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Abstract. In this paper, we consider a nonlinear parabolic m(x)- biharmonic equation with logarithmic
source terms. Applying the potential well method combined with the Nehari manifold, the global existence
and blow-up of weak solutions is proved. In addition, we establish decay estimates for the global weak
solutions.

1. Introduction

We consider the following m(x)−biharmonic equation with variable exponents
zt + ∆

2z + ∆2
m(x)z = |z|

p(x)−2 z ln |z| , x ∈ Ω, t > 0,
z (x, t) = ∂z

∂v (x, t) = 0, x ∈ ∂Ω,
z (x, 0) = z0 (x) ∈W2,m(.)

0 (Ω) , x ∈ Ω,
(1)

hereΩ is a bounded domain ofRn with a smooth boundary ∂Ω, υ is the unit outward normal vector on ∂Ω,
and z0 (x) ≥ 0. The m(x)−biharmonic equation ∆2

m(x)z is the nonlinear differential operator defined by

∆2
m(x)z = ∆(|∆z|m(x)−2 ∆z).

We assumptions on p(·) and m (·) the following,
(A1) The exponents p(·) and m (·) are measurable function satisfying
here

max
{
2,m+

}
< p− ≤ p+ < min

{
m+

(
1 +

4
n

)
,
(
m−

)∗} , (2)

with

m− = ess inf
x∈Ω

m (x) , m+ = ess sup
x∈Ω

m (x) ,
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p− = ess inf
x∈Ω

p (x) , p+ = ess sup
x∈Ω

p (x) ,

and

m−
∗

(x) =
{

nm−
n−m− , if m− < n,
+∞ if m− ≥ n.

(A2) ∀κ, ξ ∈ Ω, |κ − ξ| < δ, γ > 0 and 0 < δ < 1,

|m (κ) −m (ξ)| +
∣∣∣p (κ) − p (ξ)

∣∣∣ ≤ − γ

ln |κ − ξ|
. (3)

1.1. Literature overview:

Wu et al. [29] examined the subsequently semilinear parabolic equation with variable exponent

zt − ∆z = zq(x).

They proved the blow up of solutions. Then, many authors studied the blow up of solutions the same
problem under different conditions (see [4, 16, 28]).

Boudjeriou [8] studied following heat equation

zt − ∆p(x)z = |z|q(x)−2 z ln |z| .

He proved local existence, global existence and finite time blow-up of solutions.
Liu et al. [18] examined the following m (x)-Laplacian parabolic equation

zt = div
(
a |∇z|m(x)−2

∇z
)
+ z ln |z| .

The authors shows the non-extinction and the extinction in finite time of solutions.
Zhu et al. [31] investigated the following problem

zt − ∆zt − div
(
|∇z|m(x)−2

∇z
)
= |z|m(x)−2 z.

They acquired global existence and blow-up outcomes for weak solutions characterized by arbitrarily high
initial energy.

Chuong et al. [10] reviewed the following a pseudo-parabolic equation problem

zt − ∆zt − div
(
|∇z|p(x)−2

∇z
)
= |z|q(x)−2 z.

They derived decay and blow up also show the asymptotic behavior of global solution.
Liu et al. [17] examined the following fourth-order pseudo-parabolic problem with p(x)-Laplacian

zt − ∆zt + ∆
2z − div

(
|∇z|p(x)−2

∇z
)
= |z|q(x)−1 z.

They showed the classification of initial energy on the existence of blow-up, global and extinction solutions.
Pan et al. [20] studied the following a pseudo-parabolic equation problem

zt − ∆zt − div
(
|∇z|p(x)−2

∇z
)
= |z|q(x)−2 z ln |z| .

They obtain the global existence and blow-up results of weak solutions. Also, some authors studied the
partial differential equations with variable exponents (see [2, 3, 6, 7, 15, 22, 23, 27]).

Choung et al. [11] studied the following m (x)−Laplacian equations with logarithmic source terms

zt − ∆m(x)z = |z|p(x)−2 z ln |z| .
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Inspired by these works, we consider the problem (1) with the logarithmic nonlinearity |z|p(x)−2 z ln |z|.
The primary challenges in addressing the problem arise due to the disparity between the norm and the
modulus. Moreover, the inclusion of the term |z|p(x)−2 z ln |z| presents certain challenges in the application of
the potential well method. The problem (1) occurs in many mathematical models of applied science, such
as electro-rheological fluids, heat transfer, chemical reactions, population dynamics, etc. The interested
readers may refer to [1, 5, 12, 14, 19, 21] and the references therein.

