lim*. Since ix (f (G) € f~(i5 (G)), we have f(i5(G)) C i (f (G)). This implies that
(i?(f=> (G)), f(y) € lim*. By the definition of lim%, we obtain (?: (G),f(y)) € lim*. Hence, we obtain that

? S(Y,lim") — (X, lim?) is continuous. [J
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Secondly, we will show that finite products of quotients maps are quotient maps in CS. At the beginning,
we first give an important property of co-Scott closed sets.

Lemma 6.3. Suppose that A is a finite index set. Let {fy : XA — Ya)rea be a family of surjective maps and {IFy} ea
be a family of co-Scott closed sets with IFy € Cs(Xy) for each A € A. Then

(ITA) (IT%) =LA@,

AeA AeA AeA
Proof. Let
H X H)\exf A H Y/\
AEA AEA
p/\\l/ \|/q/\
_—
Xa 7 Y

be the product commutation diagram with respect to sets. Take any y € [] Y, Ao € A and F,, € F;,. Then
AEA

UAS q(/\_g(f/\_g)(F/\o)) — 3 Xp € F/\of s.t. fﬂo(xﬁo) = q/\o(y)
= AxepyFy), st ([[ )@=

AeA
(Since {f1 : X3 — Ya}aen are surjective maps)

= ve([]A) ()

AEA

This implies that g3_(f,”(F»,)) = (HAeA fA) (p/\ (Fa,) ) Take any A € P([1 en X2). Then

ae([1n) ([TR) = HfA) Je]]®

AEA AEA AeA
= Hf,\)(_ U py (Ep)
AeA AeA
= Anen st ([[A) (4) )
AeA
= JheAFyeFy, stpiEc([[H) (A)
AEA
= AheAFyeFy, st ([[A) (PnE)cA
AEA
— dAge A/FAO € ]F/\of s.t. q;o(fg(F/‘o)) CA.
= Tl eA, st Aeqy(fi (Ep))
= Ae| JaT(fP @)
AEA
= Ac][fE.
AeA
This implies that -
(T (TT%) - [T 76
AEA AEA AEA
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Theorem 6.4. Suppose that A is a finite index set. If {fy : (Xp, lim™) — (Y, im" ")} 1en is a family of quotient
maps in CS, then the product map

[TA:(TTx0 [[1im™) — (T] Yo ] J1im™)
A€EA AEA AEA A€EA AEA

is a quotient map in CS.

Proof. Define

f=]TH &tim® = (T X0 [ J1im™), ootim®):= (] ] va, [J1im™).

AeA AeA AeA AeA AeA

Let
X 1lim*) —L 5 (v lim")

P,\\[ Jq/\

(X, im*") ﬁ (Y, lim™)

be the product communication diagram with respect to sets. Since {f} : (X3, limXA) — (Y, limYA)} leA IS a
family of quotient maps in CS, for each Hy € Cs(Y2) and y, € Y, we have

(H,, y)\) €lim"™ e 3 x) € X3, F) € Cs(X)) s.t. f/\(xA) = y/\,f/\:(IFA) CH, and (F),x,) € lim**.
Suppose that lim! is the quotient structure with respect to f. Then
(H,y) elim’ & dx e X,G € Cs(X) s.t. f(x) =y, f~(G) € Hand (G, x) € lim*.

It suffices to verify that lim) = lim".
On the one hand, if (H, y) € lim), then there exist x € X and G € Cs(X) such that fx)=y,f7(G) cH
and (G, x) € lim*. Since faopr=gaof, wehave

[ epy (@) =gy o f7(G) € g7 (H)
and
faopa(x) =qao f(x) = qi(y)

for each A € A. It follows from the continuity of f; o p, that ((fi o pA)~(G), fa o pa(x)) € lim™. This implies
that (47 (H),q.(y)) € lim"*. Thus (H, y) € lim?” implies (43 (H),qa(y)) € lim™ for each A € A. That is,
(H,y) e limY implies (H, y) € lim”. This shows that lim) C lim".

On the other hand, let

61 ={G1 e Cs(X) | £7(Gy) € 47 (H))
for each A € A and let
[]6: = {g A — []6r1v1e A g0 e@}

AEA

be the set of choice functions, that is,

VAeA, 3Gy eCs(Xy), st fP(G) Cq7(H) & g€ H Gu, st Y AeA, f2(9(A) C g7 (H).
AeA
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Furthermore, we have

[1rene]]armen,

AEA AEA
which implies .
F([Tow)=(T1#) ([Tow)=[1f @) cm.
AEA AeA AEA AeA

Let
Hy ={xa € Xy | fa(xa) = q2(v)}

for each A € A and let
[]H:= {h A— [[HaIV A€, fim) = qA(y)}
AEA

be the set of choice functions, that is,

VAeA AxyeXy, st fi(xy) = qaly) & Ah e HHA, st.YAeA, fith(h) = ga(y).
AEA

Furthermore, we have
A@aen) = ([T A)@er) = (AGAD) = (0®),_, = v-
AeA
Then for each H € Cs(Y) and y € Y, we have
(H, y) € lim"
—VAeA dx,€X,,G, € Cs(X)\) s.t. f/\(xA) = E]A(y),f/\:}(G)\) c q?(H) and (G)\,x/\) € limX"
e dhe HHA,V/\ € A,AG) € Cs(Xy), s.t. £2(Gy) C g5 (H) and (G, h(1)) € Hm™

AeA
e 3Ane[[Hiandge [[ G st. VA € A, (g(A), k(1)) € lim*™
AeA AEA
= dhe [[Hiandge []Gn st.vae A (p7(]] o) pa((rA)ren)) € lim™
AeA AeA AeA
e 3ane[[Hiandge [ st (]9, BA)rea) € lim*
AeA AeA AeA

= dx e Xand G € Cs(X), s.t. f(x) =y, f7(G) CHand (G,x) € lim*

& (H,y) € lim.

This shows that lim" limf . As a consequence, we obtain lim! = limf. O

7. Conclusions

In this paper, we first discussed the categorical properties of convex spaces, including extensionality and
productivity of quotient maps. Then we introduced convergence structures in the framework of concave
spaces and studied its categorical relationship with concave spaces as well as its categorical properties.
Actually, we applied the method in topology to the theory of convex spaces (dually, concave spaces).
Following this approach, we can further consider the following problems:

(1) Besides the extensionality and productivity of quotient maps, Cartesian-closedness is another im-
portant categorical property. Yao and Zhou [26] proved that the category of convex spaces is not Cartesian
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closed. By the duality, the category of concave spaces is not Cartesian-closed. But we showed in Theorem
5.15 that the category of concave spaces can be embedded in the category of convergence spaces as a full
and reflective subcategory. This relationship is similar to that between topological spaces and filter-based
convergence spaces. It is well known that the category of filter-based convergence spaces is Cartesian
closed. This motivates to consider if the category of convergence spaces is Cartesian closed.

(2) In Theorems 3.5 and 6.4, we only showed the productivity of finite quotient maps since we could
only know the convex sets in the product space of a finite family of convex spaces and only define the finite
product of co-Scott closed sets in the present stage. So we will go on considering the productivity of an
arbitrary family of quotient maps in Theorems 3.5 and 6.4.

(3) In this paper, the categorical properties of convex spaces and its corresponding convergence spaces
are discussed. As far as I know, convex structures have been generalized to the fuzzy case. So it is natural
to consider the fuzzy counterparts of all the results of this paper.
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