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Abstract. In this paper, we consider the three-space properties in paratopological gyrogroups. The fol-
lowing are the established conclusions: (1) metrizability of compact (resp., sequentially compact, countably
compact) subsets is a three-space property in the class of k-gentle paratopological gyrogroups; (2) let G be
a strongly paratopological gyrocommutative gyrogroup and let H be a second-countable invariant topo-
logical subgyrogroup of G. If the paratopological gyrogroup G/H has a countable network, then so does
G; (3) let H be a compact strongly L-subgyrogroup of a paratopological gyrogroup G. If H and G/H have
countable tightness, then G has countable tightness.

1. Introduction

A structure similar to a group, referred to as a gyrogroup, is characterized by the absence of the
associative law (as defined in Definition 2.1). A paratopological gyrogroup G is a gyrogroup G with a topology
such that its binary operation is jointly continuous [4]. If G is a paratopological gyrogroup and the inverse
operation of G is continuous, then G is a topological gyrogroup [3]. Significant recent advancements in
the study of topological gyrogroups and paratopological gyrogroups are detailed in the review article
[3, 4, 10, 15].

A topological-algebraic property P is a three-space property in the class of topological (paratopological)
groups provided that for every topological (paratopological) group G and a closed invariant subgroup N of
G, the fact that both N and G/N haveP implies that G also hasP. Now there are many conclusions about the
three-space properties of topological groups and partopological groups [2]. In 2006, M. Bruguera and M.
Tkachenko [9] studied some properties of compact, countably compact, pseudocompact, and functionally
bounded sets which are preserved or destroyed when taking extensions of topological groups. In 2010, O.
Ravsky [21] proved that being a topological group is a three-space property in the class of paratopological
groups. In 2015, S. Lin, F. Lin, and L.H. Xie conducted a study on the convergence phenomena observed
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within the extensions of topological groups, as referenced in [18]. In 2015, the research by L.H. Xie and S. Lin,
as cited in [27], demonstrated that characteristics like local compactness, compactness, and connectedness
can be considered as of three-space properties in regular paratopological groups. Additionally, in 2017, the
work of M. Fernández and I. Sánchezin, as referenced in [12], showed that if H is an invariant topological
subgroup of a paratopological group G such that H is second-countable and G/H has countable network,
then G has countable network as well.

Given that gyrogroups are an extension of groups, it prompts us to investigate the potential exten-
sion of three-space properties in paratopological groups to paratopological gyrogroups in terms of their
topological-algebraic characteristics. As indicated in [17], the understanding of three-space properties
within paratopological gyrogroups is not as comprehensive when contrasted with what is known about
paratopological groups. In [17], they have proved the following conclusion: being a strongly topological
gyrogroup is a three-space property in the class of strongly paratopological gyrogroups.

The focus of our paper is to explore how certain characteristics are altered or maintained by extensions
of paratopological gyrogroups. The structure of the paper is outlined as follows. The main aim of Section
2 is to present the pertinent concepts and conclusions that are necessary for understanding the content of
this article. In Section 3, we investigate the three-space properties for compact type sets. We show that
the properties of compactness, connection, etc, are three-space properties in paratopological gyrogroups
(see Theorem 3.11), and that metrizability of compact (resp., sequentially compact, countably compact)
subsets is a three-space property in the class of k-gentle paratopological gyrogroups (see Theorem 3.14).
In Section 4, we study the three-space property for paratopological gyrocommutative gyrogroups. Let
G be a strongly paratopological gyrocommutative gyrogroup and let H be a second-countable invariant
topological subgyrogroup of G. If the paratopological gyrogroup G/H has a countable network, then so
does G (see Theorem 4.6).

2. Definitions and preliminaries

In this section, we introduce necessary notation, terminology and facts about topological gyrogroups
and paratopological gyrogroups. The binary operation in a given set is known as the set operation. The
set of all automorphisms of a groupoid (S,⊕), denoted Aut(S,⊕), forms a group with group operation given
by bijection composition. Throughout this paper, all topological spaces are assumed to be Hausdorff,
unless otherwise is explicitly stated. The family of open neighborhoods of the neutral element 0 in a
(para)topological gyrogroup G will be denoted byU.

Definition 2.1. ([26, Definition 2.7]) Let (G,⊕) be a nonempty groupoid. We say that (G,⊕) or just G (when
it is clear from the context) is a gyrogroup if the followings hold:

(1) There is an identity element 0 ∈ G such that 0 ⊕ x = x = x ⊕ 0 for all x ∈ G.
(2) For each x ∈ G, there exists an inverse element ⊖x ∈ G such that ⊖x ⊕ x = 0 = x ⊕ (⊖x).
(3) For any x, y ∈ G, there exists an gyroautomorphism gyr[x, y] ∈ Aut(G,⊕) such that x ⊕ (y ⊕ z) =

(x ⊕ y) ⊕ gyr[x, y](z) for all z ∈ G;
(4) For any x, y ∈ G, gyr[x ⊕ y, y] = gyr[x, y].

Definition 2.2. ([26, Definition 2.9]) Let (G,⊕) be a gyrogroup with gyrogroup operation (or, addition) ⊕.
The gyrogroup cooperation (or, coaddition) ⊞ is a second binary operation in G given by the equation
a ⊞ b = a ⊕ gyr[a,⊖b]b for all a, b ∈ G. The groupoid (G,⊞) is called a cogyrogroup, and is said to be the
cogyrogroup associated with the gyrogroup (G,⊕).

Replacing b by ⊖b in a ⊞ b = a ⊕ gyr[a,⊖b]b, we have the identity a ⊟ b = a ⊖ gyr[a, b]b for all a, b ∈ G,
where we use the obvious notation, a ⊟ b = a ⊞ (⊖b).

Theorem 2.3. ([26, Table 2.2]) Let (G,⊕) be a gyrogroup. Then, for any a, b, c ∈ G we have

(1) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ gyr[b, a]c); Right Gyroassociative Law
(2) gyr[a, b] =gyr[a, b ⊕ a]; Right Loop Property
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(3) (⊖a) ⊕ (a ⊕ b) = b;
(4) (a ⊖ b) ⊞ b = a;
(5) (a ⊟ b) ⊕ b = a; Right cancellation
(6) gyr[a, b](c) = ⊖(a ⊕ b) ⊕ (a ⊕ (b ⊕ c));
(7) ⊖(a ⊕ b) = gyr[a, b](⊖b ⊖ a); Gyrosum Inversion
(8) gyr[a, b](⊖x) = ⊖gyr[a, b]x;
(9) gyr−1[a, b] = gyr[b, a]; Inversive symmetry

(10) ⊖(a ⊞ b) = (⊖b) ⊞ (⊖a). The Cogyroautomorphic Inverse Theorem

Definition 2.4. ([26, Definition 2.8]) A gyrogroup (G,⊕) is gyrocommutative if its binary operation obeys
the gyrocommutative law a ⊕ b = gyr[a, b](b ⊕ a) for all a, b ∈ G.

Theorem 2.5. ([26, Table 3.1]) Let (G,⊕) be a gyrocommutative gyrogroup. Then, for any a, b ∈ G, we have

(1) ⊖(a ⊕ b) = ⊖a ⊖ b; Gyroautomorphic Inverse Property
(2) a ⊞ b = b ⊞ a;
(3) a ⊞ b = a ⊕ ((⊖a ⊕ b) ⊕ a).

Definition 2.6. ([24, Definition 4]) Let G be a gyrogroup. A nonempty subset H of G is a subgyrogroup,
written H ≤ G, if H is a gyrogroup under the operation inherited from G and the restriction of gyr[a, b] to
H becomes an automorphism of H for all a, b ∈ H.

Furthermore, a subgyrogroup H of G is said to be an L-subgyrogroup [24, Definition 8], denoted by
H ≤L G, if gyr[a, h](H) = H for all a ∈ G and h ∈ H.

Definition 2.7. ([24, Definition 9]) A subgyrogroup H of a gyrogroup G is normal in G, written H ⊴ G, if it
is the kernel of a gyrogroup homomorphism of G.