The goal of this study is as follows:
(i) In Section 2, we present function spaces, notations and lemmas. Additionally, we define variable

function spaces pertaining to both Lebesgue and Sobolev type.
(ii) In Sections 3, we define the weak solutions to the problem (1) and outline the main results that will

be derived in the subsequent sections.

2. Function spaces and notations

In this part, we present certain notations, lemmas and fundamental properties of the generalized
Lebesgue space and Sobolev space [12, 25]. Let Ω ⊂ Rn be a domain with a smooth boundary, and let
K (Ω) represent the set of all measurable functions q : Ω→ [1,∞) . For q ∈ K (Ω) , the Lebesgue space with
a variable exponent q (·) is defined as follows:

Lq(x) (Ω) =
{
z : Ω→ R, z is measurable and ρq(.) (λz) < ∞, for some λ > 0

}
,

here

ρq(.) (z) =
∫
Ω

|z|q(x) dx.

Also endowed with the Luxemburg-type norm

∥z∥q(x) = inf

λ > 0 :
∫
Ω

∣∣∣∣ z
λ

∣∣∣∣q(x)
dx ≤ 1

 .
Lemma 2.1. [12]. Assume that q, s ∈ K (Ω), the following result holds:

1) Given that 1 < q− ≤ q+ < ∞, later Lq(·) (Ω) is a separeble and uniformly convex Banach space.
2) Given that q+ < ∞ later the relationship between the modular ρq(.) (z) and the norm ∥z∥q(x) is given by:

min
{
∥z∥q

−

q(·) , ∥z∥
q+

q(·)

}
≤ ρq(.) (z) ≤ max

{
∥z∥q

−

q(·) , ∥z∥
q+

q(·)

}
,

for every z ∈ Lq(·) (Ω) .
3) Hölder’s inequality also applies to the variable exponent case:

∥zv∥(.) ≤ 2 ∥z∥q(.) ∥v∥r(.) for all z ∈ Lq(.) (Ω) , v ∈ Lr(.) (Ω) ,

1
s (x)

=
1

q (x)
+

1
r (x)

for a.e. x ∈ Ω.

Lemma 2.2. [12]. Suppose that q, s ∈ K (Ω) . If q (x) ≤ s (x) for a.e. x ∈ Ω, then the embedding Ls(.) (Ω) ↪→ Lq(.) (Ω)
is continuous.

We next define variable exponent Sobolev spaces

Wm,p(·) (Ω) =
{
z ∈ Lp(·) (Ω) such that Dαz ∈ Lp(·) (Ω) , |α| ≤ m

}
.
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This space is a Banach space with respect to the norm

∥z∥W2,q(.)(Ω) =
(
∥z∥2q(.) + ∥∇z∥2q(.) + ∥∆z∥2q(.)

)1/2
.

Furthermore, let W2,q(.)
0 (Ω) be the closure of C∞0 (Ω) in W1,q(.) (Ω) .

Lemma 2.3. [12, 13]. Assume that q, s ∈ K (Ω) .
1) Given that 2 < q− ≤ q+ < ∞, later W1,q(.) (Ω) and W2,q(.)

0 (Ω) are separable and uniformly convex Banach
spaces.

2) Given that |Ω| < ∞ and q ∈ C
(
Ω

)
fulfills ess infx∈Ω

(
q∗ (x) − s (x)

)
> 0. Here

q∗ (x) =

 nq(x)

(n−q(x)) , if q (x) < n,

+∞, if q (x) ≥ n.

Later the embedding W2,q(·)
0 (Ω) ↪→↪→ Ls(·) (Ω) is continuous and compact.

Lemma 2.4. (Poincaré’s Inequality, [12]). Assume that Ω ⊂ Rn be a bounded domain. Let q (·) fulfills (4), later we
have ∥z∥q(·) ≤ C ∥∆z∥q(·) for every z ∈W2,q(·)

0 (Ω) .

For z ∈W2,m(·)
0 (Ω) we define the energy functional E (z) and Nehari functional I (z) as follows:

E (z) =
1
2

∫
Ω

|∆z|2 dx +
∫
Ω

1
m (x)

|∆z|m(x) dx −
∫
Ω

1
p (x)

|z|p(x) ln |z| dx +
∫
Ω

1
p2 (x)

|z|p(x) dx

and

I (z) =
∫
Ω

|∆z|2 dx +
∫
Ω

|∆z|m(x) dx −
∫
Ω

|z|p(x) ln |z| dx.

These functionals are of class C2 over W2,m(x)
0 (Ω) because of the condition (2). We also define the Nehari

manifold

N =
{
z ∈W2,m(x)

0 (Ω) \ {0} | z , 0 and I (z) = 0
}
,

with the potential well depth

d = inf
z∈N

E (z) .

