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Hyperbolic Ricci solitons on K-contact manifolds and its applications
in spacetimes
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Abstract. The aim of the present article is delve into characterizations of hyperbolic Ricci solitons which
bear wave characters of K-contact metrics and associated curvatures of manifolds as self similar solutions
of a hyperbolic Ricci flow. Also, we investigate gradient hyperbolic Ricci solitons on η-Einstein K-contact
manifolds and construct an example to verify the deduced results. Finally we analyze hyperbolic Ricci
solitons in the framework of quasi-Einstein spacetimes.

1. Introduction

Kong and Liu [24] introduced hyperbolic Ricci flow in order to illustrate the wave nature of the metrics
and curvatures of manifolds with beautiful analogy between hyperbolic Ricci flow and wave equations.
This is novel and very natural to analyze certain interesting phenomena in the geometry of manifolds.
It possesses several interesting properties from Mathematics as well as in Physics. According to Kong
[25], hyperbolic Ricci solitons as self similar solutions of hyperbolic Ricci flow are of prime importance
as they are highly related with solutions of Einstein’s field equations in vacuum. Soliton theory becomes
further interesting by coupling with contact metric theory [5]. Solitons with contact metric was first studied
by Sharma [30]. Thus, we get natural motivation to study hyperbolic Ricci solitons in the framework of
K-contact manifolds.

In this connection it should be mention that in [21], Hamilton was introduced the notion of Ricci soliton
on a Riemannian manifold (Nm, 1), which is the generalization of the Einstein metrics defined by

£P1 + 2S = 2λ1, (1)

where £P denotes the Lie derivative operator along the potential vector field P, S the Ricci tensor of type
(0,2) and λ is a constant. If P = gradζ, then the equation (1) can be rewritten as follows

S +Hessζ = λg, (2)
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where Hess being the Hessian operator of the smooth function ζ. A Ricci soliton is the limit of the solutions
of Ricci flow evolution equation on (N , 10) given by ∂1

∂t = −2S, 1(0) = 10. Ricci solitons on different kind
of manifolds have been studied by several researchers [10, 12, 19, 22, 28, 31, 32]. A hyperbolic geometric
flow is defined by [24]

∂21

∂t2 = −2S, 1(0) = 10,
∂1

∂t
= H0, (3)

whereH0 is a symmetric (0,2)-tensor field onN . Recently, this types of flow are studied by various authors
in different perspectives [1–4, 8–11, 17, 18, 23].

A Riemannian manifold (Nm, 1) is called a hyperbolic Ricci soliton (HRS, in short) if their exists a vector
field P onN such that

S + τ£P1 +
1
2

£P(£P1) = λ1, (4)

for some real scalars τ and λ on N [20]. A HRS is called a Ricci Soliton if the potential vector field is
2-Killing [13–15] and τ = 1

2 . A HRS is said to be shrinking, steady or expanding according as λ > 0, λ = 0 or
λ < 0. Also, a HRS is said to be a gradient hyperbolic Ricci soliton (GHRS, in short) if their exists a potential
function ζ such that P = gradζ. Thus the equation (4) takes the form

S + 2τ(Hessζ) + £gradζ(Hessζ) = λg, (5)

where gradζ denotes the gradient of the potential function ζ.
The present article is organized as follows: After the introduction, we give some preliminaries in the

Section 2. In Section 3, we investigate certain results of HRS on (2m+1)-dimensional K-contact manifolds.
In Section 4, we have studied GHRS on η-Einstein K-contact manifold of dimension (2m+1). In Section 5,
we give an example to verify the deduced results. In the last section, we apply HRS in super quasi-Einstein
spacetimes.