By the definition of L-subgyrogroup in [24], it is easy to see that a normal subgyrogroup of a gyrogroup
G is an L-subgyrogroup.

Theorem 2.8. ([24]) Let H be a subgyrogroup of a gyrogroup G. Then H⊴G if and only if the operation on the coset
space G/H given by (a ⊕H) ⊕ (b ⊕H) = (a ⊕ b) ⊕H for any a, b ∈ G is well defined.

In fact, this operation is independent of the choice of representatives for the left cosets, that is, it is a
well-defined operation, and the coset space G/H forms a gyrogroup, called a quotient 1yro1roup [24]. We
represent the mapping from G to G/H as π with the form a 7→ a ⊕ H. It is evident that for any a, b ∈ G, we
obtain π(a ⊕ b) = π(a) ⊕ π(b), and for every element a ∈ G, the equation π−1(π(a)) = a ⊕H holds.

Theorem 2.9. ([24]) Let H be a subgyrogroup of a gyrogroup G. Then H is a normal subgyrogroup in G if and only
if (a ⊕ b) ⊕H = a ⊕ (H ⊕ b) = (a ⊕H) ⊕ b for all a, b ∈ G.

Proposition 2.10. ([24]) Let G be a gyrogroup. If H ⊴ G, then gyr[a, b](H) = H for all a, b ∈ G.

Since in Topology ’normal’ refers to a separation property of spaces, we will use the term ’invariant’ to
denote this property of subgyrogroups.

Definition 2.11. ([16]) A subgyrogroup H of a gyrogroup G is said to be a strongly L-subgyrogroup 1),
denoted by H ⩽SL G, if gyr[a, b](H) ⊂ H for all a, b ∈ G.

Proposition 2.12. ([16]) Let G be a gyrogroup. If H ⩽SL G, then a ⊕ (b ⊕H) = (a ⊕ b) ⊕H for all a, b ∈ G.

Definition 2.13. ([3]) A triple (G, τ,⊕) is called a topological gyrogroup if and only if

1)In [7, Definition 3.9] it is called a strongly subgyrogroup.
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(1) (G, τ) is a topological space;
(2) (G,⊕) is a gyrogroup;
(3) The binary operation ⊕ : G×G→ G is continuous where G×G is endowed with the product topology

and the operation of taking the inverse ⊖(·) : G→ G, i.e. x→ ⊖x, is continuous.

If a triple (G, τ,⊕) satisfies the first two conditions and its binary operation is continuous, we call
such triple a paratopological gyrogroup [4]. Sometimes we will just say that G is a topological gyrogroup
(paratopological gyrogroup) if the binary operation and the topology are clear from the context.

Definition 2.14. A triple (G, τ,⊕) is called a right topological gyrogroup if and only if

(1) (G, τ) is a topological space;
(2) (G,⊕) is a gyrogroup;
(3) For all a ∈ G, the right action Ra : G→ G, where Ra(x) = x⊕ a for each a ∈ G, is a continuous mapping.

If a triple (G, τ,⊕) satisfies the first two conditions and for all a ∈ G, the left action La : G → G, where
La(x) = a ⊕ x for each a ∈ G, is a continuous mapping, we call such triple a left topological gyrogroup. A
semitopological gyrogroup is a left topological gyrogroup which is also a right topological gyrogroup.

The relationships between the aforementioned definitions can be represented as follows.
topological gyrogroup⇒paratopological gyrogroup⇒ semitopological gyrogroup⇒ left (right) topo-

logical gyrogroup.

Definition 2.15. ([5]) Let (G, τ,⊕) be a topological gyrogroup. We say that G is a strongly topological
gyrogroup if there exists a neighborhood base U of the identity 0 in G such that, for every U ∈ U,
gyr[x, y](U) = U holds for any x, y ∈ G. For convenience, we say that G is a strongly topological gyrogroup
with a neighborhood baseU of 0. Clearly, we may assume that U is symmetric for each U ∈ U.

For a paratopological gyrogroup (G, τ,⊕), we called (G, τ,⊕) a strongly paratopological gyrogroup if there
exists a neighborhood baseU of the identity 0 in G such that, for every U ∈ U, gyr[x, y](U) = U holds for
any x, y ∈ G.

A subgyrogroup H of a topological gyrogroup G is called admissible [6] if there exists a sequence
{Un : n ∈ ω} of open symmetric neighborhoods of the identity 0 in G such that Un+1 ⊕ (Un+1 ⊕ Un+1) ⊂ Un
for each n ∈ ω and H =

⋂
n∈ωUn. If G is a strongly topological gyrogroup with a symmetric neighborhood

baseU at 0 and each Un ∈ U, we say that the admissible topological subgyrogroup is generated fromU.

Proposition 2.16. ([3]) Let G be a topological gyrogroup, x, y ∈ G.

(1) The left translation Lx : G→ G, where Lx(y) = x ⊕ y for every y ∈ G, is homeomorphism;
(2) The right translation Rx : G→ G, where Rx(y) = y ⊕ x for every y ∈ G, is homeomorphism.

In section 5 of [10], the authors proved that the right translation of a paratopological loop is homeo-
morphisms. Since every gyrogroup is a left Bol loop [22], we can get a paratopological gyrogroup is a
paratopological loop, it follows that the right translation of a paratopological gyrogroup is homeomor-
phisms. Next, we will provide a detailed proof of this conclusion.

Proposition 2.17. Let (G,⊕) be a gyrogroup. Then a ⊞ b = b ⊕ ((⊖b ⊕ a) ⊕ b) for all a, b ∈ G.

Proof. For all a, b ∈ G we have

b ⊕ ((⊖b ⊕ a) ⊕ b) = (b ⊕ (⊖b ⊕ a)) ⊕ gyr[b,⊖b ⊕ a]b by the left gyroassociative law
= a ⊕ gyr[a,⊖b ⊕ a]b by a left cancellation and a left loop property
= a ⊕ gyr[a,⊖b]b by a right loop property
= a ⊞ b. by Definition 2.2
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Proposition 2.18. ([26, Theorem 2.22]) Let (G,⊕) be a gyrogroup, and let a ∈ G. Then La and Ra are bijective.

Proposition 2.19. Let G be a paratopological gyrogroup, a ∈ G.

(1) The left translation La : G→ G, where La(x) = a ⊕ x for every a ∈ G, is homeomorphism [4];
(2) The right translation Ra : G→ G, where Ra(x) = x ⊕ a for every a ∈ G, is homeomorphism.

Proof. By Proposition 2.18 we have that Ra is bijective. To prove (2), let x ∈ G and let U be a neighborhood
of Ra(x) = x ⊕ a. By the joint continuity of G, there exist open subsets Ua, Ux of G such that a ∈ Ua, x ∈ Ux
and Ux ⊕Ua ⊆ U. Hence Ra(Ux) = Ux ⊕ a ⊆ Ux ⊕Ua ⊆ U, which shows that Ra : G→ G is continuous.

To prove that (Ra)−1 is continuous, we put y = x ⊕ a, then x = y ⊟ a = y ⊞ (⊖a) = (⊖a) ⊕ ((a ⊕ y) ⊕ (⊖a))
by Theorem 2.17. That is R−1

a (x) = (⊖a) ⊕ ((a ⊕ x) ⊕ (⊖a)) for any x ∈ G. So, R−1
a = L⊖a ◦ R⊖a ◦ La which is

continuous by (1). Thus we get Ra is homeomorphism.

The following theorem shows that the admissible topological subgyrogroup of a topological gyrogroup
is an invariant subgyrogroup.

Theorem 2.20. Suppose that (G, τ,⊕) is a topological gyrogroup and {Un : n ∈ ω} is a sequence of open symmetric
neighborhoods of the identity 0 in G such that Un+1 ⊕ (Un+1 ⊕ Un+1) ⊂ Un for each n ∈ ω. Then the admissible
topological subgyrogroup H =

⋂
n∈ωUn is an invariant subgyrogroup of G.