The lemma below demonstrates thatN is a nonempty set, ensuring the well-definedness of d.

Lemma 2.5. Suppose that (2)-(3) are satisfied. For each z ∈ W2,m(x)
0 (Ω) \ {0} there exists a γz ∈ (0,∞) that depends

on z, such that γzz ∈ N .

Proof. We first note that the function s→ |a|s ln |a| is increasing, and therefore

I (z) =

∫
Ω

|∆z|2 dx +
∫
Ω

|∆z|m(x) dx −
∫
Ω

|z|p(x) ln |z| dx

≤

∫
Ω

|∆z|2 dx +
∫
Ω

|∆z|m(x) dx −
∫
Ω

|z|p
−

ln |z| dx.
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Next, by replacing z with γz in the previous inequality for any γ > 0, we derive

I
(
γz

)
≤ γ2

∫
Ω

|∆z|2 dx + γm(x)
∫
Ω

|∆z|m(x) dx − γp−
∫
Ω

|z|p
−

ln |z| dx − γp− ln
∣∣∣γ∣∣∣ ∥z∥p−p−

≤ γ2
∫
Ω

|∆z|2 dx +max
{
γm− , γm+

} ∫
Ω

|∆z|m(x) dx − γp−
∫
Ω

|z|p
−

ln |z| dx − γp− ln
∣∣∣γ∣∣∣ ∥z∥p−p− .

Observe that p− > m+ and ∥z∥p
−

p− > 0 because z = 0. From this and the previous inequality, we get
limγ→∞ I(γz) = −∞. Similarly, we find that I(γz) > 0 for sufficiently small γ > 0 due to the following
estimate

I
(
γz

)
≥ γ2

∫
Ω

|∆z|2 dx + γm(x)
∫
Ω

|∆z|m(x) dx − γp+
∫
Ω

|z|p
+

ln |z| dx − γp+ ln
∣∣∣γ∣∣∣ ∥z∥p+p+

≥ γ2
∫
Ω

|∆z|2 dx +min
{
γm− , γm+

} ∫
Ω

|∆z|m(x) dx − γp+
∫
Ω

|z|p
+

ln |z| dx − γp+ ln
∣∣∣γ∣∣∣ ∥z∥p+p+ .

Thus, by the intermediate value theorem, there exists a γz ∈ (0,∞), such that I(γzz) = 0, implying γzz ∈ N .
This completes the proof.

The lemma below can be proven with straightforward calculations.

Lemma 2.6. [24]. The inequality below holds for all a > 0 with s > 0

ln s ≤
sa

ea
.

The following lemma will be crucial in establishing our main results.

Lemma 2.7. Assume (2)–(3) hold. Then

E (z) −
1

p−
I (z) ≥

(
1
2
−

1
p−

) ∫
Ω

|∆z|2 dx +
(

1
m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx +
1(

p+
)2

∫
Ω

|z|p(x) dx − K0.

Here, K0 is a non-negative constant defined by

K0 =
1
e

∫
Ω

(
1

p−
−

1
p (x)

)
1

p (x)
dx. (4)

Proof. For z ∈W2,m(·)
0 (Ω). According to Lemma 2.6., we have

− ln |z| = ln
1
|z|

≤
1

ep (x) |z|p(x)
,

thus, this implies that

|z|p(x) ln |z| ≥ −
1

ep (x)
.
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Later, by the definition of I and E, we derive

E (z) −
1

p−
I (z) =

∫
Ω

(
1
2
−

1
p−

)
|∆z|2 dx +

∫
Ω

(
1

m (x)
−

1
p−

)
|∆z|m(x) dx

+
1

p2 (x)

∫
Ω

|z|p(x) dx +
∫
Ω

(
1

p−
−

1
p (x)

)
|z|p(x) ln |z| dx

≥

(
1
2
−

1
p−

) ∫
Ω

|∆z|2 dx +
(

1
m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx

+
1(

p+
)2

∫
Ω

|z|p(x) dx − K0.

This concludes the proof.

Next, we define

N− =
{
W2,m(·)

0 (Ω) \ {0} : I (z) ≤ 0
}
,

and demonstrate that 0 is not contained in the setN−.

Lemma 2.8. Suppose that (2)–(3) are satisfied. Later

dist (0,N−) = inf
z∈N−
∥∆z∥m(·) ≥ µ0 > 0.

Where, µ0 represents the constant as defined in (5).

Proof. Since (2), we observe that W2,m(·)
0 (Ω) ↪→ Lp++ϵ (Ω) with ϵ > 0 fulfilling

0 < ϵ <
(
m−

)∗
− p+.

