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Abstract. In this paper, we first define the concept of a proximity with the help of bipolar fuzzy soft sets
and establish some of its properties. Then, we demonstrate the process of generating a bipolar fuzzy soft
topology with the aid of a bipolar fuzzy soft proximity (for short BFS-proximity). Moreover, we give a new
definition of bipolar fuzzy soft neighborhood based on BFS-proximity, enabling an alternative framework
for analyzing the notion of BFS-proximity. Next, by using a family of BFS-proximities, we present the initial
BFS-proximity structure. Finally, taking into account the proximity structure in the classical set theory, we
derive a BFS-proximity structure and study on its related results.

1. Introduction

Due to a number of uncertainties, classical approaches are insufficient for addressing complex issues
in the domains of engineering, economics, and the environment. Many hypotheses have been adopted
to deal with these uncertainties. The two most well-known theories are fuzzy set theory, which was first
presented in 1965 by Zadeh [35], and rough set theory, which was first presented in 1982 by Pawlak [26].
Both theories are useful for handling uncertainties. Nevertheless, as noted by Molodtsov [23], they have
their own difficulties and inadequacies because the parameterization tool is not sufficient. In order to deal
with ambiguities and imprecisions in parametric ways, Molodtsov [23] developed a novel concept called
the soft set. Then, this idea has been applied by several researchers as a potent tool for defining uncertainty.
For instance, Maji et al. [22] building upon Molodtsov’s [23] foundational work, significantly enriched the
realm of soft set theory with their insightful contributions. Aktaş and Çağman [2] defined the soft group
and compared soft sets to fuzzy sets and rough sets. Ali et al. [5] developed new algebraic operations on soft
sets and investigated their properties. Also, Shabir and Naz [31] studied soft topological spaces. Moreover,
Al-Shami [6] proposed a new idea to investigate a novel class of soft sets based on the generalizations of
open subsets in the parametric topological spaces. Alcantud [3] introduced the formal model consisting
of convex soft geometries and studied how he can associate a convex geometry with each convex soft
geometry, and conversely. On the other hand, Maji et al. [21] introduced a more general concept, which is
a combination of fuzzy set and soft set; the fuzzy soft set. Then, Kharal and Ahmad [18] studied the notion
of a mapping on fuzzy soft classes. Also, Demir et al. [11] investigated convergence of fuzzy soft filters in
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a fuzzy soft topological space. Recently, many papers concerning soft set theory and fuzzy soft set theory
have been published [4, 7, 15, 34].

Fuzzy sets cannot indicate the degree of satisfaction with a counter-property while they can reflect
uncertainty in membership degree designation. To overcome this issue, Lee [19] proposed the idea of
a bipolar valued fuzzy set, where positivity and negativity coexist within a membership degree range
of [-1, 1]. In a bipolar valued fuzzy set, the membership value 0 of an element shows that the element
is irrelevant to the corresponding property, the membership degree (0, 1] of an element means that the
element somewhat satisfies the property, and the membership degree [-1, 0) of an element shows that the
element somewhat satisfies the implicit counter-property. Then, Abdullah et al. [1] and Naz and Shabir [25]
independently introduced the concept of a bipolar fuzzy soft set (BFS-set), merging the properties of both
bipolar fuzzy sets and soft sets. Riaz and Tehrim [28] indicated the concept of mappings between BFS-sets
and applied this concept to the problem of medical diagnosis. Also, they [29] initiated bipolar fuzzy soft
topology (BFS-topology). Afterwards, Mahmood et al. [20] defined the concept of a bipolar complex fuzzy
soft set and offered a decision-making algorithm to show the effectiveness and usefulness of the concept.
Sarwar et al. [30] applied the technique of BFS-sets to hypergraphs. In the recent years, this concept has
attracted a lot of interest because of its theoretical outcomes and real-world applicability [13, 33, 36].

Efremovic [14] introduced proximity structure in 1951. This structure provide a clear and conceptual
solution to many topological difficulties such as compactification and extension problems as well as ax-
iomatizations of geometric notions. Then, Naimpally and Warrack [24] laid the foundation for the study
of proximity spaces, which led to many developments for subsequent studies. For instance, with the help
of fuzzy sets, Katsaras [17] established an approach about proximity structures. Also, Artico and Moresco
[8] introduced the different notion of a fuzzy proximity while Ramadan et al. [27] contributed to the field
by presenting fuzzifying proximity structures. On the other hand, numerous researchers have explored
extensions of proximity structures to both soft sets and fuzzy soft sets. Kandil et al. [16] defined soft
proximity spaces and investigated some of their properties. Singh and Singh [32] gave the concepts of soft
proximity base and subbase. Moreover, Çetkin et al. [9] introduced soft fuzzy proximity spaces based on
the axioms proposed by Katsaras [17]. Later, Demir and Özbakır [10] studied fuzzy soft proximity spaces
and demonstrated how a fuzzy soft topology is derived from a fuzzy soft proximity.

Inspired by these studies, we give the definition of a BFS-proximity space and establish some of its prop-
erties. Then, we demonstrate how a BFS-topology is derived from a BFS-proximity. Also, we introduce the
notion of a bipolar fuzzy soft neighborhood in BFS-proximity space, which provides an alternative method
for studying BFS-proximity spaces. Moreover, we present the notion of a BFS-proximity mapping and ana-
lyze its relationship with the BFS-continuous mappings. Next, we obtain the initial BFS-proximity structure.
Finally, we investigate the connection between BFS-proximity structures and proximity structures.

2. Preliminaries

In this section, we review some basic notions of BFS-sets that we will use in the subsequent sections.
Throughout this paper, U be a universe of alternatives (objects) and E be a set of specified parameters

(criteria or attributes) unless otherwise explicit.

Definition 2.1. ([19]) Consider a universal set U. A set having form

η = {(u, δ+η (u), δ−η (u)) : u ∈ U}

denotes a bipolar fuzzy set on U, where δ+η (u) denotes the positive memberships ranges over [0, 1] and δ−η (u)
denotes the negative memberships ranges over [−1, 0].

Definition 2.2. ([19]) Let η1 and η2 be two bipolar fuzzy sets on U. Then, their intersection and union are
defined as follows:

(i) η1 ∧ η2 =
{(

u,min {δ+η1
(u), δ+η2

(u)},max {δ−η1
(u), δ−η2

(u)}
)

: u ∈ U
}
.
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(ii) η1 ∨ η2 =
{(

u,max {δ+η1
(u), δ+η2

(u)},min {δ−η1
(u), δ−η2

(u)}
)

: u ∈ U
}
.

Definition 2.3. ([1, 25]) Consider a universal set U and a set of parameters E. Let A ⊆ E and define a
mappingΩ : E→ BFU, where BFU represents the family of all bipolar fuzzy subsets of U. Then,ΩA is called
a BFS-set on U, where

ΩA = {⟨e,Ω(e)⟩ : e ∈ E}

such that δ+
Ω(e)(u) = δ−

Ω(e)(u) = 0 for all e < A and all u ∈ U.

Note that the set of all bipolar fuzzy soft sets on U with the attributes from E is denoted by (BFU)E.
Consider the following example to achieve a better understanding of the definition mentioned above.