Proof. PutU = {Un : n ∈ ω}.
Claim 1. a ⊕H = H ⊕ a for each a ∈ G.
For a ∈ G, suppose f (x) = ⊖a ⊕ (x ⊕ a) for any x ∈ G. So, f = L⊖a ◦ Ra which is homeomorphism by

Proposition 2.16. Since f (0) = ⊖a⊕(0⊕a) = 0, for U ∈ U, there exists V ∈ U such that f (V) = ⊖a⊕(V⊕a) ⊂ U.
It follows that ⊖a⊕ (H⊕ a) ⊂ H, for each a ∈ G, that is H⊕ a ⊂ a⊕H. And for each U ∈ U, there exists V ∈ U
such that f−1(V) ⊂ U. It follows that a ⊕H ⊂ H ⊕ a, for each a ∈ G. So we can get H ⊕ a = a ⊕H.

Claim 2. (a ⊕H) ⊕ b = (a ⊕ b) ⊕H for each a, b ∈ G.
For a, b ∈ G, suppose f (x) = ⊖(a ⊕ b) ⊕ ((a ⊕ x) ⊕ b) for any x ∈ G. So, f = L⊖(a⊕b) ◦ Rb ◦ La which is

homeomorphism by Proposition 2.16. Since f (0) = ⊖(a⊕ b)⊕ ((a⊕ 0)⊕ b) = 0, for U ∈ U, there exists V ∈ U
such that f (V) = ⊖(a⊕ b)⊕ ((a⊕V)⊕ b) ⊂ U. It follows that ⊖(a⊕ b)⊕ ((a⊕H)⊕ b) ⊂ H, for each a, b ∈ G, that
is (a ⊕ H) ⊕ b ⊂ (a ⊕ b) ⊕ H. And for each U ∈ U, there exists V ∈ U such that f−1(V) ⊂ U. It follows that
(a ⊕ b) ⊕H ⊂ (a ⊕H) ⊕ b, for each a, b ∈ G. So we can get (a ⊕H) ⊕ b = (a ⊕ b) ⊕H.

Claim 3. a ⊕ (H ⊕ b) = (a ⊕ b) ⊕H for each a, b ∈ G.
For a, b ∈ G, suppose f (x) = ⊖(a⊕b)⊕(a⊕(b⊕x)) = gyr[a, b](x) for any x ∈ G. So f is a homeomorphism by

Proposition 2.16. Since f (0) = gyr[a, b](0) = 0, for U ∈ U, there exists V ∈ U such that f (V) = gyr[a, b](V) ⊂
U. It follows that gyr[a, b](H) ⊂ H, for each a, b ∈ G.

For a, b ∈ G, f−1(x) = gyr−1[a, b](x) = gyr[b, a](x) for any x ∈ G. According to the proof process above, it
can be concluded that H ⊂ gyr[a, b](H). Then gyr[a, b](H) = H.

From Claims 1, 2 and 3 it follows that H is an invariant subgyrogroup of G by Theorem 2.9.

For a gyrogroup G, byP(G) we denote the set of all paratopologies on the gyrogroup G. For paratopolo-
gies τ1, τ2 ∈ P(G) put τ1 ∧ τ2 = sup{τ ∈ P(G) : τ ⊂ τ1 ∩ τ2}, τ1 ∨ τ2 = inf{τ ∈ P(G) : τ ⊃ τ1 ∪ τ2}. τ1 ∨ τ2 is a
topology generated by taking the union of τ1 and τ2 as the subbase.

Proposition 2.21. Let τ1, τ2 be paratopologies on a gyrogroup G with bases at the unitB1,B2 respectively. Then the
upper bound τ1 ∨ τ2 is a paratopological gyrogroup topology on G with a neighborhood base B1 ∨ B2 = {U1 ∩ U2 :
Ui ∈ Bi} at the unit.

Proof. Firstly, we shall prove that (G,⊕, τ1 ∨ τ2) is a paratopological gyrogroup. It is enough to show that
the binary operation ⊕ : (G, τ1 ∨ τ2)× (G, τ1 ∨ τ2)→ (G, τ1 ∨ τ2) is continuous where (G, τ1 ∨ τ2)× (G, τ1 ∨ τ2)
is endowed with the product topology. Take any x, y ∈ G and any neighborhood U of x⊕ y. We can assume
U = V1∩V2, where V1 ∈ τ1 and V2 ∈ τ2. Since (G,⊕, τ1) and (G,⊕, τ2) are paratopological gyrogroups, there
are W1,H1 ∈ τ1 and W2,H2 ∈ τ2 such that x ∈W1 ∩W2, y ∈ H1 ∩H2, W1 ⊕H1 ⊂ V1 and W2 ⊕H2 ⊂ V2. Thus,
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(W1∩W2)⊕ (H1∩H2) ⊂ V1∩V2. Clearly, x ∈W1∩W2 ∈ τ1 and y ∈ H1 ∩H2 ∈ τ2. This means that the binary
operation ⊕ is continuous at the unit in (G,⊕, τ1 ∨ τ2).

Secondly, we shall prove thatB1∨B2 is a neighborhood base at the unit. Clearly,B1∨B2 is a neighborhood
at the unit, becauseB1 andB2 are bases at the unit in (G, τ1) and (G, τ2) respectively. Take any neighborhood
U of the unit in (G, τ1 ∨ τ2). Clearly, we can assume U = V1 ∩ V2, where V1 ∈ τ1 and V2 ∈ τ2. Then one can
find B1 ∈ B1 and B2 ∈ B2 such that B1 ⊂ V1 and B2 ⊂ V2. Thus, B1 ∩ B2 ∈ B1 ∨ B2 and B1 ∩ B2 ⊂ U. This
shows that B1 ∨ B2 is a neighborhood base for (G, τ1 ∨ τ2).

Proposition 2.22. Let G be a paratopological gyrocommutative gyrogroup with topology τ and a neighborhood base
U at 0. One defines the conjugate topology τ−1 on G by τ−1 = {⊖U : U ∈ τ}. Then G′ = (G, τ−1) is also
a paratopological gyrocommutative gyrogroup with neighborhood base ⊖U at 0, and the inversion x → ⊖x is a
homeomorphism of G onto G′. The upper bound τ∗ = τ ∨ τ−1 is a topological gyrocommutative gyrogroup topology
on G with neighborhood base U ∨ (⊖U) = {U ∩ (⊖U) : U ∈ U} at 0, and we call G∗ = (G, τ∗) the topological
gyrocommutative gyrogroup associated to G.

Proof. We first prove that G′ = (G, τ−1) is a paratopological gyrocommutative gyrogroup. Let G = (G, τ). For
every points x, y ∈ G and every open neighborhood⊖U ⊂ G′ of the point x⊕y, that is (⊖x)⊕(⊖y) = ⊖(x⊕y) ∈ U
by Theorem 2.5 (1), there exist open neighborhoods V,W ⊂ G of the points ⊖x,⊖y respectively such that
V ⊕W ⊂ U. By Theorem 2.5 (1) we can get (⊖V) ⊕ (⊖W) = ⊖(V ⊕W) ⊂ ⊖U. Thus, for every x ⊕ y ∈ ⊖U
there exist x ∈ ⊖V and y ∈ ⊖W such that (⊖V) ⊕ (⊖W) ⊂ ⊖U. It is obvious the inversion x → ⊖x is a
homeomorphism of G onto G′. By Proposition 2.21, G∗ = (G, τ∗) is a paratopological gyrocommutative
gyrogroup.

Next we verify that G∗ = (G, τ∗) is a topological gyrocommutative gyrogroup. Let U be an open
neighborhood base at 0 of G. Then U ∨ (⊖U) is a family of subsets containing 0 of G. Since the identity
functions id : (G, τ)→ (G, τ) and id′ : (G, τ−1)→ (G, τ−1) are continuous, we take any x ∈ G and any U ∈ U,
then there are U1,U2 ∈ U such that ⊖x ⊕U1 ⊂ ⊖x ⊕U and ⊖x ⊕ (⊖U2)) ⊂ ⊖x ⊕ (⊖U). We have U3 ∈ U such
that U3 ⊂ U1 ∩U2. So we can get

⊖x ⊕U3 ∩ ⊖x ⊕ (⊖U3) ⊂ ⊖x ⊕U ∩ ⊖x ⊕ (⊖U)
= ⊖x ⊕ ((⊖U) ∩U).