2. Preliminaries

A differentiable manifold N2m+1 is known as a contact manifold if there exists a global 1-form η such
that η ∧ (dη)m , 0 everywhere onN . For a given contact 1-form η there exists a unique Reeb vector field θ
such that dη(θ,W) = 0 and η(θ) = 1. Let (ϕ, θ, η, 1) be a contact metric structure, where ϕ, θ, η and 1 are,
respectively, a (1, 1)-tensor field, a (1, 0) type vector field, a 1-form and an associated metric of η, such that

ϕ2(W) = −W + η(W)θ, η(W) = 1(W, θ), dη(W,U) = 1(W, ϕU), (6)

ϕθ = 0, η.ϕ = 0 rank(ϕ) = 2m,

for every vector field W, U on N2m+1 [6]. The tensor h = 1
2 £θϕ is known to be self-adjoint, where £ denotes

the Lie derivative operator that anti-commutes with ϕ and satisfies the conditions tr(h) = 0, tr(hϕ) = 0,
where ’tr’ indicates trace.

A contact metric structure is said to be K-contact if the characteristics vector field θ is Killing vector
field. For a K-contact manifold, the following conditions hold:

∇Wθ = −ϕW, (∇Wϕ)U = R(θ,W)U. (7)

Qθ = 2mθ, R(W, θ)θ =W − η(W)θ. (8)

(∇Wη)U + (∇Uη)W = 0, (∇Wη)U = ϕ(W,U) = 1(W, ϕU), (9)

where ∇, R, Q denote the Levi-Civita connection, curvature tensor and the Ricci operator of 1 respectively.
The contact structure on N is said to be normal if the almost complex structure on N × R defined by
J(W, f d

dt ) = (ϕW − fθ, η(W) d
dt ), where f is a real function on N × R, is integrable. A normal contact metric
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manifold is called a Sasakian manifold. Sasakian manifolds are K-contact and 3-dimensional K-contact
manifolds are Sasakian. For a Sasakian manifold, we have

R(W,U)θ = η(U)W − η(W)U. (10)

Also, it is well known that, an η-Einstein K-contact manifold of dimension (2m + 1) satisfies the following
curvature properties:

S(W,U) = (
R

2m
− 1)1(W,U) + [(2m + 1) −

R

2m
]η(W)η(U), (11)

which gives

S(U, θ) = 2mη(U). (12)

In addition, the manifold (N2m+1, 1) is called nearly quasi-Einstein manifold [33] if S = α11+ α2Et for some
functions α1, α2 and a non-vanishing symmetric (0,2)-tensor Et onN2m+1.

Definition 2.1. [7] On a Riemannian manifold (N2m+1, 1), a vector field P is said to be concircular if it satisfies

∇WP = ζW, (13)

for any vector field W and a real smooth function ζ on N . Also, a vector field P is called concircular Killing vector
field if it satisfies

(£P1)(W,U) = 2α1(W,U), (14)

for some real smooth function α onN .

Definition 2.2. [19] On a Riemannian manifold (N2m+1, 1), a vector field P is said to be Ricci bi-conformal vector
field if it satisfies

(£P1)(W,U) = f11(W,U) + f2S(W,U), (15)

and

(£PS)(W,U) = f1S(W,U) + f21(W,U), (16)

for some non-zero smooth functions f1, f2 onN .

3. Hyperbolic Ricci solitons (HRS) on K-contact manifolds of dimension (2m + 1)

Theorem 3.1. A K-contact manifold N2m+1 admitting a HRS with the potential vector field P which is pointwise
collinear with the Reeb vector field θ is nearly quasi-Einstein manifold.

Proof. Let (N , 1,P, τ, λ) be a HRS whose potential vector field P such that P = Bθ, for a smooth function
B. With the help of Lie derivative operator and using (6) and (7), we get

£P1(W,U) = 1(W,gradB)η(U) + 1(U,gradB)η(W), (17)

for any vector field W, U and gradB denotes the gradient of B.
By the definition of the Lie derivative operator and using (17), we infer

£P(£P1(W,U)) = P.1(W,gradB)η(U) + 1(W,gradB)P(η(U)) +P.1(U,gradB)η(W)
− 1(U,gradB)P(η(W)) − 1(£PW,gradB)η(U) − 1(U,gradB)η(£PW)
− 1(£PU,gradB)η(W) − 1(W,gradB)η(£PU). (18)
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Using (17) and (18) in equation (4), one can obtain