Example 2.4. Suppose Mr. Kemal is thinking of buying a headset and let E = {e1 = battery li f e, e2 =
latency, e3 = microphone quality, e4 = bass response} be the set of decision variables. Next, take into
consideration the set of three model headset types U = {u1,u2,u3} while keeping in mind Mr. Kemal’s
needs. After research, we show that a website has assigned the numerical values for each decision variable
to three model headsets, evaluating the positive and negative feedbacks based on customers. The tabular
representation of these numerical values is as follows:

Table 1
Tabular reprentation of positive feedbacks

e1 e2 e3 e4

u1 0.6 0.2 0.58 0.7

u2 0.4 0.53 0.74 0.35

u3 0.43 0.36 0.35 0.55

Table 2
Tabular reprentation of negative feedbacks

e1 e2 e3 e4

u1 −0.35 −0.64 −0.32 −0.53

u2 −0.34 −0.58 −0.72 −0.35

u3 −0.25 −0.45 −0.62 −0.85

Therefore, the following bipolar fuzzy soft set on U with the set E of decision variables reporting the
positive-negative informations is obtained:

ΩA =


⟨e1,Ω(e1) = {(u1, 0.6,−0.35), (u2, 0.4,−0.34), (u3, 0.43,−0.25)}⟩,
⟨e2,Ω(e2) = {(u1, 0.2,−0.64), (u2, 0.53,−0.58), (u3, 0.36,−0.45)}⟩,
⟨e3,Ω(e3) = {(u1, 0.58,−0.32), (u2, 0.74,−0.72), (u3, 0.35,−0.62)}⟩,
⟨e4,Ω(e4) = {(u1, 0.7,−0.53), (u2, 0.35,−0.35), (u3, 0.55,−0.85)}⟩

 .
Definition 2.5. ([36])

(i) A BFS-set ΩE ∈ (BFU)E is called an absolute BFS-set, denoted by UE, if δ+
Ω(e)(u) = 1 and δ−

Ω(e)(u) = −1
for all u ∈ U and all e ∈ E.

(ii) A BFS-set ΩA ∈ (BFU)E is called a null BFS-set, denoted by ϕA, if δ+
Ω(e)(u) = δ−

Ω(e)(u) = 0 for all u ∈ U
and all e ∈ A.
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Definition 2.6. ([1, 25]) Let Ω1
A1
,Ω2

A2
∈ (BFU)E. Then,

(i) The union of Ω1
A1

and Ω2
A2

is a bipolar fuzzy soft set Ω3
A3

over U such that for all e ∈ E, Ω3(e) =
Ω1(e) ∨Ω2(e) and denoted by Ω3

A3
= Ω1

A1
∪̃ Ω2

A2
.

(ii) The intersection of Ω1
A1

and Ω2
A2

is a bipolar fuzzy soft set Ω3
A3

over U such that for all e ∈ E,
Ω3(e) = Ω1(e) ∧Ω2(e) and denoted by Ω3

A3
= Ω1

A1
∩̃ Ω2

A2
.

Definition 2.7. ([1, 25]) The complement of a BFS-set ΩA ∈ (BFU)E is shown by (ΩA)c = (UE − ΩA) = Ωc
A1

where Ωc : E→ BFU is a mapping defined by δ+
Ωc(e)(u) = 1 − δ+

Ω(e)(u) and δ−
Ωc(e)(u) = −1 − δ−

Ω(e)(u) for all e ∈ E
and u ∈ U.

Theorem 2.8. ([25]) Let Ω1
A1

, Ω2
A2

be two BFS-sets over U.

(i) ((Ω1
A1

)c)c = Ω1
A1

.

(ii) If Ω1
A1
⊆̃Ω2

A2
, then (Ω2

A2
)c
⊆̃ (Ω1

A1
)c.

(iii) (Ω1
A1
∩̃Ω2

A2
)c = (Ω1

A1
)c
∪̃ (Ω2

A2
)c.

(iv) (Ω1
A1
∪̃Ω2

A2
)c = (Ω1

A1
)c
∩̃ (Ω2

A2
)c.

Definition 2.9. ([36]) Let Ω1
A1

, Ω2
A2
∈ (BFU)E. Then, Ω1

A1
is a BFS-subset of Ω2

A2
if δ+

Ω1(e)(u) ≤ δ+
Ω2(e)(u) and

δ−
Ω1(e)(u) ≥ δ−

Ω2(e)(u), which is shown by Ω1
A1
⊆̃Ω2

A2
.

Definition 2.10. ([12]) Let ΩA ∈ (BFU)E with A = {e}. If there is a u ∈ U such that δ+
Ω(e)(u) , 0 or δ−

Ω(e)(u) , 0

and δ+
Ω(e)(u

′) = δ−
Ω(e)(u

′) = 0 for all u′ ∈ U\{u}, then ΩA is called a BFS-point in U. It is denoted by e(p,n)
u .

Definition 2.11. ([12]) The BFS-point e(p,n)
u is said to belongs to a BFS-set ΩA, denoted by e(p,n)

u ∈̃ΩA, if
p ≤ δ+

Ω(e)(u) and n ≥ δ−
Ω(e)(u).

Definition 2.12. ([28]) Let (BFU)E and (BFV)K be two the families of all bipolar fuzzy soft sets on U and V
with parameters from E and K, respectively. Assume that u : U→ V and g : E→ K be two mappings. Then,
the mapping f = (u, g) : (BFU)E

→ (BFV)K is called a BFS-mapping from U to V, defined as the following :

(i) Let ΩA ∈ (BFU)E. Then, f(ΩA) = (f(Ω))A1 is the BFS-set over V with parameters from K given by
f(ΩA) = {⟨k, f(Ω)(k)⟩ : k ∈ K} such that f(Ω)(k) = {(v, δ+

f(Ω)(k)(v), δ−
f(Ω)(k)(v)) : v ∈ V},where

δ+
f(Ω)(k)(v) =

 sup{δ+
Ω(e)(u) : u ∈ u−1(v), e ∈ g−1(d) ∩ A}, if u−1(v) , ∅, g−1(k) ∩ A , ∅,

0, if otherwise,

δ−
f(Ω)(k)(v) =

 inf{δ−
Ω(e)(u) : u ∈ u−1(v), e ∈ g−1(d) ∩ A}, if u−1(v) , ∅, g−1(k) ∩ A , ∅,

0, if otherwise.

Then, f(ΩA) is called BFS-image of BFS-set ΩA under f.
(ii) LetΩ1

A1
∈ (BFV)K. Then, f−1(Ω1

A1
) = (f−1(Ω1))A is the BFS-set over U with parameters from E given by

f−1(Ω1
A1

) = {⟨e, f−1(Ω1)(e)⟩ : e ∈ E} such that f−1(Ω1)(e) = {(u, δ+
f−1(Ω1)(e)(u), δ−

f−1(Ω1)(e)(u)) : u ∈ U},where

δ+
f−1(Ω1)(e)(u) =

 δ+Ω1(g(e))(u(u)), for g(e) ∈ A1,

0, if otherwise,
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δ−
f−1(Ω1)(e)(u) =

 δ−Ω1(g(e))(u(u)), for g(e) ∈ A1,

0, if otherwise.

Then, f−1(Ω1
A1

) is called BFS inverse image of BFS-set Ω1
A1

.

Theorem 2.13. ([28]) Let f = (u, g) : (BFU)E
→ (BFV)K be a BFS-mapping. Then, for Ω1

A1
, Ω2

A2
∈ (BFU)E and Γ1

B1
,

Γ2
B2
∈ (BFV)K, the following properties are satisfied.

(i) f(Ω1
A1
∪̃ Ω2

A2
) = f(Ω1

A1
) ∪̃ f(Ω2

A2
).