Since⊖x⊕U3∩⊖x⊕(⊖U3) = ⊖(x⊕(⊖U3))∩⊖(x⊕U3) = ⊖(x⊕(U3∩(⊖U3))), which means⊖(x⊕(U3∩(⊖U3))) ⊂
⊖x ⊕ ((⊖U) ∩U). Thus we have proved that the inverse operation ⊖ is continuous.

Remark 2.23. Can the ”gyrocommutative” be removed from this proposition?

Definition 2.24. Let P be a (topological) property. A paratopological gyrogroup H is called totally P if the
associated topological group H∗ has property P.

Lemma 2.25. Let H be a T0 paratopological gyrocommutative gyrogroup. Then considered with the topology induced
from H × H′, the diagonal △ = {(x, x) : x ∈ H} is a Hausdorff topological gyrocommutative gyrogroup topologically
isomorphic to the gyrogroup H∗. In addition, if H is a T1 space, then △ is closed in H ×H′.

Proof. To see that△with the topology τ×τ−1 is a topological gyrogroup it suffices to pay attention to the fact
that if (1α)α∈D is a net converging to 1 in τ, then the net (⊖1α)α∈D converges to ⊖1 in τ−1. As a consequence of
the fact that T0 topological gyrogroups are Hausdorff, the property of Hausdorffness then follows. It should
be noted that the projection map from △ onto H∗ = (H, τ ∨ τ−1), represented by π(x, x) = x, is a topological
isomorphism.

Next we shall show that △ is closed in H × H′ in case that H is a T1-space. For consider (x, y) ∈ H × H′

with x , y. Since H is a T1 paratopological gyrogroup and ⊖x ⊕ y , 0, we can choose open neighborhoods
U and V of ⊖x and y, respectively, such that 0 < U ⊕ V. Then (⊖U × V) ∩ △ = ∅. Thus, (x, y) < cl(H×H′)△.

Proposition 2.26. Let H be a Hausdorff paratopological gyrocommutative gyrogroup. The following statements are
true:
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(a) If the space H2 is Lindelöf, then H is totally Lindelöf.
(b) If H is σ-compact, then so is H∗.
(c) If H is a Lindelöf Σ-space, so is H∗.
(d) If H has a countable network, so has H∗.
(e) If H is second countable, then so is H∗.
(f) If H is first countable, then so is H∗.
(g) If H is a P-space, so is H∗.

Proof. Based on Lemma 2.25, it is confirmed that the diagonal △ in the product space H × H′ is closed
and is topologically isomorphic to the gyrogroup H∗. This immediately establishes item (a) based on the
provided Definition 2.24. The attributes of being σ-compact or a Lindelöf Σ-space are properties that are
both preserved within finite products and inherited by closed subsets, so (b) and (c) of the proposition are
direct implications from Lemma 2.25. This rationale is similarly applied to draw conclusions for items (d),
(e), (f), and (g).

Lemma 2.27. Let G be a paratopological gyrogroup. Then for every 1 ∈ G and an open neighborhood V at 0 in G,
there exists an open neighborhood O at 0 in G such that O ⊕ (O ⊕ 1) ⊂ V ⊕ 1.

Proof. For G is a paratopological gyrogroup, then op3 : G × G × G → G defined by op3(x, y, 1) = x ⊕ (y ⊕ 1)
is continuous. Since 0 ⊕ (0 ⊕ 1) = 1, there exists an open neighborhood O at 0 in G such that op3(O) =
O ⊕ (O ⊕ 1) ⊂ V ⊕ 1.

Lemma 2.28. ([17]) Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup.
Then we have a ⊞U ⊂ a ⊕U and a ⊟U ⊂ a ⊖U for each a ∈ G and U ∈ U.

Lemma 2.29. ([17]) Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup.
Then we have (a ⊕U) ⊕W = a ⊕ (U ⊕W) for each a ∈ G and U,W ∈ U.

Lemma 2.30. ([17]) Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup.
If U ⊕ V ⊂W, then ⊖V ⊖U ⊂ ⊖W, for each W,U,V ∈ U.

Lemma 2.31. ([17]) Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup.
Then for each U1,U2 ∈ U we have U1 ⊕U2 ∈ U.

Proposition 2.32. ([17]) Let (G, τ,⊕) be a paratopological gyrogroup, let F be a compact subset of G, and let O be
an open subset of G such that F ⊂ O. Then there exists an open neighborhood V of the identity element 0 such that
F ⊕ V ⊂ O and V ⊕ F ⊂ O.

Proposition 2.33. For every disjoint compact subsets K1,K2 of a Hausdorff paratopological gyrogroup G, there exists
a neighborhood U of the unit such that (U ⊕ K1) ∩ (U ⊕ K2) = ∅.

Proof. By [11, Theorem 3.1.6], for every disjoint compact subsets K1,K2 of a Hausdorff space G, there exist
open sets U1,V1 ⊂ G such that K1 ⊂ U1, K2 ⊂ V1 and U1 ∩ V1 = ∅. Then by Proposition 2.32 there exists
an open neighborhood U of the identity element 0 such that U ⊕ K1 ⊂ U1 and U ⊕ K2 ⊂ V1. And also
(U ⊕ K1) ∩ (U ⊕ K2) = ∅.

Let (G, τ,⊕) be a paratopological gyrogroup and let H be a L-subgyrogroup of G. It follows from [25,
Theorem 20] that G/H = {a ⊕H : a ∈ G} is a partition of G. We denote by π the mapping a 7→ a ⊕H from G
onto G/H. Clearly, for each a ∈ G, we have π−1(π(a)) = a ⊕H. Denote by τ(G) the topology of G. In the left
cosets G/H of the gyrogroup G, we define a topology τ̃ = τ(G/H) of subsets as follows:

τ̃ = τ(G/H) = {O ⊂ G/H : π−1(O) ∈ τ(G)}.
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Proposition 2.34. Let (G, τ,⊕) be a paratopological gyrogroup and let H be a L-subgyrogroup of G. Then the
canonical quotient mapping π from G to its quotient topology on G/H is an open and continuous mapping, and the
family {π(x ⊕ U) : U ∈ τ, 0 ∈ U)} is a local base of the space G/H at the point x ⊕ H ∈ G/H. Moreover, if the
subgyrogroup H is a closed strongly L-subgyrogroup, G/H is a homogeneous T1-space.

Proof. The continuity of the map π is obvious. If U ⊂ G is an open set then π−1(π(U)) = U ⊕ H and hence
π(U) is open.

Let us now prove the homogeneity of G/H. For any a ∈ G, define a mapping ha of G/H to itself by the
rule ha(x ⊕ H) = a ⊕ (x ⊕ H). Since a ⊕ (x ⊕ H) = (a ⊕ x) ⊕ H ∈ G/H by Proposition 2.12, this definition is
correct. Since G is a gyrogroup, the mapping ha is evidently a bijection of G/H onto G/H. In fact, ha is a
homeomorphism. This can be seen from the following argument.

Take any x⊕H ∈ G/H and any open neighbourhood U of 0. Then π((x⊕U)⊕H) is a basic neighbourhood
of x⊕H in G/H. Similarly, the set π(a⊕ ((x⊕U)⊕H)) is a basic neighbourhood of a⊕ (x⊕H) in G/H. Since,
obviously, ha(π((x ⊕ U) ⊕ H)) = π(a ⊕ ((x ⊕ U) ⊕ H)), it easily follows that ha is a homeomorphism. Now,
for any given x ⊕ H and y ⊕ H in G/H, we can take a = y ⊟ x. Then ha(x ⊕ H) = a ⊕ (x ⊕ H) = (a ⊕ x) ⊕ H =
((y ⊟ x) ⊕ x) ⊕ H = y ⊕ H, by (5) in Theorem 2.3 and Proposition 2.12. Hence, the quotient space G/H is
homogeneous. It is a T1-space, since all cosets x ⊕H are closed in G and the mapping π is quotient.