Consider any z ∈ N−. Utilizing Lemma 2.6. and noting that the function s → |a|s ln |a| is increasing, we
derive

min
{
∥∆z∥m

−

m(·) , ∥∆z∥m
+

m(·)

}
≤

∫
Ω

|∆z|m(x) dx ≤
∫
Ω

|z|p(x) ln |z| dx

≤

∫
Ω

|z|p
+

ln |z| dx

≤
1
eϵ
∥z∥m

++ϵ
m++ϵ

≤
1
eϵ

Km++ϵ
ϵ ∥∆z∥p

++ϵ
m(·) .

Where, Kϵ represents the optimal embedding constant of W2,m(·)
0 (Ω) ↪→ Lp++ϵ (Ω). Consequently, we deduce

that∥∆z∥m(·) ≥ µ0 here

µ0 = min
{

(eϵ)
1

p++ϵ−m− K
p++ϵ

p++ϵ−m−

ϵ , (eϵ)
1

p++ϵ−m+ K
p++ϵ

p++ϵ−m+

ϵ

}
> 0. (5)
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Thus

dist (0,N−) = inf
z∈N−
∥∆z∥m(·) ≥ µ0 > 0.

The demonstration is concluded.

The subsequent lemma provides a lower limit for the potential well depth, implying that d and thus
d > −∞.

Lemma 2.9. Suppose that (2)–(3) are satisfied. Let

d0 =

(
1
2
−

1
p−

) ∫
Ω

|∆z|2 dx +
(

1
m+
−

1
p−

)
min

{
µm−

0 , µm+
0

}
− K0

> −K0. (6)

In this scenario, µ0 and K0 represent the constants provided in (5) and (4) correspondingly. As a result, we have
d ≥ d0 and

E (z) −
1

p−
I (z) ≥ d0, ∀z ∈ N−.

Proof. Utilizing Lemma 2.7. and Lemma 2.8. we derive that for any z ∈ N−

E (z) −
1

p−
I (z) ≥

(
1
2
−

1
p−

) ∫
Ω

|∆z|2 dx − K0 +

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx

≥

(
1
2
−

1
p−

) ∫
Ω

|∆z|2 dx − K0 +

(
1

m+
−

1
p−

)
min

{
∥∆z∥m

−

m(·) , ∥∆z∥m
+

m(·)

}
≥

(
1
2
−

1
p−

) ∫
Ω

|∆z|2 dx − K0 +

(
1

m+
−

1
p−

)
min

{
µm−

0 , µm+
0

}
= d0.

Later, becauseN ⊂ N−, we get

E (z) = E (z) −
1

p−
I (z) ≥ d0, ∀z ∈ N .

As a result, we have d = infz∈N E (z) ≥ d0. The demonstration concludes here.

3. Main Results

In this section, we offer findings concerning the global existence and blow-up of weak solutions within
the subcritical case where E(u0) < d. Initially, we outline the definition of weak solutions for the problem
presented in (1).

Lemma 3.1. Let (., .) denote the inner product in L2(Ω) and suppose T ∈ (0,∞). A function z ∈ L∞
(
0,T; W2,m(·)

0 (Ω)
)

is termed a weak solution to problem (1) with zt ∈ L2
(
0,T; L2(Ω)

)
if it meets the initial condition z(·, 0) = z0 and

(zt,w) + (∆z,∆w) +
(
|∆z|m(x)−2 ∆z,∆w

)
=

(
|z|p(x)−2 z ln |z| ,w

)
, (7)
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for almost every t ∈ (0,T) and for any test-function w ∈ W2,m(·)
0 (Ω). Additionally, z also fulfills the subsequent

inequality, for almost every t ∈ (0,T)

t∫
0

∥z′ (s)∥22 ds + E (z) ≤ E (z0) .

Weak solutions local existence can be acquired through the Galerkin method, as demonstrated in
references such as [9] or [30]. Subsequently, we introduce the definition for the maximal duration of weak
solutions existence.

Lemma 3.2. The maximal existence time Tmax of the weak solution z(t) of (1) is specified as described:
(i) Given that z(t) is specified on [0,∞), later Tmax = ∞.
(ii) Given that z(t) is specified on [0,T0), but it cannot be extended to T0, later Tmax = T0.

The unstable set U and stable set (potential well) W are defined similarly to Sattinger [26].

U =
{
z ∈W2,m(·)

0 (Ω) : E (z) < d with I (z) < 0
}
,

W =
{
z ∈W2,m(·)

0 (Ω) : E (z) > d with I (z) ≥ 0
}
.

