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Abstract. The complete 3-uniform hypergraph K(3)
n of order n has a set V of cardinality n as its vertex

set and the set of all 3 element subsets of V as its edge set. For n ≥ 2, let Zn denote the set of integers
modulo n. For m > 3, let LC(3)

m (respectively, TC(3)
m ) denote the 3-uniform hypergraph with vertex set Z2m

(respectively,Zm) and edge set {{2i, 2i+1, 2i+2} : i ∈ {0, 1, 2, . . . ,m−1}} (respectively, {{i, i+1, i+2} : i ∈ Zm}).
Any hypergraph isomorphic to LC(3)

m (respectively, TC(3)
m ) is a 3-uniform loose m-cycle (respectively, 3-uniform

tight m-cycle). A decomposition of K(3)
n is a partition of the edge set of K(3)

n . We show that there exists a
decomposition of K(3)

n into subhypergraphs isomorphic to LC(3)
7 if and only if n ≥ 14 and n ≡ 0, 1 or 2 (mod

7). Next, we show that, for ℓ ≥ 1 and m ∈ {8, 16, 20, 28, 32, 40, 44}, there exists a decomposition of K(3)
2ℓm

into

subhypergraphs isomorphic to TC(3)
m .

1. Introduction

A hypergraph F consists of a finite nonempty set V of vertices and a set E of nonempty subsets of V
called hyperedges or simply edges.

A decomposition of a hypergraph K is a set ∆ = {H1,H2, . . . ,Hb} of subhypergraphs of K such that
E(H1) ∪ E(H2) ∪ . . . ∪ E(Hb) = E(K) and E(Hi) ∩ E(H j) = ∅ for all i and j with 1 ≤ i < j ≤ b.We denote
this fact by K = H1 ⊕H2 ⊕ · · · ⊕Hb. It follows from the definition that

|E(H1)| + |E(H2)| + · · · + |E(Hb)| = |E(K)|.
If each element Hi of ∆ is isomorphic to a fixed hypergraph H, then Hi is called an H-block, and ∆ is called
an H-decomposition of K. In this case, we say that H decomposes K, and we write H |K. Also, in this case, we
have

b|E(H)| = |E(K)|.
Hence, a necessary condition for the existence of an H-decomposition of K is that

|E(H)| divides |E(K)|.
The degree of a vertex x in a hypergraph F is the number of edges of F containing x.
Another necessary condition for the existence of an H-decomposition of K is that

the g.c.d. of the degrees of vertices in H divides the g.c.d. of the degrees of vertices in K.
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If each vertex x in a hypergraph F has the same degree, then we say that the hypergraph F is regular, or
F is k-regular if the degree of x is k.

If for each edge e in a hypergraph F, we have |e| = t, then F is said to be t-uniform. Thus simple graphs
are 2-uniform hypergraphs.

A cycle of length m, in a hypergraph F is a sequence of the form v1, e1, v2, e2, . . . , vm, em, v1 where
v1, v2, . . . , vm are distinct vertices and e1, e2, . . . , em are distinct edges satisfying vi, vi+1 ∈ ei for i ∈
{1, 2, . . . ,m − 1} and vm, v1 ∈ em. This cycle is known as a Berge cycle having been introduced by Berge
in [5]. For i ∈ {1, 2, . . . ,m}, if |ei| = t, then we denote this Berge cycle by BC(t)

m .
For n ≥ 2, let Zn denote the set of integers modulo n.
For m > t ≥ 2, let LC(t)

m denote the t-uniform hypergraph with vertex setZ(t−1)m and edge set {{it− i, it−
i + 1, it − i + 2, . . . , it − i + (t − 1)} : i ∈ {0, 1, . . . ,m − 1}}. Any hypergraph isomorphic to LC(t)

m is a t-uniform
loose m-cycle. In particular, for t = 3, a 3-uniform loose m-cycle LC(3)

m is a 3-uniform hypergraph with vertex
set Z2m and edge set {{2i, 2i + 1, 2i + 2} : i ∈ {0, 1, . . . ,m − 1}}.