Proposition 2.35. Let (G, τ,⊕) be a paratopological gyrogroup and let H be an invariant subgyrogroup of G, then
the operation (x ⊕H) ⊕ (y ⊕H) = (x ⊕ y) ⊕H in G/H is continuous and (G/H, τ̃) is a paratopological gyrogroup.

Proof. If Ũ is a neighborhood of the point c̃ = ã ⊕ b̃ in (G/H, τ̃), then c = a ⊕ b for some representatives a, b, c
from the classes ã, b̃, c̃ respectively. For a neighborhood U = π−1(Ũ) ∋ c there exist neighborhoods V1(a)
and V2(b) such that V1(a) ⊕ V2(b) ⊂ U. Thus π(V1(a)) ⊕ π(V2(b)) ⊂ π(U) = Ũ and G/H is a paratopological
gyrogroup.

Proposition 2.36. Let (G, τ,⊕) be a paratopological gyrogroup and let H be a strongly L-subgyrogroup of G. If H
is a compact subgyrogroup of G, then the quotient mapping π of G onto the quotient space G/H is perfect. If the
space (G, τ) is Hausdorff then the space (G/H, τ̃) is Hausdorff. If the space (G, τ) is regular then the space (G/H, τ̃) is
regular.

Proof. Let F be a closed subset of the gyrogroup G. Let x̃ ∈ G/H \ π(F). Consider an arbitrary point
x ∈ π−1(x̃). Then (x ⊕ H) ∩ F = ∅. By Proposition 2.32 there exists an open neighborhood U of the unit
such that (U ⊕ (x ⊕ H)) ∩ F = ∅. By the Definition of strongly L-subgyrogroup, we can get U ⊕ (x ⊕
H) = (U ⊕ x) ⊕

⋃
u∈U gyr[u, x]H = (U ⊕ x) ⊕ H and π(U ⊕ x) = π((U ⊕ x) ⊕ H). Then x̃ ∈ π(U ⊕ x) and

π(U⊕ x) = π(U⊕ (x⊕H))∩π(F) = ∅. So the map π is closed. Furthermore, if y ∈ G/H and π(x) = y for some
x ∈ G, we obtain that π−1(y) = x ⊕H is a compact subset of G. Hence, the fibers of π are compact. Thus π is
perfect. Hence, utilizing Theorem 3.7.20 as referenced in Engelking [11], we deduce that if the space (G, τ)
is Hausdorff (or regular), then the quotient space (G/H, τ̃) will also be Hausdorff (or regular).

Corollary 2.37. Let (G, τ,⊕) be a paratopological gyrogroup and let H be a compact strongly L-subgyrogroup of G.
If F is a closed subset of G, then F ⊕H is a closed subset of G.

Proof. Let π : G→ G/H be the standard projection. Then F ⊕H = π−1(π(F)) is a closed subset of G.

3. The three-space property for compact type sets

Let P be a (topological, algebraic, or a mixed nature) property. We call a property P three-space property
in paratopological groups [27] if the quotient paratopological group G/H and a closed invariant subgroup
H of a paratopological group G both have P, then G enjoys P, too.

Then we give the definitions of three-space property in paratopological gyrogroups.
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Definition 3.1. We call a topological-algebraic property P three-space property in paratopological gy-
rogroups if a paratopological quotient gyrogroup G/H and a closed invariant subgyrogroup H of G both
have P, then G also has P.

A topological propertyP is called an inverse fiber property [9] if (*) f : X→ Y is a continuous and surjective
mapping such that both the space Y and the fibers of f have P, then X also has P. If the conclusion in (*)
holds under the additional assumption that the domain X is compact (countably compact), we say that P
is an inverse fiber property for compact (countably compact) sets.

Lemma 3.2. The first axiom of countability is an inverse fiber property for compact, countably compact [9, Proposition
2.8] and sequentially compact [18, Lemma 2.5] sets.

Let P be a topological property. A space X is called P-compact (resp., P-closed) if every subset of X with
the property P is compact (resp., closed). A space X is called locally P if for every x ∈ X there exists a
neighborhood U of the point x with property P [18].

Lemma 3.3. ([18]) Suppose that P is a topological property preserved by continuous mappings and also inherited by
closed sets. Then the property of being P-closed (resp., P-compact) is a regular-inverse fiber property (resp., inverse
fiber property).

Proposition 3.4. If P is an inverse fiber property, then it is a three-space property in paratopological gyrogroups.

Proof. We assume that H is a closed invariant subgyrogroup of a paratopological gyrogroup G. We assume
further that both gyrogroups H and G/H have an inverse fiber propertyP. Let π : G→ G/N be the quotient
homomorphism. If y ∈ G/H, we can find x ∈ G such that π(x) = y. Then π−1(y) = x ⊕ H is homeomorphic
with H, so the fiber π−1(y) has P for all y ∈ G/H. It follows from the inverse fiber property of P that G also
has P.

In the proof of [6, Theorem 3.3], the Right Gyroassociative Law of subgyrogroup H is mainly utilized,
and therefore, according to Theorem 2.9, we have the following conclusion for an invariant (normal)
subgyrogroup H. Since its proof is similar to that of [6, Theorem 3.3], the proof has been omitted.

Theorem 3.5. Let G be a topological gyrogroup, H be a closed invariant subgyrogroup of G and P be a closed
symmetric subset of G such that P contains an open neighborhood of 0 in G, and P ⊕ (P ⊕ P) ∩ H is compact. Then
the restriction f of π to P is a perfect mapping from P onto the subspace π(P) of G/H, where π : G → G/H is the
natural quotient mapping from G onto the topological quotient gyrogroup G/H.

Proposition 3.6. Let G be a topological gyrogroup. If H is a closed invariant subgyrogroup of G, then the topological
quotient gyrogroup G/H is a homogenous space.

Proof. The proof process is similar to Proposition 2.34, as an invariant subgyrogroup is a strongly L-
subgyrogroup, and hence, the conclusion can be reached.

Theorem 3.7. Let G be a topological gyrogroup, H be a locally compact closed invariant subgyrogroup of G. Then
there exists an open neighborhood U of the identity element 0 such that π(U) is closed in G/H and the restriction of π
to U is a perfect mapping from U onto the subspace π(U), where π : G→ G/H is the natural quotient mapping from
G onto the topological quotient gyrogroup G/H.

Proof. The proof process is similar to that of [6, Theorem 3.4], and the conclusion can be derived based on
Theorem 3.5 and Proposition 3.6.

Corollary 3.8. Assume that P is a topological property preserved by preimages of spaces under perfect mappings (in
the class of completely regular spaces) and also inherited by regular closed sets. Assume further that (G, τ,⊕) is a
topological gyrogroup, H is a closed invariant subgyrogroup of G, and the topological quotient gyrogroup G/H has
the property P. Then there exists an open neighborhood U of the identity element 0 such that U has the property P.
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Corollary 3.9. Let (G, τ,⊕) be a topological gyrogroup, and let H be a locally compact closed invariant subgyrogroup
of G. If the topological quotient gyrogroup G/H is locally compact, then G also possesses this property.

Theorem 3.10. Local compactness is a three-space property in the class of Hausdorff strongly paratopological gy-
rogroups.

Proof. Let G be a strongly paratopological gyrogroup and let N be a closed invariant subgyrogroup of
G. Suppose that both N and the paratopological quotient gyrogroup G/N are locally compact. It suffices
to prove that G is locally compact. From the fact that every locally compact strongly paratopological
gyrogroup is a strongly topological gyrogroup [17, Theorem 3.5], it follows that both N and G/N are
strongly topological gyrogroups. Note that being a strongly topological gyrogroup is a three-space property
in the class of strongly paratopological gyrogroups [17, Theorem 3.6], so that G is a strongly topological
gyrogroup. In addition, local compactness is identified as a three-space property within the class of
topological gyrogroups, as stated in Corollary 3.9. Consequently, G is locally compact.