S(W,U) = λ1(W,U) −
1
2
P.1(W,gradB)η(U) −

1
2
1(W,gradB)P(η(U))

−
1
2
P.1(U,gradB)η(W) −

1
2
1(U,gradB)P(η(W)) +

1
2
1(£PW,gradB)η(U)

+
1
2
1(£PU,gradB)η(W) +

1
2
1(W,gradB)η(£PU) +

1
2
1(U,gradB)η(£PW)

− τ1(W,gradB)η(U) − τ1(U,gradB)η(W). (19)

We define a non-vanishing (0, 2)-tensor Et by

Et(W,U) = −
1
2
P.1(W,gradB)η(U) −

1
2
1(W,gradB)P(η(U)) −

1
2
P.1(U,gradB)η(W)

−
1
2
1(U,gradB)P(η(W)) +

1
2
1(£PW,gradB)η(U) +

1
2
1(£PU,gradB)η(W)

+
1
2
1(W,gradB)η(£PU) +

1
2
1(U,gradB)η(£PW) − τ1(W,gradB)η(U)

− τ1(U,gradB)η(W). (20)

Using (20) in (19), we obtain

S(W,U) = λ1(W,U) + Et(W,U), (21)

which shows thatN is nearly quasi-Einstein manifold.
This completes the proof.

Theorem 3.2. IfN2m+1 is a K-contact manifold admitting HRS with potential vector field as the Reeb vector field θ,
then the soliton is shrinking.

Proof. With the help of (7), we obtain

(£θ1)(W,U) = 0. (22)

Also, from the definition of the Lie derivative operator, we obtain

£θ(£θ1(W,U)) = θ.£θ1(W,U) − £θ1(£θW,U) − £θ1(W, £θU) (23)

Substituting W = U = θ in the above and using (6), we get

£θ(£θ1(θ, θ)) = 0. (24)

Again, putting W = U = θ in (4) and using (24), we get

S(θ, θ) = λ. (25)

Also, from (8), we get

S(θ, θ) = 2m. (26)

Comparing the last two equations, we get
λ = 2m,

clearly, λ is positive.
This proves the theorem.
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Corollary 3.3. If an η-Einstein K-contact manifold admits HRS with potential vector field as the Reeb vector field,
then the soliton is shrinking.

Theorem 3.4. Let a (2m + 1) dimensional K-contact manifoldN admit a HRS with potential vector field P. If P is
a concircular vector field, then

λ = 2m +P.ζ + 2ζ2 + 2τζ.

Proof. With the help of (13), one can obtain

(£P1)(W,U) = 1(∇WP,U) + 1(W,∇UP)
= 2ζ1(W,U). (27)

Also, from the definition of Lie derivative operator, we get

£P(£P1(W,U)) = 2P.ζ1(W,U) + 4ζ21(W,U). (28)

Using (27) and (28) in (4), we obtain

S(W,U) + 2τζ1(W,U) +P.ζ1(W,U) + 2ζ21(W,U) = λ1(W,U). (29)

Substituting W = U = θ in (29) and comparing with (8), we get

λ = 2m +P.ζ + 2ζ2 + 2τζ. (30)

This completes the proof.

Theorem 3.5. If an η-Einstein K-contact manifolds N2m+1 admits HRS with solenoidal vector field P, then the
soliton is shrinking and λ = 2m.

Proof. from (4), we get

S(W,U) = λ1(W,U) − τ[1(∇WP,U) + 1(W,∇UP)]

−
1
2

[P.£P1(W,U) − £P1(£PW,U) − £P1(W, £PU)]. (31)

Contracting W and U in (31), one can obtain

R = λ(2m + 1) − 2τDivP. (32)

Since P is solenoidal, DivP = 0.
From (12) and (32), we get

λ = 2m.