(ii) f−1(Γ1
B1
∪̃ Γ2

B2
) = f−1(Γ1

B1
) ∪̃ f−1(Γ2

B2
).

(iii) f(Ω1
A1
∩̃ Ω2

A2
) ⊆̃ f(Ω1

A1
) ∩̃ f(Ω2

A2
).

(iv) f−1(Γ1
B1
∩̃ Γ2

B2
) = f−1(Γ1

B1
) ∩̃ f−1(Γ2

B2
).

(v) Ω1
A1
⊆̃ f−1(f(Ω1

A1
)), f(f−1(Γ1

B1
)) ⊆̃ Γ1

B1
.

(vi) If Ω1
A1
⊆̃ Ω2

A2
, then f(Ω1

A1
) ⊆̃ f(Ω2

A2
).

(vii) If Γ1
B1
⊆̃ Γ2

B2
, then f−1(Γ1

B1
) ⊆̃ f−1(Γ2

B2
).

Definition 2.14. ([29]) A family τ of BFS-sets over U is said to be a BFS-topology on U if it satisfies the
following properties:
(b f st1) UE and ϕA are members of τ.
(b f st2) If Ωi

Ai
∈ τ for all i ∈ I, an index set, then

⋃̃
i∈ΛΩ

i
Ai
∈ τ.

(b f st3) If Ω1
A1

, Ω2
A2
∈ τ, then Ω1

A1
∩̃ Ω2

A2
∈ τ.

We say (U, τ,E) is a BFS-topological space. A member in τ is called a BFS-open set and its complement is
called a BFS-closed set.

Definition 2.15. ([29]) Let (U, τ,E) be a BFS-topological space and ΩA ∈ (BFU)E. The BFS-interior of ΩA is
the union of all BFS-open sets contained in ΩA, denoted by (ΩA)o. From (b f st2) it is clear that (ΩA)o is a
BFS-open set. This set is largest BFS-open set contained in ΩA.

Definition 2.16. ([29]) Let (U, τ,E) be a BFS-topological space and ΩA ∈ (BFU)E. The closure of ΩA is the
intersection of all BFS-closed sets containing ΩA; this set is denoted by ΩA. It is easily seen that ΩA is the
smallest closed set containing ΩA.

Definition 2.17. ([13]) Let (U, τ1,E), (V, τ2,K) be two BFS-topological spaces and f = (u, g) : (U, τ1,E) →
(V, τ2,K) be a BFS-mapping. The BFS-mapping f is said to be BFS-continuous if f−1(ΓB) ∈ τ1 for any ΓB ∈ τ2.

3. BFS-proximity structure

In this section, we give the concept of a BFS-proximity structure and discuss its related properties. With
a BFS-closure operator, we generate a BFS-topology from a given BFS-proximity. Moreover, we offer the
different interpretation of this structure, known as BFS-ρ-neighborhood. Then, we present the definition of
a BFS-proximity mapping and compare this notion with the BFS-continuous mappings.

Definition 3.1. A binary relation ρ ⊆ (BFU)E
× (BFU)E is a BFS-proximity on UE if ρ satisfies the following

axioms:
(b f sp1) ϕA ρ ΩA.
(b f sp2) If ΩA ∩̃ ΓB , ϕA, then ΩA ρ ΓB.



M. Saldamlı, İ. Demir / Filomat 39:4 (2025), 1197–1211 1202

(b f sp3) If ΩA ρ ΓB, then ΓB ρ ΩA.
(b f sp4) ΩA ρ (ΓB ∪̃ ΛC) if and only if ΩA ρ ΓB or ΩA ρ ΛC.
(b f sp5) If ΩA ρ ΓB, then there exists a ΛC ∈ (BFU)E such that ΩA ρ ΛC and ΓB ρ (UE −ΛC),

where ρ indicates negation of ρ. The triplet (U, ρ,E) is called a BFS-proximity space.

Remark 3.2. The idea of a BFS-proximity is the generalization of prevalent proximities such as fuzzy
proximities [17], soft proximities [16], and fuzzy soft proximities [9] as stated below:

(i) If we use just one parameter and ignore the the negative membership degree, then the BFS-proximity
will coincide with the fuzzy proximity.

(ii) If we ignore the negative membership degree and the fuzzy value set of each parameter becomes a
crisp set, then the BFS-proximity will coincide with the soft proximity.

(iii) If we ignore the negative membership degree, then the BFS-proximity will coincide with the fuzzy
soft proximity.

Example 3.3. A binary relation ρ on UE defined as follows is a BFS-proximity:

ΩA ρ ΓB ⇔ ΩA , ϕA and ΓB , ϕA.

Theorem 3.4. Let C : (BFU)E
→ (BFU)E be an operator fulfilling the following condisitions:

(b f o1) ΩA ⊆̃ C(ΩA).
(b f o2) C(C(ΩA)) = C(ΩA).
(b f o3) C(ΩA ∪̃ ΓB) = C(ΩA) ∪̃ C(ΓB).
(b f o4) ϕA = C(ϕA).
Then, we obtain a BFS-topology as below:

τ = {ΩA ∈ (BFU)E : C((ΩA)c) = (ΩA)c
}.

Also, considering this BFS-topology, we establish that ΩA = C(ΩA) for every ΩA ∈ (BFU)E.
We refer to the operator C as the BFS-closure operator.

Proof. (b f st1) From the condition (b f o1), we have (ϕA)c
⊆̃ C((ϕA)c), which indicates that (ϕA)c = C((ϕA)c).

Therefore, ϕA ∈ τ. Also, by (b f o4), we have (UE)c = C((UE)c). Hence, UE ∈ τ.
(b f st2) Let ΩA,ΓB ∈ τ. According to the definition of τ, we obtain C((ΩA)c) = (ΩA)c and C((ΓB)c) = (ΓB)c.
From the condition of (b f o3) and Theorem 2.8 (iii)-(iv),

C((ΩA ∩̃ ΓB)c) = C((ΩA)c
∪̃ (ΓB)c) = C((ΩA)c) ∪̃ C((ΓB)c) = (ΩA)c

∪̃ (ΓB)c = (ΩA ∩̃ ΓB)c.

Thus, ΩA ∩̃ ΓB ∈ τ.

(b f st3) Let {Ωi
Ai

: i ∈ I} ⊆ τ. The definition of BFS-intersection gives
⋂̃

i∈I (Ωi
Ai

)c
⊆̃ (Ωi

Ai
)c for all i ∈ I. By

(b f o3), we obtain easily that C is order preserving. Thereby, we get C(
⋂̃

i∈I (Ωi
Ai

)c) ⊆̃ C((Ωi
Ai

)c) = (Ωi
Ai

)c. Thus,

C(
⋂̃

i∈I (Ωi
Ai

)c) ⊆̃
⋂̃

i∈I (Ωi
Ai

)c. On the other hand, using (b f o1),
⋂̃

i∈I (Ωi
Ai

)c
⊆̃ C(

⋂̃
i∈I (Ωi

Ai
)c). Hence, from the

fact that C((
⋃̃

i∈I Ω
i
Ai

)c) = C(
⋂̃

i∈I (Ωi
Ai

)c) =
⋂̃

i∈I (Ωi
Ai

)c = (
⋃̃

i∈I Ω
i
Ai

)c it follows that
⋃̃

i∈I Ω
i
Ai
∈ τ.