Now, we present our main findings as follows. Initially, we examine the scenario where the initial energy
is negative E(z0) < −K0. Here, the constant K0 ≥ 0 is specified in (4).

Theorem 3.3. Suppose that (2)–(3) are satisfied. Given that E(z0) < −K0, later

Tmax ≤ C max
{
∥z0∥

2−p−

2 , ∥z0∥
2−p+
2

}
,

here

C =

(
p+

)2 max
{
Kp−

1 ,K
p+

1

}
p−

(
p− − 2

) > 0, (8)

where K1 represents the optimal embedding constant from Lp(·) (Ω) ↪→ L2 (Ω) , defined as

K1 = sup
z∈Lp(·)(Ω)\{0}

∥z∥2
∥z∥p(·)

. (9)

Our subsequent demonstration establishes the instability of the solution to the problem (1) assuming the initial data
z0 ∈ U.

Proof. Consider the function h : [0,Tmax)→ R defined as

h (t) = ∥z∥22 .

By employing Lemma 2.7., we acquire

E (z) −
1

p−
I (z) ≥ −K0 +

1(
p+

)2

∫
Ω

|z|p(x) dx.

Conversely, we have −K0 > E (z0) ≥ E (z) . Hence

0 ≤
∫
Ω

|z|p(x) dx ≤ −
(
p+

)2

p−
I (z) =

(
p+

)2

2p−
h′ (t) , (10)
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this implies that h is monotonically increasing on [0,Tmax), thus

h (t) ≥ h (0) = ∥z0∥
2
2 > 0, ∀t ∈ [0,Tmax).

Later ∫
Ω

|z|p(x) dx ≥ min
{
∥z∥p

−

p(·) , ∥z0∥
p+

p(·)

}
≥ min

{
K−p−

1 ∥z∥p
−

2 ,K−p+

1 ∥z0∥
p+

2

}
≥ min

{
K−p−

1 ,K−p+

1

}
min

{
1, h(p+−p−)/2 (t)

}
hp−/2 (t)

≥ min
{
K−p−

1 ,K−p+

1

}
min

{
1, ∥z0∥

p+−p−

2

}
hp−/2 (t) ,

where K1 is specified in (9). This, along with (10) suggests that

h′ (t) hp−/2 (t) ≥ C0, (11)

here

C0 =
2p−(
p+

)2 min
{
K−p−

1 ,K−p+

1

}
min

{
1, ∥z0∥

p+−p−

2

}
> 0.

Integrating (11) over [0, t], we derive

0 < h1−p−/2 (t) ≤ h1−p−/2 (0) + C0

(
1 −

p−

2

)
t, ∀t ∈ [0,Tmax),

thus indicating that for ∀t ∈ [0,Tmax)

t <
2

C0
(
p− − 2

) ∥z0∥
2−p−

2 = C max
{
∥z∥2−p−

p(·) , ∥z0∥
2−p+

p(·)

}
,

where C is defined in (8). Letting t → T−max, we attain the necessary outcome. Hence, the proof is
concluded.

Theorem 3.4. Let (2)–(3) are satisfied. Given that z0 ∈ U, later Tmax < ∞. Furthermore, in the case where
E(z0) < d0 and I(z0) < 0, we obtain the subsequent upper limit for Tmax:

Tmax ≤
4
(
p− − 1

)
∥z0∥

2
2

p−
(
p− − 2

)2 (d0 − E (z0))
.

In this context, d0 ≤ d represents the constant specified in (6).

Proof. Let’s suppose z0 ∈ U. We aim to establish Tmax < ∞. Assuming the contrary, let’s assume Tmax = ∞.
According to Theorem 3.3., we deduce E(z) ≥ −K0 for all t ≥ 0, and thus

t∫
0

∥z′ (δ)∥22 dδ ≤ E (z0) − E (z) ≤ E (z0) + K0 < ∞.

As t→∞, we derive
∞∫
0
∥z′ (δ)∥22 dδ. Consequently, there exists a sequence tn ↗∞ as n→∞, such that

lim
n→∞
∥z′ (tn)∥2 = 0. (12)
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For sufficiently large n, we have

I (z (tn)) = |(z′ (tn) , z (tn))|
≤ ∥z′ (tn)∥2 ∥z (tn)∥2
≤ ∥z′ (tn)∥2 K2 ∥∆z (tn)∥m(·) (13)
≤ ∥∆z (tn)∥m(·) , (14)

where K2 denotes the optimal embedding constant of W2,m(·)
0 (Ω) ↪→ L2 (Ω) , defined as

K2 = sup
z∈W2,m(·)

0 (Ω)\{0}

∥z∥2
∥∆z∥m(·)

. (15)

Utilizing Lemma 2.7. and (14), one has

E (z0) ≥ E (z (tn)) ≥
1

p−
I (z (tn)) − K0 +

(
1

m+
−

1
p−

) ∫
Ω

|∆z (tn)|m(x) dx

≥ −
1

p−
∥∆z (tn)∥m(·) − K0 +

(
1

m+
−

1
p−

)
min

{
∥∆z (tn)∥m

−

m(·) , ∥∆z (tn)∥m
+

m(·)

}
.