This proves the theorem.

Theorem 3.6. Let an η-Einstein K-contact manifoldN2m+1 admit HRS whose potential vector field P is concircular
and orthogonal to the Reeb vector field. Then a HRS is shrinking if and only if the manifoldN is locally isometric to
E

m+1
×S4, for any m > 1.

Proof. With the help of Lie derivative operator and using (6) and (7), we get

(£P1)(θ, θ) = 0. (33)

Since P is a concircular vector field onN , so for any vector field W and a real smooth function ζ, we have

∇WP = ζW.
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Using this, we get

(£P1)(W,U) = 2ζ1(W,U).

Substituting W = U = θ in the foregoing equation, we get

(£P1)(θ, θ) = 2ζ. (34)

From (33) and (34), we get
ζ = 0.

Which implies thatP is Killing (ζ = 0) and hence the manifoldN is locally isometric toEm+1
×S4 in dimension

> 3. Also we have

£P(£P1(W,U)) = P.£P1(W,U) − £P1(£PW,U) − £P1(W, £PU).

Then

£P1 = £P(£P1) = 0.

Using the above in (4) and substituting W = U = θ in (12) and (4), we get

λ = 2m.

This completes the proof.

4. Gradient hyperbolic Ricci solitons on (2m + 1)-dimensional η-Einstein K-contact manifolds

Theorem 4.1. If an η-Einstein K-contact manifolds N2m+1 admitting GHRS, then the Laplacian of the potential
vector field is constant.

Proof. From (5), we get

S(W,U) = λ1(W,U) − 2τ1(∇Wgradζ,U) − £gradζ.1(∇Wgradζ,U). (35)

Contracting along the vector field W and U in (35), we obtain

R = λ(2m + 1) − 2τDiv(gradζ) − £gradζ(∆ζ)), (36)

∆ being Laplacian operator. Since in a GHRS, the potential vector field is gradient of the smooth function
ζ, so by the definition of the Lie derivative, we get

(£gradζ1)(W,U) = 1(∇Wgradζ,U) + 1(W,∇Ugradζ). (37)

Putting W = U = ϵi and summing over i, we get

2m+1∑
i=1

(£gradζ1)(ϵi, ϵi) = 2∆ζ, (38)

where (ϵi), i = 1, 2, ....., (2m + 1) is the orthonormal basis of the tangent space at each point of the manifold.
Taking Lie derivative operator on the equation (38), we obtain

2£gradζ(∆ζ) =
2m+1∑
i=1

[gradζ.£gradζ1(ϵi, ϵi) − 2£gradζ1(£gradζϵi, ϵi)].
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Hence

£gradζ(∆ζ) = 0. (39)

Using (39) in (36), we get

R = λ(2m + 1) − 2τ∆ζ. (40)

Combining (40) and (12), we obtain

∆ζ =
(2m + 1)(λ − 2m)

2ζ
, (41)

which is a constant.

5. Example

Let N = {(x, y, z,u, v) ∈ R5 : z , 0} be a five-dimensional manifold, (x, y, z,u, v) being the standard
co-ordinates in R5, whose basis vector fields are given by

ϵ1 =
∂
∂x
+ 2y

∂
∂z
, ϵ2 =

∂
∂y
, ϵ3 =

∂
∂u
+ 2v

∂
∂z
, ϵ4 =

∂
∂v
, ϵ5 =

∂
∂z
.

By direct computation, one can find

[ϵ1, ϵ2] = −2ϵ5, [ϵ1, ϵ3] = 0, [ϵ1, ϵ4] = 0, [ϵ1, ϵ5] = 0,

[ϵ2, ϵ3] = 0, [ϵ2, ϵ4] = 0, [ϵ2, ϵ5] = 0,

[ϵ3, ϵ4] = −2ϵ5, [ϵ3, ϵ5] = 0, [ϵ4, ϵ5] = 0.

Let the metric tensor 1 be defined by

1(ϵi, ϵ j) = {1, f or i = j and 0, f or i , j}, where i, j = 1 to 5.