We shall now demonstrate that for every ΩA ∈ (BFU)E, ΩA = C(ΩA) with respect to BFS-topology τ. Due
to (ΩA)c

∈ τ, we obtain C(ΩA) = ΩA. Because C is order preserving, we have C(ΩA) ⊆̃ C(ΩA) = ΩA. On
the other hand, by (b f o2), we get (C(ΩA))c

∈ τ. Thus, since ΩA ⊆̃ C(ΩA) and ΩA is the smallest closed set
containing ΩA, we obtain ΩA ⊆̃ C(ΩA).
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The above theorem reveals that a BFS-closure operator and a BFS topology have a close relationship.

The following lemma plays a vital role in proving our theorems.

Lemma 3.5. Consider a BFS-proximity space (U, ρ,E). Then, the following conditions are fulfilled:

(i) If ΩA ρ ΓB and ∆D ⊇̃ ΩA, ΛC ⊇̃ ΓB, then ∆D ρ ΛC.

(ii) ΩA ρ ΩA for each ΩA , ϕA.

(iii) ΩA ρ UE if and only if ΩA , ϕA.

Proof. It is easily proven.

Now, in order to generate a BFS-topology from a BFS-proximity space (U, ρ,E), we take a BFS-set as
described below:

ΩA = UE − ∪̃{ΓB ∈ (BFU)E : ΩA ρ ΓB}

for each ΩA ∈ (BFU)E. Next, we obtain the subsequent theorem.

Theorem 3.6. Let (U, ρ,E) be a BFS-proximity space. Then, the mappingΩA → ΩA has the properties (b f o1)−(b f o4).
So, the family

τ(ρ) = {ΩA ∈ (BFU)E : (ΩA)c = (ΩA)c
}

is a BFS-topology on UE.

Proof. Let us show that properties (b f o1) − (b f o4) of the mapping ΩA → ΩA hold.
(b f o1) It is clear thatΩA = ϕA. LetΩA , ϕA. Choose all ΓB ∈ (BFU)E withΩA ρ ΓB. Since, by (b f sp2), we have
ΩA ∩̃ ΓB = ϕA. From this, it follows that δ+

Ω(e)(u) = 0 or δ+
Γ(e)(u) = 0 and likewise, δ−

Ω(e)(u) = 0 or δ−
Γ(e)(u) = 0

for any e ∈ E and any u ∈ U. Then, we have

δ+∨
{Γ(e): ΩA ρ ΓB}

(u) ≤ 1 − δ+Ω(e)(u) (1)

δ−∨
{Γ(e): ΩA ρ ΓB}

(u) ≥ −1 − δ−Ω(e)(u) (2)

because δ+
Γ(e)(u) ≤ 1 − δ+

Ω(e)(u) and δ−
Γ(e)(u) ≥ −1 − δ−

Ω(e)(u). Thus, by (1) and (2), we get ΩA ⊆̃ ΩA.

(b f o2) It suffices to demonstrate that ΓB ρ ΩA if and only if ΓB ρ ΩA . Necessity is obvious by the Lemma
3.5 (i). For sufficiency, let ΓB ρ ΩA. Suppose that ΓB ρ ΩA. Using the property (b f sp5), there exists a
ΛC ∈ (BFU)E such that ΓB ρ ΛC and ΩA ρ (UE − ΛC). Since ΩA ⊈̃ ΛC, there are an e ∈ E and a u ∈ U with
δ+
Λ(e)(u) < δ+

Ω(e)
(u) or δ−

Λ(e)(u) > δ−
Ω(e)

(u). We now take the numbers α, β satisfying δ+
Λ(e)(u) < α < δ+

Ω(e)
(u) or

δ−
Λ(e)(u) > β > δ−

Ω(e)
(u). Taking into account the first term, we can choose a BFS-point e(1−α,0)

u ∈̃ UE. Due

to 1 − α ≤ 1 − δ+
Λ(e)(u), we get e(1−α,0)

u ⊆̃ UE − ΛC. Furthermore, we obtain e(1−α,0)
u ρ ΩA because, otherwise,

we would have δ+
Ω(e)

(u) ≤ 1 − (1 − α) = α. A situation that is untenable. Given that e(1−α,0)
u ρ ΩA and

e(1−α,0)
u ⊆̃ UE −ΛC. It follows that ΩA ρ (UE −ΛC). This contradicts the fact that ΩA ρ (UE −ΛC).

(b f o3) It is simple to confirm thatΩA ∪̃ ΓB ⊇̃ΩA ∪̃ ΓB. On the other hand, assume that there are an e ∈ E and
a u ∈ U such that δ+

Ω ∨ Γ(e)
(u) > δ+

(Ω ∨ Γ)(e)
(u) or δ−

Ω ∨ Γ(e)
(u) < δ−

(Ω ∨ Γ)(e)
(u). Considering the first term, we select

an ϵwhere
α = δ+

(Ω ∨ Γ)(e)
(u) > δ+

(Ω ∨ Γ)(e)
(u) + ϵ.
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Let δ+
Ω(e)

(u) ≥ δ+
Γ(e)

(u). Since δ+
Ω(e)

(u) = 1 − δ+∨
{Λ(e): ΩA ρ ΛC}

(u) < α − ϵ, there occurs a ΛC ∈ (BFU)E with

1 − δ+
Λ(e)(u) < α − ϵ and ΩA ρ ΛC. Also, by

1 − δ+Λ(e)(u) ≥ δ+
Ω(e)

(u) ≥ δ+
Γ(e)

(u) > δ+
Γ(e)

(u) −
ϵ
2
.

Therefore, we obtain 1−δ+
Λ(e)(u)+ ϵ2 > δ

+

Γ(e)
(u). Given that δ+

Γ(e)
(u) = 1−δ+∨

{∆(e): ΓB ρ ∆D}
(u), there is a∆D ∈ (BFU)E

such that∆D ρ ΓB and δ+
Λ(e)(u)− ϵ2 < δ

+
∆(e)(u). Due to Lemma 3.5 (i), we have (ΛC ∩̃∆D) ρΩA and (ΛC ∩̃∆D) ρ ΓB.

So, we get (ΛC ∩̃∆D) ρ (ΩA ∪̃ ΓB). According to (b f sp2), we know that δ+
Ω ∨ Γ(e)

(u) ≤ 1−δ+(Λ ∧ Γ)(e)(u). Moreover,

we obtain δ+
Λ(e)(u) − ϵ2 < δ

+
(∆ ∧ Λ)(e)(u). Hence,

α = δ+
Ω ∨ Γ(e)

(u) ≤ 1 − δ+(Λ ∧ Γ)(e)(u) < 1 − δ+Λ(e)(u) +
ϵ
2
< α − ϵ +

ϵ
2
= α −

ϵ
2
,

which results in a contradiction. The case of the second term is similar.
(b f o4) Since ϕA ρ UE, we easily obtain ϕA = ϕA.

Definition 3.7. Consider a BFS-proximity space (U, ρ,E) and let ΩA,ΓB ∈ (BFU)E. If ΩA ρ (UE − ΓB), then
the BFS-set ΓB is called a BFS-ρ-neighborhood of ΩA. This can be expressed symbolically as ΩA ⋐ ΓB. We
demonstrate the negation of ⋐with ⋐̄.