Theorem 3.11. The following are three space properties in the class of Hausdorff paratopological gyrogroups:

(a) compactness;
(b) connectedness;
(c) every compact set being first-countable;
(d) every countably compact set being first-countable;
(e) every sequentially compact set being first-countable;
(f) every countably compact set being compact;
(g) every sequentially compact set being compact.

Proof. Let G be a paratopological gyrogroup and let N be a closed invariant subgyrogroup of G.
(a) Suppose that both N and the paratopological quotient gyrogroup G/N are compact. By Proposition

2.36, for the Hausdorff space G the quotient mapping π of G onto the quotient space G/N is perfect. It is
known that compactness of Hausdorff spaces which is both invariants and inverse invariants under perfect
mappings. So it suffices to prove that G is compact.

(b) Suppose that both N and the paratopological quotient gyrogroup G/N are connected. It suffices
to prove that G is connected. Suppose by contradiction that G is not connected. Thus there exist two
non-empty disjoint open sets U,V in G such that G = V∪U. The space N being connected implies that x⊕N
is also connected for each x ∈ G, so that either x ⊕ N ⊂ U or x ⊕ N ⊂ V. Let π : G → G/N be the canonical
quotient mapping. Thus one readily verifies that π(U) and π(V) are two non-empty disjoint open sets in
G/N such that G/N = π(V) ∪ π(U), which implies that G/N is not connected. This contradiction completes
the proof.

By Lemma 3.2, we have that every (countably, sequentially) compact subset satisfying the first axiom of
countability is an inverse fiber property and (c)-(e) hold by Proposition 3.4. The statements (f)-(g) directly
follow from Lemma 3.3 and Proposition 3.4.

A topological space X is called a k-space if X is a Hausdorff space and X is an image of a locally compact
space under a quotient mapping [11].

Let f : X → Y be a mapping. The mapping f is called k-gentle if for each compact subset F of X the
image f (F) is also compact. A paratopological gyrogroup G is called k-gentle if the inverse mapping x→ ⊖x
is k-gentle.

Lemma 3.12. The mapping 1 : X → ⊖X defined by 1(x) = ⊖x is continuous for every k-subspace X of G, where G
is a k-gentle paratopological gyrogroup.

Proof. Let D be a compact subspace of X. Given that G is a k-gentle paratopological gyrogroup, it is simple
to verify that the restriction 1|D : D → ⊖D (= 1(D)) is continuous. It is well known that a mapping f of
a k-space F to a topological space Y is continuous if and only if for every compact subspace Z ⊂ F the
restriction f|Z : Z→ Y is continuous [11, Theorem 3.3.21], so that 1 is continuous.



Y.-Y. Jin et al. / Filomat 39:4 (2025), 1181–1196 1191

We call a topological space X having a Gδ-diagonal [14] if the diagonal ∆ = {(x, x) : x ∈ X} of X × X is a
Gδ-set in X × X.

Proposition 3.13. The following conditions are equivalent for a k-gentle paratopological gyrogroup G.

(a) all compact (resp., sequentially compact, countably compact) subspaces of G are first-countable;
(b) all compact (resp., sequentially compact, countably compact) subspaces of G are metrizable.

Proof. We only need to prove (a) ⇒ (b). Suppose that X is an arbitrary non-empty compact (resp., se-
quentially compact, countably compact) subset of G. By our assumption, X is first-countable, and thus is
a k-space; it follows from Lemma 3.12 that the mapping 1 : X → ⊖X defined by 1(x) = ⊖x is continuous,
because G is a k-gentle paratopological gyrogroup. Therefore, the space ⊖X is compact (resp., sequentially
compact, countably compact) as the continuous image of X, so that ⊖X is first-countable by our assump-
tion. Observe that the compactness, sequential compactness and countable compactness are preserved by
the finite Cartesian product in the first-countable spaces, so that ⊖X ⊕ X is a compact (resp., sequentially
compact, countably compact) subspace as the continuous image of (⊖X) ×X, and thus is first-countable by
our assumption. Define a mapping φ : G × G → G as φ(x, y) = (⊖x) ⊕ y for every x, y ∈ G. It is obvious
φ|X×X is continuous and the identity 0 ∈ ⊖X ⊕ X with a local countable base in ⊖X ⊕ X, we have that
∆ = φ−1(0) is a Gδ-set in X×X, i.e., X has a Gδ-diagonal, so that it follows from the fact that every Hausdorff
countably compact space with a Gδ-diagonal is metrizable [14, Theorem 2.14] that X is metrizable, because
both compactness and sequential compactness imply countable compactness.

Theorem 3.14. Metrizability of compact (resp., sequentially compact, countably compact) subsets is a three-space
property in the class of k-gentle paratopological gyrogroups.

Proof. Let G be a k-gentle paratopological gyrogroup and let H be a closed invariant subgyrogroup of G
such that all compact (resp., sequentially compact, countably compact) subsets in both H and the quotient
paratopological gyrogroup G/H are metrizable. From Theorem 3.11 it follows that all compact (resp.,
sequentially compact, countably compact) subsets of G are first-countable, so the statement directly follows
from Proposition 3.13.

Clearly, every topological gyrogroup is a k-gentle paratopological gyrogroup, so we have the following:

Corollary 3.15. Metrizability of compact (resp., sequentially compact, countably compact) subsets is a three space
property in the class of topological gyrogroups.

Let X be a topological space. A subset A of X is called sequentially closed if no sequence of points of A
converges to a point not in A. X is called sequential [13] if each sequentially closed subset of X is closed.
A space X is called Fréchet at a point x ∈ X if x ∈ A ⊂ X there is a sequence {xn}n∈ω in A such that {xn}n∈ω
converges to x in X. A space X is called Fréchet [13] if it is Fréchet at every point x ∈ X. A space X is called
strongly Fréchet at a point x ∈ X if whenever {An}n∈ω is a decreasing sequence of subsets in X and x ∈

⋂
n∈ωAn,

there exists xn ∈ An for each n ∈ ω such that the sequence xn → x. A space X is called strongly Fréchet [23]
if it is strongly Fréchet at every point x ∈ X. Fréchet spaces (resp., strongly Fréchet spaces) are also called
Fréchet-Urysohn spaces (resp., strongly Fréchet-Urysohn spaces).

Lemma 3.16. If every compact (resp., countably compact, sequentially compact) subspace of a k-gentle paratopological
gyrogroup G is Fréchet, then every compact (resp., countably compact, sequentially compact) subspace of G is strongly
Fréchet.

Proof. Let G be a paratopological gyrogroup and all compact (resp., countably compact, sequentially com-
pact) subspaces of G be Fréchet, and A a compact (resp., countably compact, sequentially compact) subset
of G. By our assumption, A is Fréchet, and thus is closed in G by [18, Lemma 2.4]. Suppose that {An}n∈ω is a
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decreasing sequence of subsets in A with a ∈
⋂

n∈ωAn. We can assume that a is an accumulation point of A.
By the Fréchet property of A one can find a sequence {an}n∈ω in A \ {a} converging to a. Put

B = (⊖a) ⊕ A, and Bn = (⊖a) ⊕ An, bn = (⊖a) ⊕ an for all n ∈ ω.

Clearly the set B = (⊖a) ⊕ A is closed, compact (resp., countably compact, sequentially compact) and
the sequence {bn}n∈ω converges to 0, where 0 is the identity of G, so that we have, for each n ∈ ω, the
closure of the set Bn = (⊖a) ⊕ An being included in B, 0 ∈ Bn and bn = (⊖a) ⊕ an ∈ B \ {0}; since G is a
Hausdorff paratopological gyrogroup, for each n ∈ ω we can find an open set Vn containing 0 such that
Vn∩ (bn⊕Vn) = ∅. By 0 ∈ Bn we have 0 ∈ Bn ∩ Vn. Put Cn = bn⊕ (Bn∩Vn) for every n ∈ ω. Since 0 ∈ Bn ∩ Vn,
we have bn ∈ Cn. Moreover, 0 < Cn, because Vn ∩ Cn ⊂ Vn ∩ (bn ⊕ Vn) = ∅, for each n ∈ ω. Put

D =
⋃
{Cn : n ∈ ω}, and S = {0} ∪ {bn : n ∈ ω}.