The inequality above indicates that the set {z(tn)} is bounded in W2,m(·)
0 (Ω) given that m− > 1. Later, since

W2,m(·)
0 (Ω) ↪→↪→ Lp(·)+ϵ (Ω) with ϵ > 0 is small enough, there is a φ ∈W2,m(·)

0 (Ω) and a subsequence of {z(tn)},
which still denoted by itself, so that

z (tn) ⇀ φ weakly in W2,m(·)
0 (Ω) ,

z (tn) → φ strongly in Lp(·)+ϵ (Ω) ,
z (tn) → φ a.e. in Ω. (16)

Replacing z with z(tn) in (7), we find for every w ∈W2,m(·)
0 (Ω) .∣∣∣∣∣∣∣ (∆z (tn) ,∆w) +

(
|∆z (tn)|m(x)−2 ∆z (tn) ,∆w

)
−

(
|z (tn)|p(x)−2 z (tn) ln |z (tn)| ,w

) ∣∣∣∣∣∣∣
= |(z′ (tn) ,w)|
≤ ∥z′ (tn)∥2 ∥w∥2 .

As n→∞ and observing (12) and (16), we derive(
∆φ,∆w

)
+

(∣∣∣∆φ∣∣∣m(x)−2
∆φ,∆w

)
−

(∣∣∣φ∣∣∣p(x)−2
φ ln

∣∣∣φ∣∣∣ ,w)
= 0.

By setting w = φ in the aforementioned equation, we deduce I(φ) = 0. Conversely, employing the weak
lower semi-continuity of E, we infer from (16) that

E
(
φ
)
≤ lim

n→∞
inf E (z (tn)) ≤ E (z0) < d.

From this with I(φ) = 0, we get

φ = 0. (17)

Utilizing (12), (13) and noting that{z(tn)} is bounded in W2,m(·)
0 (Ω), we deduce limn→∞ I (z (tn)) = 0. This,

coupled with (16) and (17), suggests

z (tn)→ 0 strongly in W2,m(·)
0 (Ω) as n→∞. (18)
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To proceed, we establish I (z (t)) < 0 for all t ≥ 0. If this were not the case, then there would exist a t∗ > 0,
such that I (z (t)) < 0 for 0 ≤ t < t∗ and I (z (t∗)) = 0. Considering this scenario and recognizing that z (t∗) < N
due to d > E (z0) ≥ E (z (t∗)) , we derive z (t∗) = 0. Furthermore, Lemma 2.8. implies that ∥∆z (t)∥m(·) ≥ µ0, for
0 ≤ t < t∗. By letting t↗ t∗, we have ∥∆z (t∗)∥m(·) ≥ µ0 > 0 for all n. This contradicts (18). Thus, Tmax = ∞.

In the particular case here E (z0) < d0 and I (z0) < 0, we will provide an upper bound estimate for Tmax.
Let’s examine the function R defined as

R (t) =

t∫
0

∥z (δ)∥22 dδ + (Tmax − t) ∥z0∥
2
2 + ψ (t) , for t ∈ [0,Tmax) .

Where, ψ (t) ∈ C2 [0,Tmax) is a positive function given later. We get

R′ (t) = ∥z (t)∥22 − ∥z0∥
2
2 + ψ

′ (t) ,
R′′ = −2I (z (t)) + ψ′′ (t) .

Utilizing Cauchy–Schwarz inequality, we get for every ϵ1 > 0
t∫

0

∥z (δ)∥22 dδ + ψ (t)




t∫
0

∥z′ (δ)∥22 dδ + ϵ1


≥


t∫

0

(z (δ) , z′ (δ)) dδ +
√
ϵ1ψ (t)


2

=
1
4

(
∥z (t)∥22 − ∥z0∥

2
2 + 2

√
ϵ1ψ (t)

)2

.