Theorem 3.8. Consider a BFS-proximity space (U, ρ,E). The relation ⋐ fulfills the following properties:
(b f spn1) ϕA ⋐ ΩA.
(b f spn2) If ΩA ⋐ ΓB, then (UE − ΓB) ⋐ (UE −ΩA).
(b f spn3) If ΩA ⋐ ΓB, then ΩA ∩̃ (ΓB)c = ϕA.
(b f spn4) ΩA ⋐ (ΓB ∩̃ ΛC) if and only if ΩA ⋐ ΓB and ΩA ⋐ ΛC.
(b f spn5) If ΩA⊆̃ ΓB ⋐ ΛC ⊆̃ ∆D, then ΩA ⋐ ∆D.
(b f spn6) If ΩA ⋐ ΓB, then there is a ΛC ∈ (BFU)E with ΩA ⋐ ΛC ⋐ ΓB.

Proof. (b f spn1) is clear.
(b f spn2) Consider ΩA ⋐ ΓB. Then, we have ΩA ρ (UE − ΓB). From (b f sp3), we obtain (UE − ΓB) ρ ΩA; in

other words, (UE − ΓB) ⋐ (UE −ΩA).
(b f spn3) If ΩA ⋐ ΓB, from (b f sp2), then we have ΩA ∩̃ (ΓB)c = ϕA .
(b f spn4) The criterion is met since

ΩA ⋐ (ΓB ∩̃ ΛC)⇔ ΩA ρ (ΓB ∩̃ ΛC)c

⇔ ΩA ρ (ΓB)c
∩̃ (ΛC)c

⇔ ΩA ρ (ΓB)c and ΩA ρ (ΛC)c

⇔ ΩA ⋐ ΓB and ΩA ⋐ ΛC.

(b f spn5) Suppose thatΩA ⋐̄∆D. So, we haveΩA ρ (UE−∆D). Given thatΩA⊆̃ ΓB and (UE−∆D) ⊆̃ (UE−ΛC),
we get ΓB ρ (UE −ΛC). Thus, ΓB ⋐̄ ΛC, leading to a contradiction.

(b f spn6) IfΩA ⋐ ΓB, thenΩA ρ (UE−ΓB). From (b f sp5), there exists a∆C ∈ (BFU)E such thatΩA ρ (UE−ΛC)
and ΛC ρ (UE − ΓB). Hence, we obtain ΩA ⋐ ΛC ⋐ ΓB.

Theorem 3.9. Consider (U, ρ,E) as a BFS-proximity space and let ΩA,ΓB ∈ (BFU)E. Then, the following properties
are valid:

(i) ΩA ⋐ ΓB if and only if ΩA ⋐ ΓB.

(ii) If ΩA ⋐ ΓB, then there is a ∆D ∈ τ(ρ) such that ΩA ⊆̃ ∆D ⊆̃ ΓB.

(iii) If ΩA ρ ΓB, then there exist the BFS-sets ΛC and ∆D where ΩA ⋐ ΛC, ΓB ⋐ ∆D and ΛC ρ ∆D.
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Proof. (i) It is clear from the fact ΓB ρ ΩA ⇔ ΓB ρ ΩA that we proved in the Theorem 3.6.
(ii) If ΩA ⋐ ΓB, then ΩA ρ (UE − ΓB) and we have

(UE − ΓB) = UE − ∪̃{ΛC ∈ (BFU)E : ΛC ρ UE − ΓB} ⊆̃ UE −ΩA. (3)

Let ∆D = UE − (UE − ΓB). It is immediately seen that

(UE − ∆D) = (UE − ΓB) = (UE − ΓB) = (UE − ∆D). (4)

When (3) and (4) are combined, we get a ∆D ∈ τ(ρ) with ΩA ⊆̃ ∆D ⊆̃ ΓB.
(iii) In the event thatΩA ρ ΓB, by (b f sp5), there exists an ∆D ∈ (BFU)E such thatΩA ρ ∆D and ΓB ρ (UE −∆D).
Since ∆D ρΩA, there is a BFS-set ΛC such that ∆D ρ ΛC andΩA ρ (UE −ΛC). Hence, there occur the BFS-sets
ΛC and ∆D satisfying ΩA ⋐ ΛC, ΓB ⋐ ∆D and ΛC ρ ∆D.

Theorem 3.10. Consider the relation ⋐ on (BFU)E satisfying the conditions (b f spn1) − (b f spn6). According to the
following formula, ρ is a BFS-proximity on UE :

ΩA ρ ΓB ⇔ ΩA ⋐ (UE − ΓB).

Also, depending on the BFS-proximity defined above, ΓB is a BFS-ρ-neighborhood of ΩA if and only if ΩA ⋐ ΓB.

Proof. Our first step is to validate the axioms (b f sp1) − (b f sp5).
(b f sp1) If ΩA ∈ (BFU)E, then we have ϕA ⋐ UE −ΩA by (b f spn1). From here, we get ϕA ρ ΩA.
(b f sp2) IfΩA ρ ΓB, then from formula above, we obtainΩA ρ (UE−ΓB). By (b f spn3),ΩA ∩̃ ΓB = ΩA ∩̃ ((ΓB)c)c =
ϕA.

(b f sp3) Let ΩA ρ ΓB. Then, we get ΩA ⋐ (ΓB)c. From (b f spn2), ΓB ⋐ (ΩA)c and so that ΓB ρ ΩA.
(b f sp4) Take ΩA ρ (ΓB ∪̃ ΛC). Therefore, ΩA ⋐ (UE − (ΓB ∪̃ ΛC)). Using (b f spn4), we obtain ΩA ⋐ (UE − ΓB)
and ΩA ⋐ (UE −ΛC). Hence, ΩA ρ ΓB and ΩA ρ ΛC.
(b f sp5) Consider ΩA ρ ΓB. So, we have ΩA ⋐ (UE − ΓB). Hence, with the help of (b f spn6), there is a BFS-set
ΛC such that ΩA ⋐ ΛC ⋐ (UE − ΓB). Thus, ΩA ρ (UE −ΛC) and ΛC ρ ΓB.

Theorem 3.11. Let (U, ρ,E) be a BFS-proximity space and ΩA ∈ (BFU)E. Then,

ΩA = ∩̃{ΓB ∈ (BFU)E : ΩA ⋐ ΓB}.

Proof. Firstly, we will demonstrate that ΩA ⊆̃ ∩̃{ΓB ∈ (BFU)E : ΩA ⋐ ΓB}. Consider a BFS-set ΓB such that
ΩA ⋐ ΓB. According to Theorem 3.9 and (b f spn3), we haveΩA ⊆̃ ΓB. So, it follows thatΩA ⊆̃ ∩̃{ΓB ∈ (BFU)E :
ΩA ⋐ ΓB}. To finish the proof, we need to show that ΩA ⊇̃ ∩̃{ΓB ∈ (BFU)E : ΩA ⋐ ΓB}. Suppose that there
exist an e ∈ E and a u ∈ U such that δ+∧

{Γ(e): ΩA ⋐ ΓB}
(u) > δ+

Ω(e)
(u). In that case, there is an ϵ > 0 such that

δ+
Ω(e)

(u) = 1 − δ+∨
{Λ(e): ΩA ρ ΛC}

(u) < δ+∧
{Γ(e): ΩA ⋐ ΓB}

(u) − ϵ.