The 1-form η and the (1, 1) tensor field ϕ are, respectively, defined by η(U1) = 1(U1, ϵ5) for every vector field
U1 on the manifold and

ϕϵ1 = −ϵ2, ϕϵ2 = ϵ1, ϕϵ3 = −ϵ4, ϕϵ4 = ϵ3, ϕϵ5 = 0.

Then we find that
η(ϵ5) = 1, ϕ2W = −W + η(W)ϵ3,

1(ϕW, ϕU) = 1(W,U) − η(W)η(U),

dη(W,U) = 1(W, ϕU)

for every vector fields W, U on the manifold. Thus (ϕ, ϵ5, η, 1) defines a contact metric structure.
By Koszul’s formula, we can find

∇ϵiϵ j =


0 −ϵ5 0 0 ϵ2
ϵ5 0 0 0 −ϵ1
0 0 0 −ϵ5 ϵ4
0 0 ϵ5 0 −ϵ3
ϵ2 −ϵ1 ϵ4 −ϵ3 0


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where i, j = 1, 2, 3, 4, 5 and ∇ denotes the Levi-Civita connection. Thus, we see that ∇Wϵ5 = −ϕW for every
vector field W. HenceN is a K-contact manifold. The components of the Riemannian curvature tensor are
given by

R(ϵ1, ϵ2)ϵ2 = −3ϵ1, R(ϵ1, ϵ2)ϵ1 = 3ϵ2, R(ϵ1, ϵ2)ϵ3 = 2ϵ4, R(ϵ1, ϵ2)ϵ4 = −2ϵ3,

R(ϵ1, ϵ2)ϵ5 = 0, R(ϵ1, ϵ3)ϵ1 = 0, R(ϵ1, ϵ3)ϵ2 = ϵ4, R(ϵ1, ϵ3)ϵ3 = 0,

R(ϵ1, ϵ3)ϵ4 = −ϵ2, R(ϵ1, ϵ3)ϵ5 = 0, R(ϵ1, ϵ4)ϵ1 = 0, R(ϵ1, ϵ4)ϵ2 = −ϵ3,

R(ϵ1, ϵ4)ϵ3 = ϵ2, R(ϵ1, ϵ4)ϵ4 = 0, R(ϵ1, ϵ4)ϵ5 = 0, R(ϵ1, ϵ5)ϵ1 = −ϵ5,

R(ϵ1, ϵ5)ϵ2 = 0, R(ϵ1, ϵ5)ϵ3 = 0, R(ϵ1, ϵ5)ϵ4 = 0, R(ϵ1, ϵ5)ϵ5 = ϵ1,

R(ϵ2, ϵ1)ϵ1 = −3ϵ2, R(ϵ2, ϵ3)ϵ3 = 0, R(ϵ2, ϵ4)ϵ4 = 0, R(ϵ2, ϵ5)ϵ5 = ϵ2,

R(ϵ3, ϵ1)ϵ1 = 0, R(ϵ3, ϵ3)ϵ3 = 0, R(ϵ3, ϵ2)ϵ2 = 0, R(ϵ3, ϵ4)ϵ4 = −3ϵ3,

R(ϵ3, ϵ5)ϵ5 = ϵ3, R(ϵ3, ϵ4)ϵ1 = 2ϵ2, R(ϵ4, ϵ1)ϵ1 = 0, R(ϵ4, ϵ3)ϵ3 = −3ϵ4,

R(ϵ4, ϵ2)ϵ2 = 0, R(ϵ4, ϵ4)ϵ4 = 0, R(ϵ4, ϵ5)ϵ5 = ϵ4, R(ϵ5, ϵ1)ϵ1 = ϵ5,

R(ϵ5, ϵ3)ϵ3 = ϵ5, R(ϵ5, ϵ2)ϵ2 = ϵ5, R(ϵ5, ϵ4)ϵ4 = ϵ5.