We select ψ (t) , such that ψ′ (t) = 2
√
ϵ1ψ (t), imply ψ (t) = ϵ1 (t + ϵ2)2 and ϵ2 > 0. Later

(R′ (t))2 =
(
∥z (t)∥22 − ∥z0∥

2
2 + 2

√
ϵ1ψ (t)

)2

≤ 4


t∫

0

∥z (δ)∥22 dδ + ψ (t)




t∫
0

∥z′ (δ)∥22 dδ + ϵ1


≤ 4R (t)


t∫

0

∥z′ (δ)∥22 dδ + ϵ1

 .
From this, it follows that

R′′ (t) R (t) −
p−

2
(R′ (t))2

≥ R (t)

R′′ (t) − 2p−


t∫

0

∥z′ (δ)∥22 dδ + ϵ1




≥ R (t)
[
R′′ (t) − 2p− (E (z0) − E (z (t)) + ϵ1)

]
= R (t)

[
−2I (z (t)) + 2p−E (z (t))
−2p−E (z0) − 2ϵ1

(
p− − 1

) ]
. (19)

However, since z (t) ∈ N− applying Lemma 2.9. yields

E (z (t)) ≥
1

p−
I (z (t)) + d0.
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This, combined with (19) implies

R′′ (t) R (t) −
p−

2
(R′ (t))2

≥ 2R (t)
[
p− (d0 − E (z0)) − ϵ1

(
p− − 1

)]
.

Selecting ϵ1 =
p−(d0−E(z0))

(p−−1) > 0, we get

R′′ (t) R (t) −
p−

2
(R′ (t))2

≥ 0.

Observe that R (0) = Tmax ∥z0∥
2
2 + ϵ1ϵ2

2 > 0 and R′ (0) = 2ϵ1ϵ2 > 0. From the aforementioned inequality, it
follows that

Tmax ≤
R (0)( p−

2 − 1
)

R′ (0)
=

Tmax ∥z0∥
2
2 + ϵ1ϵ2

2(
p− − 2

)
ϵ1ϵ2

.

Utilizing selecting ϵ2 >
∥z0∥

2
2

(p−−2)ϵ1
, we derive

Tmax ≤
ϵ1ϵ2

2(
p− − 2

)
ϵ1ϵ2 − ∥z0∥

2
2

= φ (ϵ2) .

Thus

Tmax ≤ min
ϵ2>

∥z0∥
2
2

(p−−2)ϵ1

φ (ϵ2) = φ
(

2 ∥z0∥
2
2(

p− − 2
)
ϵ1

)

=
4
(
p− − 1

)
∥z0∥

2
2

p−
(
p− − 2

)2 (d0 − E (z0))
,

and thus concludes the proof.

Theorem 3.5. Suppose that (2)–(3) hold. Given that z0 ∈ W, later Tmax = ∞ and the global weak solution z of the
problem (1) tends to 0 strongly in L2(Ω) as t → ∞. Additionally, there exists a constant C > 0 and a sufficiently
large time t0 large enough, such that the following decay estimates hold, for all t ≥ t0:

i) Given that m+ ≤ 2, later

∥z (t)∥22 ≤ ∥z (t0)∥22 e−C(t−t0).

ii) Given that m+ > 2, later

∥z (t)∥22 ≤
[

m+ − 2
2

C (t − t0) + ∥z (t0)∥2−m+
]− 2

m+−2

.

Proof. To begin, we establish z(t) ∈ W for all t ∈ [0,Tmax). Suppose this is not the case; then, there exists a
t∗ ∈ (0,Tmax), such that z(t∗) ∈ ∂W, implying either E(z(t)) = d or I(z(t∗)) = 0. The former case is impossible
since, because E(z(t∗)) ≤ E(z0) < d, so I(z(t∗)) = 0. This along with E(z(t∗)) < d imply that z(t∗) = 0. On the
other hand, we deduce from Lemma 2.8. that B(0, r) ⊂ W for r sufficiently small, and thus 0 is an interior
point of W. However, this contradicts 0 = z(t∗) ∈ ∂W. Hence, z(t) ∈W for all t ∈ [0,Tmax).

Now, we proceed to demonstrate that Tmax = ∞. Note that I(z(t)) ≥ 0, because z(t) ∈ W. Later, utilizing
Lemma 2.7., we get

E (z0) + K0 ≥ E (z (t)) + K0
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≥

(
1

m+
−

1
p−

)
min

{
∥∆z (t)∥m

−

m(·) , ∥∆z (t)∥m
+

m(·)

}
,

this implies

∥∆z (t)∥m(·) ≤ max


(m+p−(E(z0)+K0)

p−−m+

) 1
m− ,(m+p−(E(z0)+K0)

p−−m+

) 1
m+


= C1.

The uniform estimate presented above indicates that the local solutions of (1) can be extended globally.
Consequently, Tmax = ∞.