Hence, the inequality
1 − δ+∆(e)(u) < δ+∧

{Γ(e): ΩA ⋐ ΓB}
(u) − ϵ

is satisfied, where ΩA ρ ∆D for some BFS-set ∆D. Since ΩA ρ ∆D, we obtain ΩA ⋐ (UE − ∆D), and so that
∩̃{ΓB ∈ (BFU)E : ΩA ⋐ ΓB} ⊆̃ (UE − ∆D). For that reason,

δ+∧
{Γ(e): ΩA ⋐ ΓB}

(u) ≤ 1 − δ+∆(e)(u) < δ+∧
{Γ(e): ΩA ⋐ ΓB}

(u) − ϵ,

leading to a contradiction.
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Definition 3.12. Consider two BFS-proximity spaces (U, ρ1,E) and (V, ρ2,K). If a BFS-mapping f : (U, ρ1,E)→
(V, ρ2,K) holds the following condition

ΩA ρ1 ΓB ⇒ f(ΩA) ρ2 f(ΓB)

for any ΩA,ΓB ∈ (BFU)E, then it is called a BFS-proximity mapping.

The following propositions are simply proven by using the definition given above.

Proposition 3.13. Given two BFS-proximity spaces (U, ρ1,E) and (V, ρ2,D). A BFS-mapping f : (U, ρ1,E) →
(V, ρ2,D) is a BFS-proximity mapping if and only if

ΛC ρ2 ∆D ⇒ f
−1(ΛC) ρ1 f

−1(∆D)

or equivalently
ΛC ⋐2 ∆D ⇒ f

−1(ΛC) ⋐1 f
−1(∆D).

Proposition 3.14. A composition of two BFS-proximity mappings forms a BFS-proximity mapping.

Theorem 3.15. A BFS-proximity mapping f : (U, ρ1,E) → (V, ρ2,K) is BFS-continuous according to the BFS-
topologies τ(ρ1) and τ(ρ2) on UE and VK, respectively.

Proof. If we can demonstrate that f−1(ΩA) ∈ τ(ρ1) when ΩA ∈ τ(ρ2), the proof ends. Let ΛC ∈ (BFU)E be any
BFS-set that ΛC ρ2 (VK −ΩA). By Proposition 3.13, we get f−1(ΛC) ρ1 (UE − f

−1(ΩA)). According to (b f sp2), it
can be deduced that UE − f

−1(ΩA) ⊆̃ UE − f
−1(ΛC). Then, we have

δ+
(UE−f−1(Ω))(e)

(u) ≤ δ+(UE−f−1(Λ))(e)(u) = 1 − δ+
f−1(Λ)(e)(u) = 1 − δ+Λ(g(e))u(u) = δ+(VK−Λ)(g(e))u(u)

for all e ∈ E and all u ∈ U. Thus,

δ+
(UE−f−1(Ω))(e)

(u) ≤ δ+∧
{(VK−Λ)(g(e)): (VK−ΩA) ρ2 ΛC}

(u)

= δ+
(VK−Ω)g(e)

u(u)

= δ+(VK−Ω)g(e)u(u)

= 1 − δ+Ω(g(e))u(u)

= 1 − δ+
f−1(Ω)(e)(u)

= δ+(UE−f−1(Ω))(e)(u).

Hence, since UE − f
−1(ΩA) ⊆̃ UE − f

−1(ΩA), we get f−1(ΩA) ∈ τ(ρ1).

4. Initial BFS-proximity structure

Here, we present the concept of an initial BFS-proximity structure. Next, we construct the existence of
this structure and establish a characterization of it.

Firstly, let us give the idea of comparing BFS-proximity structures: Consider two BFS-proximities ρ1
and ρ2 on UE. The relationship between ρ1 and ρ2, as defined below, is expressed by saying that ρ2 is finer
than ρ1 or ρ1 is coarser than ρ2:

ρ1 < ρ2 ⇔ ΩA ρ2 ΓB implies ΩA ρ1 ΓB.

Definition 4.1. Let {(Uα, ρα,Eα) : α ∈ I} be a collection of the BFS-proximity spaces and let fα : (BFU)E
→

(Uα, ρα,Eα) be a BFS-mapping for eachα ∈ I. The coarsest BFS-proximityρon UE for which all BFS-mappings
fα : (U, ρ,E)→ (Uα, ρα,Eα) (α ∈ I) are BFS-proximity mapping is called the initial BFS-proximity.
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Theorem 4.2. Let {(Uα, ρα,Eα) : α ∈ I} be a collection of the BFS-proximity spaces and let fα : (BFU)E
→ (Uα,Eα, ρα)

be a BFS-mapping for each α ∈ I. The initial BFS-proximity on UE is determined by the binary relation ρ as follows:
For all ΩA,ΓB ∈ (BFU)E,

ΩA ρ ΓB ⇔ f or any f inite f amilies {Ωi
Ai

: i = 1, ...,n} and {Γ j
B j

: j = 1, ...,m} where

ΩA =
⋃̃n

i=1
Ωi

Ai
and ΓB =

⋃̃m

j=1
Γ

j
B j
, there exist an Ωi

Ai
and a Γ j

B j
such that

fα(Ωi
Ai

) ρα fα(Γ
j
B j

) f or all α ∈ I.

Proof. Firstly, we show that ρ is a BFS-proximity on UE.
(b f sp1) is clear.

(b f sp2) If ΩA ρ ΓB, then there exist finite covers ΩA =
⋃̃n

i=1Ω
i
Ai

and ΓB =
⋃̃m

j=1Γ
j
B j

of ΩA and ΓB, respectively,

such that fα(Ωi
Ai

) ρα fα(Γ
j
B j

) for some α = si j ∈ I where i = 1, ...,n and j = 1, ...,m. We know that each ρα is a

BFS-proximity. From here, we get fα(Ωi
Ai

) ∩̃ fα(Γ
j
B j

) = ϕA. Thereby, it can be deduced that

fα

(⋃̃n

i=1
Ωi

Ai

)
∩̃ fα

(⋃̃m

j=1
Γ

j
B j

)
= fα(ΩA) ∩̃ fα(ΓB) = ϕA.

Hence, ΩA∩̃ ΓB = ϕA.
(b f sp3) It is evident that ΩA ρ ΓB implies ΓB ρ ΩA because all ρα is a BFS-proximity.
(b f sp4) Firstly, let us demonstrate that the sufficient condition is satisfied. It can be readily confirmed that
if ΩA ρ ΓB, then we have ΩA ρ ΛC for any ΛC ⊇̃ ΓB. When ΩA ρ ΓB or ΩA ρ ΛC, then ΩA ρ (ΓB ∪̃ ΛC)
is fulfilled. On the other hand, suppose that ΩA ρ ΓB and ΩA ρ ΛC. Following that, there are finite
covers ΩA =

⋃̃n
i=1Ω

i
Ai

and ΓB =
⋃̃m

j=1Γ
j
B j

of ΩA and ΓB, respectively, such that fα(Ωi
Ai

) ρα fα(Γ
j
B j

) for some

α = si j ∈ I where i = 1, ...,n and j = 1, ...,m. Similarly, there exist finite covers ΩA =
⋃̃q

p=1∆
p
Dp

and

ΛC =
⋃̃m+l

j=m+1Γ
j
B j

ofΩA and ΛC, respectively, such that fα(∆
p
Dp

) ρα fα(Γ
j
B j

) for some α = tpj ∈ I where p = 1, ..., q

and j = m + 1, ...,m + l. In this case, {Ωi
Ai
∩̃ ∆

p
Dp

: i = 1, ...,n; p = 1, ..., q} and {Γ j
B j

: j = 1, ...,m + l} are finite
covers of ΩA and ΓB ∪̃ ΛC, respectively. Thus, by Lemma 3.5 (i), we obtain ΩA ρ (ΓB ∪̃ ΛC) because of
fα(Ωi

Ai
∩̃ ∆

p
Dp

) ρα fα(Γ
j
B j

) for α = si j ∈ I or α = tpj ∈ I.