The non-zero components of the Ricci tensor are given by

S(ϵ1, ϵ1) = −2, S(ϵ2, ϵ2) = −2, S(ϵ3, ϵ3) = −2, S(ϵ4, ϵ4) = −2, S(ϵ5, ϵ5) = 4,

and S(ϵi, ϵ j) = 0, for all i , j; i, j = 1, 2, 3, 4, 5. Thus we see that, the scalar curvature R is −4.
Let the potential vector field be the Reeb vector field ϵ5. Then, from (4), we see that λ = 4. Thus the

soliton is shrinking. Hence Theorem 3.2 is verified.
Let ζ = aez + b satisfies the GHRS, where a, b are real constants. Then gradζ = (ζ − b)ϵ5. Thus

∇ϵ1 gradζ = (ζ − b)ϵ2,

∇ϵ2 gradζ = −(ζ − b)ϵ1,

∇ϵ3 gradζ = (ζ − b)ϵ4,

∇ϵ4 gradζ = −(ζ − b)ϵ3,

∇ϵ5 gradζ = (ζ − b)ϵ5.

Therefore

∆ζ =
5∑

i=1

1(∇ϵi gradζ, ϵi) = (ζ − b).

In view of (35), we obtain the following
λ = −2,

λ − 2τ(ζ − b) = 4.

Again, from (36), we have
5λ − 2τ(ζ − b) = −4.

Solving the last two equations, we obtain λ = −2 and ζ − b = − 3
τ , a constant. Thus, the Laplacian of the

potential vector field is constant.
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6. Hyperbolic Ricci solitons on super quasi-Einstein spacetimes

The notion of a generalized quasi-Einstein manifolds was introduced in the paper [16]. According to
the author, a non-flat Riemannian manifold (Nm, 1) (m ≥ 3) is called generalized quasi-Einstein if its Ricci
tensor S of the type (0, 2) is not identically zero and satisfies the condition

S(W,U) = a11(W,U) + b1η1(W)η1(U) + c1(η1(W)η2(U) + η1(U)η2(W)), (42)

where a1, b1, c1 are associated scalars of which b1 , 0 and c1 , 0 and η1, η2 are two non-zero 1-forms such
that

η1(W) = 1(W, µ1) and η2(W) = 1(W, µ2),

and µ1, µ2 are two unit vector fields perpendicular to each other. This paper also deals with super quasi-
Einstein manifolds. A Lorentzian manifold (Nm, 1) (m ≥ 4) is called super quasi-Einstein spacetime if its
non-zero Ricci tensor S satisfies

S(W,U) = a11(W,U) + b1η1(W)η2(U) + c1(η1(W)η2(U) + η1(U)η2(W)) + d1Y(W,U), (43)

where a1, b1, c1, d1 are non-vanishing smooth functions and η1, η2 are two non-zero 1-forms such that

η1(W) = 1(W, µ1) and η2(W) = 1(W, µ2),

for any vector field W. Here µ1 and µ2 are unit timelike vector field and unit spacelike vector field
respectively such that 1(µ1, µ2) = 0 andY is a symmetric (0, 2)-tensor with zero trace such thatY(W, µ1) = 0.
In the absence of cosmological constant, the Einstein’s field equation is given by

S(W,U) = κEm(W,U) +
Y

2
1(W,U), (44)

where κ, Em and R are respectively gravitational constant, energy momentum tensor and scalar curvature.
Further the energy momentum tensor Em is given by

Em(W,U) = ρ1(W,U) + (ρ + γ)η1(W)η1(U) + η1(W)η2(U) + η1(U)η2(W) +Y(W,U), (45)

for some isotropic pressure ρ and energy density γ. From the equation (44) and (45), we have the following
[16]:

R = −
2κ

m − 2
((m − 1)ρ − γ) (46)

and

S(W,U) = κ
(γ − ρ)
(m − 2)

1(W,U) + κ(ρ + γ)η1(W)η1(U) + κ(η1(W)η2(U)

+ η1(U)η2(W) +Y(W,U)). (47)

For more details about super quasi-Einstein spacetimes, please see the paper [16, 26, 27, 29].