Then D ⊂
⋃

n∈ω bn ⊕ Bn ⊂ S ⊕ B.
Next, we shall show that the subspace S ⊕ B of G is closed and Fréchet. Obviously, S is compact

and sequentially compact. Moreover, given that a convergent sequence is compact and metrizable, and
considering that bn → 0, it follows that S is compact and metrizable. Observe that the Cartesian product of
two compact (resp., sequentially compact, countably compact) spaces, if one of which is first-countable, is
compact (resp., sequentially compact, countably compact), so that the Cartesian product S×B of the spaces
S and B is compact (resp., countably compact, sequentially compact), because S is compact and metrizable.
Since the multiplication in G is jointly continuous and the subset S ⊕ B of G is the continuous image of the
subset S × B of G × G under the multiplication mapping, S ⊕ B is compact (resp., sequentially compact).
Thus S ⊕ B is closed and Fréchet by our assumption.

By bn ∈ Cn for each n ∈ ω and bn → 0, we have 0 ∈ D ⊂ S⊕B, so that one can find a sequence {dk}k∈ω in D
converging to 0 by the Fréchet property of S⊕B; in addition, as we already know 0 < Cn for each n ∈ ω, the set
Cn contains only finitely many terms of the sequence {dk}k∈ω; thus we can assume that there is a subsequence
{Cnk }k∈ω of the sequence {Cn}n∈ω such that dk ∈ Cnk for each k ∈ ω. By Cnk ⊂ bnk ⊕ Bnk = bnk ⊕ ((⊖a) ⊕ Ank ),
for each k ∈ ω we have dk = bnk ⊕ ((⊖a) ⊕ xnk ) for some xnk ∈ Ank ; one readily check that ⊖bnk → 0, because
bnk → 0 and G is a k-gentle paratopological gyrogroup, so that xnk = a ⊕ (⊖bnk ⊕ dk)→ a when k→ ∞. Take
xn = xnk when nk−1 < n < nk, then xn ∈ An for each n ∈ ω and xn → a. Hence, A is strongly Fréchet.

Lemma 3.17. ([1]) Suppose that X is a regular space, and that f : X → Y is a closed mapping. Suppose also that
b ∈ X is a Gδ-point in the space F = f−1( f (b)) (i.e., the singleton {b} is a Gδ-set in the space F) and F is Fréchet at b
(resp., strictly Fréchet at b). If the space Y is strongly Fréchet, then X is Fréchet at b.

Lemma 3.18. ([18]) If all countably compact (resp., sequentially compact) subsets of a topological space X are
sequential, then all countably compact (resp., sequentially compact) subsets of X are closed.

Theorem 3.19. Let G be a regular k-gentle paratopological gyrogroup and H a closed L-subgyrogroup of G such
that all compact (resp., countably compact, sequentially compact) subsets of the paratopological gyrogroup H are
first-countable. If the quotient space G/H has the following property, then so does the paratopological gyrogroup G.

(a) all compact (resp., countably compact, sequentially compact) subsets are strongly Fréchet.

Proof. Let C be a compact (resp., countably compact, sequentially compact) subset of the paratopological
gyrogroup G.

We first prove C is closed. Since every first-countable space is a strongly Fréchet space, as noted in [19],
we can get all compact (resp., countably compact, sequentially compact) subsets of the paratopological
gyrogroup H are strongly Fréchet. So they are sequential. Following Lemma 3.18, it is concluded that all
compact (resp., countably compact, sequentially compact) subsets of H are closed. Since the quotient space
G/H has the property (a), we can also get all compact (resp., countably compact, sequentially compact)
subsets of G/H are closed by Lemma 3.18. Let π : G → G/H be the quotient homomorphism. If y ∈ G/H,
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take an element x ∈ G with π(x) = y. Then π−1(y) = x ⊕ H is a homeomorphic copy of H, so the fiber
π−1(y) has the property that all compact (resp., countably compact, sequentially compact) subsets of π−1(y)
are closed for each y ∈ G/H. Since being compact (resp., countably compact, sequentially compact) is
a topological property preserved by continuous mappings and inherited by closed sets, it follows from
Lemma 3.3 that being compact (resp., countably compact, sequentially compact)-closed is a regular-inverse
fiber property. So we can get the set C is closed within G.

Put f = π|C : C → π(C). Then π(C) is compact (resp., countably compact, sequentially compact).
Moreover, f is a closed mapping by [18, Lemma 2.4], and f−1( f (b)) = π−1(π(b)) ∩ C = (b ⊕ H) ∩ C is
first-countable for each b ∈ C. We complete the proof by Lemmas 3.16 and 3.17.

4. Quotient with respect to second-countable topological invariant subgyrogroups

In this section, we investigate the extensions of paratopological gyrocommutative gyrogroups. LetP be
a family of subsets of a topological space X. P is called a network [11] for X if whenever x ∈ U with U open
in X, then there exists P ∈ P such that x ∈ P ⊂ U.

The authors have proved the following conclusions in [12, Theorem 2.6]

Theorem 4.1. [12] Let H be an invariant topological subgroup of a paratopological group G. If H is second-countable
and G/H has countable network, then G has countable network as well.

And then we try to extend this result to paratopological gyrocommutative gyrogroups. The following
results play an important role in the proof of Theorem 4.6.

Proposition 4.2. Let G be a strongly paratopological gyrocommutative gyrogroup and let H be an invariant topo-
logical subgyrogroup of G. Then (G/H)∗ = G∗/H.

Proof. Let π : G→ G/H be the canonical homomorphism and let the neighborhood baseU at 0 of G witness
that G is a strongly paratopological gyrogroup. The family {π(x ⊕ U ∩ x ⊖ U) : x ∈ G,U ∈ U} is a base for
G∗/H. Also, the family {π(x ⊕ U) ∩ π(x ⊖ U) : x ∈ G,U ∈ U} is a base for (G/H)∗. Clearly, the topology on
(G/H)∗ is weaker than the topology on G∗/H. Let us show the other inclusion. Take x ∈ G and U ∈ U. Since
G is a paratopological gyrogroup, we can find V ∈ U such that V⊕V ⊂ U. Then for G is a gyrocommutative
gyrogroup we can get ⊖V⊕ (⊖V) ⊂ ⊖U by Theorem 2.5(1). Since H is a topological subgyrogroup of G, there
exists W ∈ U with W ⊂ V and (W⊕W)∩H ⊂ ⊖V∩H. We claim that π(x⊕W)∩π(x⊖W) ⊂ π(x⊕U∩ x⊖U).
Indeed, choose y ∈ π(x ⊕W) ∩ π(x ⊖W) and a ∈ G such that π(a) = y. Then

a ∈ a ⊕H = π−1(y)

⊂ π−1(π(x ⊕W) ∩ π(x ⊖W))
= ((x ⊕W) ⊕H) ∩ ((x ⊖W) ⊕H)
= (x ⊕ (W ⊕H)) ∩ (x ⊕ (⊖W ⊕H)) by Theorem 2.9.