(b f sp5) To establish the last axiom consider the set Ψ to including all pairs (ΩA,ΓB) where ΩA ρ ΓB and
for every ΛC ∈ (BFU)E we have either ΩA ρ ΛC or ΓB ρ (UE − ΛC). The goal of the proof is to determine
that Ψ is an empty set. Suppose that (ΩA,ΓB) ∈ Ψ. Then, we have fα(ΩA) ρα fα(ΓB) for any α ∈ I. In
fact, consider a ΛC ∈ (BFUα )Eα and a ∆D = f

−1
α (ΛC) ∈ (BFU)E. If ΩA ρ ∆D, then fα(ΩA) ρα fα(∆D). Since

fα(∆D) ⊆̃ΛC and from Lemma 3.5 (i), we get fα(ΩA) ρα ΛC. Likewise, in the event that ΓB ρ (UE−∆D) we have
fα(ΓB) ρα (UEα − ΛC). Thereby, due to ρα being a BFS-proximity on Uα, from the axiom (b f sp5), we obtain
fα(ΩA) ρα fα(ΓB). Furthermore, it is evident that for every (ΩA,ΓB) ∈ Ψ, there are the positive integers n,m
satisfiying the covers ΩA =

⋃̃n
i=1Ω

i
Ai

and ΓB =
⋃̃m

j=1Γ
j
B j

such that an α ∈ I exists along with fα(Ωi
Ai

) ρα fα(Γ
j
B j

)
for all (i, j) ∈ {1, ...,n} × {1, ...,m}. Choose l = n+m, which is straightforward to recognize as l > 2. Therefore,
for every (ΩA,ΓB) ∈ Ψ, we select an integer l like that. However, (ΩA,ΓB) does not uniquely guarantee l.
Consider Θ to be the collection of all intergers that correspond to Ψ’s members, and consider l to be Θ’s
smallest element. Now, let us take an (ΩA,ΓB) ∈ Ψ corresponding to the smallest integer l ∈ Θ. Then, there
occur the coversΩA =

⋃̃n
i=1Ω

i
Ai

and ΓB =
⋃̃m

j=1Γ
j
B j

where l = n+m and for any pair (i, j) ∈ {1, ...,n} × {1, ...,m},

there is an α ∈ I with fα(Ωi
Ai

) ρα fα(Γ
j
B j

). At least one of the n,m has a value larger than 1. Let n > 1 and take
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Ω′A′ = Ω
1
A1
∪̃...∪̃ Ωn−1

An−1
. In this context, one of the following circumstances should be valid:

(i) For each ΛC ∈ (BFU)E, the options are Ω′A′ ρ ΛC or ΓB ρ (UE −ΛC),

(ii) For each ΛC ∈ (BFU)E, the options are Ωn
An
ρ ΛC or ΓB ρ (UE −ΛC).

Indeed, let us suppose that both (i) and (ii) are false. Then, there exist Λ1
C1
,Λ2

C2
∈ (BFU)E such that

Ω′A ρ Λ
1
C1
,ΓB ρ (UE −Λ

1
C1

) andΩn
An
ρ Λ2

C2
,ΓB ρ (UE −Λ

2
C2

). By utilizing ΛC = Λ
1
C1
∩̃ Λ2

C2
, we getΩA ρ ΛC and

ΓB ρ (UE − ΛC), which goes counter to the assertion that (ΩA,ΓB) ∈ Ψ. Let us suppose that (i) is true. Since
Ω′A′ ⊆̃ ΩA and ΩA ρ ΓB, we obtain Ω′A′ ρ ΓB. According to the condition (i), (Ω′A′ ,ΓB) ∈ Ψ. But, this leads to
a contradiction because (n − 1) + m = l − 1 ∈ Θ. In a similar manner, we have a contradiction if (ii) is also
true. Therefore, from the fact that the setΨ is empty it follows that ρ is a BFS-proximity on UE.
One can easily observe that all mappings fα : (U, ρ,E) → (Uα, ρα,Eα) (α ∈ I) are BFS-proximity mappings.
Consider ρ∗ as an additional BFS-proximity on UE such that any mapping fα : (U, ρ∗,E)→ (Uα, ρα,Eα) (α ∈ I)
is a BFS-proximity mapping. Showing that ρ < ρ∗ completes the proof. Let ΩA ρ∗ ΓB and take any covers
ΩA =

⋃̃n
i=1Ω

i
Ai

and ΓB =
⋃̃m

j=1Γ
j
B j

ofΩA and ΓB, respectively. With respect to the property (b f sp4), there exists

an i ∈ {1, ...,n}withΩi
Ai
ρ∗ ΓB. Similarly, there exists a j ∈ {1, ...,m} such thatΩi

Ai
ρ∗ Γ j

B j
. Since every mapping

fα : (U, ρ∗,E) → (Uα, ρα,Eα) is a BFS-proximity mapping, it can be deduced that fα(Ωi
Ai

) ρα fα(Γ
j
B j

) for each
α ∈ I. Hence, we obtain ΩA ρ ΓB.

Theorem 4.3. A BFS-mapping f : (V, ρ∗,K) → (U, ρ,E) is a BFS-proximity mapping if and only if fα ◦ f :
(V, ρ∗,K)→ (Uα, ρα,Eα) is a BFS-proximity mapping for every α ∈ I.

Proof. The necessity is straightforward. Conversely, consider fα ◦ f as a BFS-proximity mapping for every
α ∈ I. LetΩA ρ∗ ΓB and choose f(ΩA) =

⋃̃n
i=1Ω

i
Ai

and f(ΓB) =
⋃̃m

j=1Γ
j
B j

. Therefore, we obtainΩA ⊆̃
⋃̃n

i=1f
−1(Ωi

Ai
)

and ΓB ⊆̃
⋃̃m

j=1f
−1(Γ j

B j
). As ΩA ρ∗ ΓB, according to (b f sp4), there exist an i ∈ {1, ...,n} and a j ∈ {1, ...,m} such

that f−1(Ωi
Ai

) ρ∗ f−1(Γ j
B j

). Since

fα ◦ f ◦ f
−1(Ωi

Ai
) ⊆̃ fα(Ωi

Ai
),

fα ◦ f ◦ f
−1(Ω j

B j
) ⊆̃ fα(Ω

j
B j

),

by Lemma 3.5 (i), it can be inferred that fα(Ωi
Ai

) ρα fα(Γ
j
B j

) for every α ∈ I. Hence, we get f(ΩA) ρ f(ΓB).

5. BFS-proximity generated by proximity

This part deals with the construction of a BFS-proximity structure from a proximity structure in the
classical sense. Next, we determine a characterization of the relationship between these two structures.

Definition 5.1. Consider a set U and a subset Z of U. Then, a mapping ΥZ : E→ (BFU)E is a BFS-set on UE
defined as in the following way: For all e ∈ E,

ΥZ(e) = {(u, δ+
ΥZ(e)(u), δ−

ΥZ(e)(u)) : u ∈ U},

where

δ+
ΥZ(e)(u) =

{
1, u ∈ Z,
0, u < Z,

δ−
ΥZ(e)(u) =

{
−1, u ∈ Z,
0, u < Z.
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Example 5.2. Let U = {u1,u2,u3}, Z = {u1,u2, } and E = {e1, e2, e3}. Then,

ΥZ =


⟨e1,Ω(e1) = {(u1, 1,−1), (u2, 1,−1), (u3, 0, 0)}⟩,
⟨e2,Ω(e2) = {(u1, 1,−1), (u2, 1,−1), (u3, 0, 0)}⟩,
⟨e3,Ω(e3) = {(u1, 1,−1), (u2, 1,−1), (u3, 0, 0)}⟩


is a BFS-set on UE.