Theorem 6.1. If a Ricci recurrent super quasi-Einstein spacetime of dimension m ≥ 4 with a covariantly constant
symmetric (0,2)-tensor Y and a closed non-vanishing 1-form η1 admits HRS whose potential vector field is the unit
timelike vector field µ1, then the sum of isotropic pressure and energy density is zero.
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Proof. Taking covariant differentiation of (52) with respect to any vector field P, we get

(∇PS)(W,U) = ∇PS(W,U) − S(∇PW,U) − S(W,∇PU)

=
κ

m − 2
(∇Pγ − ∇Pρ)1(W,U) +

κ(γ − ρ)
m − 2

(∇P1)(W,U)

+ κ[(∇Pγ + ∇Pρ))η1(W)η1(U) + (ρ + γ)[(∇Pη1)(W)η1(U)
+ (∇Pη1)(U)η1(W)]] + κ[η2(U)(∇Pη1)(W) + η2(W)(∇Pη1)(U)
+ η1(W)(∇Pη2)(U) + η1(U)(∇Pη2)(W) + (∇PY)(W,U)], (48)

for every vector fields W, U and P on the manifoldN .
Inserting W = µ1 and U = µ2 in the above equation, one can obtain

κ(ρ + γ)1(∇Pµ1, µ2) + κ[1(∇Pµ1, µ1) − 1(∇Pµ2, µ2)]. (49)

Since S is Ricci recurrent, µ1 is orthogonal to µ2 and (∇PY)(W,U) = 0.
Again since, (∇Pη1)µ2 = 1(∇Pµ1, µ2), (∇Pη1)µ1 = 1(∇Pµ1, µ1),
(∇Pη2)µ2 = 1(∇Pµ2, µ2) and 1(µ1, µ1) = −1, 1(µ2, µ2) = 1.
Using the above to the equation (49), we get

κ(ρ + γ)1(∇Pµ1, µ2) = 0.

If we consider P as potential vector field, then the above equation becomes

κ(ρ + γ)1(∇µ1µ1, µ2) = 0. (50)

Now from (4), we get

S(W,U) + τ[1(∇Wµ1,U) + 1(∇Uµ1,W)] +
1
2

[µ1.£µ11(W,U)

− £µ11(∇µ1 W − ∇Wµ1,U) − £µ11(W,∇µ1 U − ∇Uµ1)] = λ1(W,U). (51)

Substituting W = µ1 and U = µ2 in the above equation, we obtain

S(µ1, µ2) + τ[1(∇µ1µ1, µ2) + 1(∇µ2µ1, µ1)]

+
1
2

[£µ11(∇µ1µ1, µ2) + £µ11(∇µ2µ1, µ1)] = 0. (52)

Assuming that 1(∇µ1µ1, µ2) = 0 and 1(∇µ2µ1, µ1) = 0, we get

S(µ1, µ2) = 0. (53)

Again, Inserting W = µ1 and U = µ2 in (47), we get

S(µ1, µ2) = −κ. (54)

Comparing (53) and (54), we obtain

κ = 0. (55)

Thus, we arrive at a contradiction, since the gravitational constant κ > 0. Therefore, our assumption is
wrong. Hence from (50), we get

ρ + γ = 0. (56)

This completes the proof.
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Theorem 6.2. If a super quasi-Einstein spacetime of dimension m ≥ 4 admits HRS with conformal Killing vector
field, then the manifold is Einstein and the gravitational constant κ is given by

κ =
m(m − 2)(2α2 + 2ζα +Pα − λ)

2[(m − 1)ρ − γ]
. (57)

Proof. Taking Lie derivative operator on (14),we get

£P(£P1(W,U)) = [2P(α) + 4α2]1(W,U). (58)

Using (14) and (58) in (4), we obtain

S(W,U) = [λ − 2ζα − P(α) − 2α2]1(W,U). (59)

Contracting (59) along the vector fields W and U, we get

R = [λ − 2ζα − P(α) − 2α2]m. (60)

Comparing (46) and (60), we obtain

κ =
m(m − 2)(2α2 + 2ζα +Pα − λ)

2[(m − 1)ρ − γ]
, (61)

which gives

λ − 2ζα − P(α) − 2α2 = C, (62)

where C = − 2κ[(m−1)ρ−γ]
m(m−2) , a constant.