It follows that ⊖x ⊕ a ∈ (W ⊕ H) ∩ (⊖W ⊕ H). So there exist w1,w2 ∈ W and h′1, h
′

2 ∈ H such that ⊖x ⊕ a =
w1 ⊕ h′1 = ⊖w2 ⊕ h′2. Since H is an invariant topological subgyrogroup of G, we have w1 ⊕ H = H ⊕ w1 and
⊖w2⊕H = H⊕(⊖w2). There exist h1, h2 ∈ H such that w1⊕h′1 = h1⊕w1 and⊖w2⊕h′2 = h2⊕(⊖w2), which means
⊖x⊕a = h1⊕w1 = h2⊕(⊖w2). Thus, we have w1 = ⊖h1⊕(h2⊖w2) = (⊖h1⊕h2)⊖1yr[⊖h1, h2](w2), and according
to Definition 2.15 and Lemma 2.28, we can conclude that ⊖h1⊕h2 = w1⊞1yr[⊖h1, h2](w2) ∈W⊞W ⊂W⊕W.
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So ⊖h1 ⊕ h2 ∈ (W ⊕W) ∩H ⊂ ⊖V ∩H ⊂ ⊖V, whence h2 ∈ h1 ⊕ (⊖V). Therefore,

⊖ x ⊕ a ∈ (h1 ⊕W) ∩ (h2 ⊕ (⊖W))
⊂ (h1 ⊕W) ∩ ((h1 ⊕ (⊖V)) ⊕ (⊖W))
⊂ (h1 ⊕W) ∩ ((h1 ⊕ (⊖V)) ⊕ (⊖V))

⊂ (h1 ⊕ V) ∩ (h1 ⊕ (⊖V ⊕
⋃
v∈V

1yr[⊖v, h1](⊖V)))

⊂ (h1 ⊕ V) ∩ (h1 ⊕ (⊖V ⊕ (⊖V)))
⊂ (h1 ⊕U) ∩ (h1 ⊕ (⊖U))
= h1 ⊕ (U ∩ (⊖U)).

It follows that a ∈ x ⊕ (h1 ⊕ (U ∩ (⊖U))). Hence y = π(a) ∈ π(x ⊕ (h1 ⊕ (U ∩ (⊖U)))) = π(x) ⊕ π(U ∩ (⊖U)) =
π(x ⊕ (U ∩ (⊖U))) = π((x ⊕U) ∩ (x ⊖U)). This finishes the proof.

Lemma 4.3. Suppose that (G, τ,⊕) is a paratopological gyrogroup and H is a separable L-subgyrogroup of G. If Y is
a separable subset of G/H, then π−1(Y) is also separable in G, where π is the natural mapping of G onto the quotient
space G/H.

Proof. Let B be a countable dense subset of Y. Since H is separable, there exists a countable, dense subset Mb
of π−1(b) for each b ∈ B. Put M =

⋃
b∈B Mb. Then M is a countable subset of π−1(Y), and is dense in π−1(B).

Since π is an open mapping of G onto G/H, π restricting to π−1(Y) is also an open mapping of π−1(Y) onto
Y. Therefore, M = π−1(B) = π−1(B) = π−1(Y) by [2, Lemma 1.5.22]. Hence, M is dense in π−1(Y), i.e., π−1(Y)
is separable.

Here, we extend this result to the class of semitopological gyrogroups.

Proposition 4.4. Let H be a L-subgyrogroup of a semitopological gyrogroup G. If both H and G/H are separable,
then so is G.

Proof. Let π : G→ G/H be the canonical quotient mapping. Since G/H is separable, there exists a countable
subset A ⊂ G such that π(A) is dense in G/H. Also, we can find B ⊂ H countable and dense in H. Let
us show that A ⊕ B is dense in G. Take 1 ∈ G and U ∈ U. Hence π(a) ∈ π(1 ⊕ U) for some a ∈ A. So
a ∈ a ⊕H ⊂ (1 ⊕U) ⊕H. Therefore, ⊖a ⊕ (1 ⊕U) ∩H is a non-empty open set in H. By the choice of B, there
exists b ∈ B such that b ∈ ⊖a ⊕ (1 ⊕U), equivalently, a ⊕ b ∈ 1 ⊕U. This finishes the proof.

Let X be a topological space. X is called cosmic if X is a regular space with a countable network [20].
In [8, Corollary 3.7], the authors showed that if G is a strongly topological gyrogroup with a symmetric
neighborhood base U at 0 and H is a second-countable admissible subgyrogroup generated from U. If
the quotient space G/H is a cosmic space, G is also a cosmic space. In the proof of [8, Corollary 3.7], the
Gyroassociative Law of subgyrogroup H is predominantly applied. Consequently, as per Theorem 2.9,
we arrive at a particular conclusion regarding an invariant subgyrogroup H. Considering that the proof
methodology mirrors that in [8, Corollary 3.7], the elaboration of the proof has been excluded.

Theorem 4.5. If G is a strongly topological gyrogroup and H is a second-countable closed invariant subgyrogroup
of G. If the quotient space G/H has countable network, G is also has countable network.

Theorem 4.6. Let G be a strongly paratopological gyrocommutative gyrogroup and H be a second-countable invariant
topological subgyrogroup of G. If the paratopological gyrogroup G/H has a countable network, then so does G.

Proof. Should G/H possess a countable network, the same property applies to (G/H)∗ as indicated in
Proposition 2.26. Following Proposition 4.2, it’s established that G∗/H also has a countable network.
It’s evident that the topological gyrogroup H adopts its topology from that of G∗. Given that H is second-
countable, an application of Theorem 4.5 leads us to conclude that G∗ is equipped with a countable network.
Consequently, G has countable network as well.
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Problem 4.7. Can the condition ’gyrocommutative’ in Theorem 4.6 be omitted?

Corollary 4.8. Let G be a strongly paratopological gyrocommutative gyrogroup and H be a second-countable locally
compact invariant subgyrogroup of G. If the paratopological gyrogroup G/H has a countable network, then so does G.

Proof. Since every locally compact strongly paratopological gyrogroup is a topological gyrogroup [17,
Theorem 3.5] the statement directly follows from Theorem 4.6.

A paratopological gyrogroup G is saturated if for every non-empty open set U in G, its inverse ⊖U has
non-empty interior. Clearly, every topological gyrogroup is saturated.

Proposition 4.9. Let the neighborhood baseU at 0 of G witness that G is a strongly paratopological gyrogroup and
H be an invariant subgyrogroup of G. Suppose that H is saturated and G/H is a topological gyrogroup. Then G is
saturated.

Proof. Let U ∈ U. Since G is a paratopological gyrogroup, H is saturated, and G/H is a topological
gyrogroup, there exist neighborhoods W,V,O ∈ U, and h ∈ ⊖O ∩ H such that W ⊂ V ⊂ O, O ⊕ O ⊂ U,
(h⊕(V⊕V))∩H = h⊕((V⊕V)∩H) ⊂ ⊖O∩H, and W ⊂ H⊖V. We claim that h⊕W ⊂ ⊖U. Let x ∈ h⊕W. There
are elements w ∈W, h1 ∈ H, and v ∈ V such that x = h⊕w = h⊕(h1⊖v) = (h⊕h1)⊖gyr[h, h1]v ∈ (h⊕h1)⊖V, by
the definition of strongly paratopological gyrogroup. Put h ⊕ h1 = h2 ∈ H, v1 ∈ V. Thus x = h ⊕w = h2 ⊖ v1.
By Lemmas 2.28, 2.29 we get h2 = (h ⊕ w) ⊞ v1 ∈ ((h ⊕ V) ⊕ V) ∩ H ⊂ (h ⊕ (V ⊕ V)) ∩ H ⊂ ⊖O ∩ H ⊂ ⊖O.
Therefore, x = h2 ⊖ v1 ∈ ⊖O ⊖O ⊂ ⊖U. We just have shown that interior of ⊖U is non-empty. Since U was
arbitrary, we conclude that G is saturated.

In the following, we consider the three-space property of countable tightness for paratopological gy-
rogroups.

Topological properties of Hausdorff spaces which are both invariants and inverse invariants under
perfect mappings are called perfect properties. A class of all Hausdorff spaces that have some fixed perfect
property is called a perfect class of spaces. It is known that classes of regular spaces, compact spaces,
paracompact spaces and k-spaces are perfect (see [11]). Since the mapπ : G→ G/H is perfect by Proposition
2.36, we can establish the following results.

Theorem 4.10. Let H be a compact strongly L-subgyrogroup of a paratopological gyrogroup G and π the canonical
quotient mapping from G to G/H. If G/H has a property P, then G also has the property P, where P is one of the
following properties: (1) being regular spaces; (2) being k-spaces; (3) being paracompact.

By Proposition 2.36 and [11, Exercises 3.12.8(d)], one can easily get the following theorem.

Theorem 4.11. Let H be a compact strongly L-subgyrogroup of a paratopological gyrogroup G. If H and G/H have
countable tightness, then G has countable tightness.
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