Lemma 5.3. For any subsets Z,X of U,

(i) ΥZ
∩̃ ΥX = ΥZ∩X,

(ii) ΥZ
∪̃ ΥX = ΥZ∪X,

(iii) (ΥZ)c = ΥZc .

Proof. As it is simple, it gets omitted.

It is worth noting that if a binary relation ρ over the power set of a set U satisfies the following axioms,
it is called a proximity on U: For any subsets Z,X,Y of U,
(p1) ∅ρZ.
(p2) If Z ∩ X , ∅, then ZρX.
(p3) If ZρX, then X ρZ.
(p4) Zρ (X ∪ Y) if and only if ZρX or ZρY.
(p5) If ZρX, then there exists a subset Y of U such that ZρY and X ρ (U − Y) [24].

Theorem 5.4. Consider a proximity space (U, ρ) in the classical meaning. The binary relation ρi defined below is a
BFS-proximity on UE: For each ΩA,ΓB ∈ (BFU)E,

ΩA ρi ΓB ⇔ there exist the subsets Z,X o f U such that ΩA ⊆̃ Υ
Z, ΓB ⊆̃ Υ

X and Z ρ X.

Proof. If we show that ρ satisfies the axioms (b f sp1) − (b f sp5), the proof concludes.

(b f sp1) From Definition 5.1, we obtain that ϕA ⊆̃Υ
∅,ΩA ⊆̃Υ

U. Since (U, ρ) is a proximity space, we get ∅ ρU.
Thus, ϕA ρi ΩA.
(b f sp2) ConsiderΩA ρi ΓB. Then, there exist the subsets Z and X of U such thatΩA ⊆̃ Υ

Z, ΓB ⊆̃ Υ
X and Z ρ X.

Due to Z ρ X, we get Z ∩ X = ∅. Then, by Lemma 5.3 (i), ΥZ
∩̃ ΥX = ϕA. Therefore, we have ΩA ∩̃ ΓB = ϕA.

(b f sp3) is obvious.
(b f sp4) The sufficiency of the condition follows from the above definition. On the other hand, suppose that
ΩA ρi ΓB and ΩA ρi ΛC. Then, there are the subsets Z,X of U with ΩA ⊆̃ Υ

Z,ΓB ⊆̃ Υ
X and Z ρ X. Similarly,

there are the subsets Y,W of U such that ΩA ⊆̃ Υ
Y,ΛC ⊆̃ Υ

W and Y ρW. Because of

ΩA ⊆̃ Υ
Z
∩̃ ΥY = ΥZ∩Y, ΓB ∪̃ ΛC ⊆̃ Υ

X
∪̃ ΥW = ΥX∪W

and by (p4), from the fact that (Z ∩ Y) ρ (X ∪W) it follows that ΩA ρi (ΓB ∪̃ ΛC).
(b f sp5) Let ΩA ρi ΓB. Then, there exist the subsets Z,X of U with ΩA ⊆̃ Υ

Z,ΓB ⊆̃ Υ
X and Z ρ X. In the event

that Z ρ X, by using (p5), we can say that there is a subset Y of U such that Z ρ Y and X ρ (U − Y). Hence,
we have ΩA ρi Υ

Y and ΓB ρi (UE − Υ
Y) for a BFS-set ΥY.

Theorem 5.5. Consider a BFS-proximity space (U, ρ∗,E).

(i) There exists a proximity relation ρ on U with ρ∗ = ρi.

(ii) If ΩA ρ∗ ΓB, there are subsets Z and X of U such that ΩA ⊆̃ Υ
Z, ΓB ⊆̃ Υ

X and ΥZ ρ∗ ΥV.
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(iii) The relation ρ is a proximity on U as follows:

Z ρ X⇔ ΥZ ρ∗ ΥX.

Then, (i) and (ii) are equivalent and they lead to (iii).

Proof. (i)⇒ (ii) is clear.
It suffices to demonstrate that ρ meets the axiom (b f sp5) to show that (ii) ⇒ (iii), as the other axioms are
easily confirmed. Let Z ρ X for any subsets Z,X of U. Due to ΥZ ρ∗ΥX, by (b f sp5), there exists a BFS-set
ΩA such that ΥZ ρ∗ ΩA and ΥX ρ∗ (UE −ΩA). From the condition (ii), there are subsets Y,W,T,P of U with
ΥZ
⊆̃ΥY,ΩA ⊆̃Υ

W ,ΥY ρ∗ΥW andΥX
⊆̃ΥT, (UE−ΩA) ⊆̃ΥP,ΥT ρ∗ΥP. Using Lemma 3.5 (i), we haveΥZ ρ∗ΥW ,

which indicates that Z ρW. Similarly, since ΩA ⊆̃ Υ
W , we obtain UE −ΩA ⊇̃ UE − Υ

W = ΥU−W . Therefore,
we get ΥU−W

⊆̃ ΥP. By Lemma 3.5 (i), it follows that ΥX ρ∗Υ(U−W), which means that V ρ (U −W).
(ii)⇒ (i) To establish this implication, consider the binary relation ρ on U as below:

Z ρ X⇔ ΥZ ρ∗ΥX.

We know that ρ is a proximity on U. If we show that ρ∗ = ρi, the proof is completed. Let ΩA ρ∗ ΓB. Then,
from (ii), there are the subsets Z and X of U satisfying ΩA ⊆̃ Υ

Z, ΓB ⊆̃ Υ
X and ΥZ ρ∗ΥX. Therefore, we get

Z ρ X and this implies that ΩA ρi ΓB. Conversely, given that ΩA ρi ΓB. From the definition of ρi, there are
subsets Z,X of U such thatΩA ⊆̃Υ

Z, ΓB ⊆̃Υ
X and Z ρX. Thus, we obtainΩA ρ∗ ΓB, which ends the proof.

6. Conclusion

The proximity structure not only offer a clear and conceptual solution to many significant topological
issues but also has wide applications in other fields including information technology and computer science.
So, numerous researchers have found out and analyzed the stronger and weaker forms of this sturcture.
In this study, we primarily introduce a BFS-proximity structure and establish certain characteristics of it.
Then, using the obtained BFS-closure operator, we demonstrate how each BFS-proximity produces a BFS-
topology. Additionally, we offer a different interpretation of BFS-proximity, known as BFS-ρ-neighborhood.
Moreover, we characterize the connection of BFS-proximity with proximity given as classically. Next, we
present initial BFS-proximity. Therefore, these theoretical works will serve as a basis for future research
into novel BFS-proximity approaches and numerous application domains. Also, it is possible to examine
how some of the concepts discussed here could be applied to real-life problems. Later, one can reconstruct
our research into another perspectives such as bipolar fuzzy N-soft sets, bipolar fuzzy soft expert sets and
rough fuzzy bipolar soft sets to study the proximity and its applications on these models.

References

[1] S. Abdullah, M. Aslam, K. Ullah, Bipolar fuzzy soft sets and its applications in decision making problem, J. Intell. Fuzzy Syst. 27(2)
(2014), 729-742.
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