Combining (59) and (62), we get

S(W,U) = C1(W,U). (63)

This proves the theorem.

Theorem 6.3. If a super quasi-Einstein spacetime of dimension m ≥ 4 admits HRS with Ricci bi-conformal vector
field, then the manifold is Einstein and

κ =
(m − 2)[2 f1τ +P( f1) + f12 + f22

− 2λ]
[(m − 1)ρ + (m − 3)γ][2 + 2 f1 f2 + 2τ f2 +P( f2)]

. (64)

Proof. Using (58) and (15), we obtain

£P(£P1(W,U)) = [P( f1) + f12 + f22]1(W,U) + [P( f2) + 2 f1 f2]S(W,U). (65)

Inserting the value of (15) and (65) in the equation (4), we get

[1 + τ f2 +
1
2
P( f2) + f1 f2]S(W,U) + [ f1τ+

1
2
P( f1) +

1
2

( f12 + f22) − λ]1(W,U) = 0, (66)

which gives

S(W,U) = −
[ f1τ+ 1

2P( f1) + 1
2 ( f12 + f22) − λ]

[1 + τ f2 + 1
2P( f2) + f1 f2]

1(W,U). (67)

Substituting W = U = µ1 in (67) and (47), we obtain

S(µ1, µ1) =
f1τ + 1

2P( f1) + 1
2 ( f12 + f22) − λ

1 + τ f2 + 1
2P( f2) + f1 f2

, (68)
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and

S(µ1, µ1) =
κ

(m − 2)
[(m − 1)ρ + (m − 3)γ], (69)

since, 1(µ1, µ1) = −1 and η2(µ1) = 0. Comparing (68) and (69), we get

κ =
(m − 2)[2 f1τ +P( f1) + f12 + f22

− 2λ]
[(m − 1)ρ + (m − 3)γ][2 + 2 f1 f2 + 2τ f2 +P( f2)]

. (70)

Which gives

−
f1τ + 1

2P( f1) + 1
2 ( f12 + f22) − λ

1 + τ f2 + 1
2P( f2) + f1 f2

= C̃, (71)

where C̃ = − κ
(m−2) [(m − 1)ρ + (m − 3)γ], a constant.

Combining (67) and (71), we get

S(W,U) = C̃1(W,U). (72)

Hence, we have the theorem.

Corollary 6.4. If a super quasi-Einstein spacetime of dimension m ≥ 4 admits HRS with Ricci bi-conformal vector
field, then

τ = −
1
f2

[1 + f1 f2 +
1
2
P( f2)]. (73)

Proof. Substituting W = µ1, U = µ2 in (66) and (47), we get

[1 + τ f2 +
1
2
P( f2) + f1 f2]S(µ1, µ2) = 0, (74)

and

S(µ1, µ2) = −κ. (75)

Combining (74) and (75), we obtain

[1 + τ f2 +
1
2
P( f2) + f1 f2]κ = 0. (76)

The above equation gives

τ = −
1
f2

[1 + f1 f2 +
1
2
P( f2)], (77)

as the gravitational constant κ > 0.
Thus we obtain the result.
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[10] A. M. Blaga, C. Özgür, On Ricci and hyperbolic Ricci soliton submanifolds of almost contact metric manifolds, Proceeding of the

International Conference Riemannian Geometry and Applications-RIGA 2023, Romanian Journal of mathematics and Computer
Science, 13 (2) (2023), 26-34.
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