Next, we establish that the global weak solution z of the problem (1) tends to 0 strongly in L2(Ω) as
t→ ∞. Employing similar arguments to those in the proof of Theorem 3.4., we find a sequence tn ↗ ∞ as
n→∞, such that

z (tn)→ 0 strongly in W2,m(·)
0 (Ω) as n→∞.

This, together with the embedding W2,m(·)
0 (Ω) ↪→ L2 (Ω) imply that

z (tn)→ 0 strongly in L2 (Ω) as n→∞. (20)

Moreover, the function t 7→ ∥z (t)∥2 is non-increasing, as

1
2

d
dt
∥z (t)∥22 = −I (z (t)) ≤ 0.

This along with (20) imply that

z (t)→ 0 strongly in L2 (Ω) as n→∞. (21)

Lastly, we establish the decay property of ∥z (t)∥2. Given (2), we can select ϵ small enough, such that

ϵ < min
{
m+

(
1 +

4
N

)
− p+,

(
m−

)∗
− p+

}
.

Utilizing the Gagliardo–Nirenberg and Young inequality and noticing that the function s 7→ |a|s ln |a| is
increasing, we derive

I (z (t)) ≥ ∥∆z (t)∥22 +min
{
∥∆z (t)∥m

−

m(·) , ∥∆z (t)∥m
+

m(·)

}
−

1
eϵ

∫
Ω

|z (t)|p
++ϵ dx

= ∥∆z (t)∥22 +min
{
∥∆z (t)∥m

−
−m+

m(·) , 1
}
∥∆z (t)∥m

+

m(·) −
1
eϵ
∥z (t)∥p

++ϵ
p++ϵ

≥ min {C1, 1} ∥∆z (t)∥m
+

m(·) − C2 ∥∆z (t)∥
ϕ(p++ϵ)
m− ∥z (t)∥(

1−ϕ)(p++ϵ)
2

≥ min {C1, 1} ∥∆z (t)∥m
+

m(·) − C3 ∥∆z (t)∥
ϕ(p++ϵ)
m(·) ∥z (t)∥(

1−ϕ)(p++ϵ)
2

≥ min {C1, 1} ∥∆z (t)∥m
+

m(·) − C3

(
µ ∥∆z (t)∥m

+

m(·) + C
(
µ
)
∥z (t)∥λ2

)
=

(
min {C1, 1} − µC3

)
∥∆z (t)∥m

+

m(·) − C4 ∥z (t)∥λ2 .

≥ C ∥z (t)∥m
+

2 − C4 ∥z (t)∥λ2 . (22)

ϕ =

(
1
2
−

1
p+ + ϵ

) (1
n
−

1
m−
+

1
2

)−1

∈ (0, 1) ,
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λ =
m+

(
p+ + ϵ

) (
1 − ϕ

)
m+ − ϕ

(
p+ + ϵ

) = 1
(
ϕ
)
,

C =
(
min {C1, 1} − µC3

)
K−m+

2 > 0,

where µ > 0 is chosen small enough and K2 is the constant specified in (15). It’s worth noting that
ϕ

(
p+ + ϵ

)
< m+, given that ϵ < m+

(
1 + 4

n

)
− p+. This condition is necessary to employ Young inequality in

the above estimate. Since

1′
(
ϕ
)
=

m+
(
p+ + ϵ

) (
p+ −m+ + ϵ

)(
m+ − ϕ

(
p+ + ϵ

))2 > 0,

later

λ = 1
(
ϕ
)
> 1 (0) = p+ + ϵ > m+. (23)

Given (21), there exists a time t0, such that for every t ≥ t0

∥z (t)∥2 ≤ min

1,
( C

2C4

) 1
λ−m+

 . (24)

From this (22) and (23), we deduce

d
dt
∥z (t)∥22 = −2I (z (t)) ≤ −C ∥z (t)∥m

+

2 . (25)

Given that m+ > 2, later it follows from (25) that for every t ≥ t0

∥z (t)∥22 ≤
[

m+ − 2
2

C (t − t0) + ∥z (t0)∥2−m+
]− 2

m+−2

.

If m+ ≤ 2, then it follows from (24) and (25), we obtain

d
dt
∥z (t)∥22 ≤ −C ∥z (t)∥22 ,

this implies that for every t ≥ t0

∥z (t)∥22 ≤ ∥z (t0)∥22 e−C(t−t0).

This concludes the proof.
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[2] S. N. Antontsev, J. Ferreira, E. Pişkin, Existence and blow up of solutions for a strongly damped Petrovsky equation with
variable-exponent nonlinearities, Electronic Journal of Differential Equations, (2021) 1-18.
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G. Butakın, E. Pişkin / Filomat 39:5 (2025), 1657–1671 1671
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