For m > t ≥ 2, let TC(t)
m denote the t-uniform hypergraph with vertex set Zm and edge set {{i, i + 1, i +

2, . . . , i + t − 1} : i ∈ Zm}. Any hypergraph isomorphic to TC(t)
m is a t-uniform tight m-cycle. In particular,

for t = 3, a 3-uniform tight m-cycle TC(3)
m is a 3-uniform hypergraph with vertex set Zm and edge set

{{i, i + 1, i + 2} : i ∈ Zm}.
Let F be a t-uniform hypergraph. It follows from the definitions that every loose cycle of F is a Berge

cycle of F and every tight cycle of F is a Berge cycle of F. Observe that, for t = 2, BC(2)
m � LC(2)

m � TC(2)
m .

Let K be a t-uniform hypergraph, t ≥ 3. The necessary conditions for the existence of:
BC(t)

m -decomposition of K are |V(K)| ≥ m and m divides |E(K)|;
LC(t)

m -decomposition of K are |V(K)| ≥ (t − 1)m and m divides |E(K)|;
TC(t)

m -decomposition of K are |V(K)| ≥ m, m divides |E(K)| and t divides the degree of each vertex of K.
As both loose cycle of K and tight cycle of K are Berge cycles of K, we have: every LC(t)

m -decomposition
of K is a BC(t)

m -decomposition of K and every TC(t)
m -decomposition of K is a BC(t)

m -decomposition of K.
A t-uniform hypergraph F = (V,E) is said to be complete if every t-element subset of V is in E.We denote

such a hypergraph by K(t)
V or by K(t)

n if |V| = n. K(t)
n is
(n−1

t−1
)
-regular and it has

(n
t
)

edges. An H-decomposition
of K(t)

n is also known as an H-design of order n.Given a t-uniform hypergraph H, the problem of determining
all values of n for which there exists an H-design of order n is known as the spectrum problem for H.

If K = K(t)
n , then the above necessary conditions for the existence of:

BC(t)
m -decomposition of K(t)

n are n ≥ m and m |
(n

t
)
;

LC(t)
m -decomposition of K(t)

n are n ≥ (t − 1)m and m |
(n

t
)
;

TC(t)
m -decomposition of K(t)

n are n ≥ m, m |
(n

t
)

and t |
(n−1

t−1
)
.

Assume 3 ≤ t < n. A BC(t)
n of K(t)

n is called a Hamilton cycle of K(t)
n and a BC(t)

n -decomposition of K(t)
n is

called a Hamilton cycle decomposition of K(t)
n . Since a TC(t)

n of K(t)
n is a BC(t)

n of K(t)
n , a TC(t)

n -decomposition of K(t)
n

is also a BC(t)
n -decomposition of K(t)

n , and so it is a special type of Hamilton cycle decomposition of K(t)
n .

The necessary condition for the existence of BC(t)
n |K

(t)
n is n |

(n
t
)
. In [4], Bermond et al. conjectured that this

necessary condition is sufficient and proved this conjecture for n a prime. In [17], Kühn and Osthus, proved
that for t ≥ 4 and n ≥ 30, if n |

(n
t
)
, then BC(t)

n |K
(t)
n . For t = 3, the necessary condition n |

(n
3
)

is: n ≡ 1, 2, 4 or
5 (mod 6); in [3], Bermond proved that: if n ≡ 2, 4 or 5 (mod 6), then BC(3)

n |K
(3)
n , and in [25], Verrall proved

that: if n ≡ 1 (mod 6), then BC(3)
n |K

(3)
n .

Let E (t)
n be the set of all t element subsets of Zn, where 1 < t < n. If E ∈ E (t)

n and r ∈ Zn, let E + r be
formed by replacing each element x ∈ E with x + r; so (r,E) 7→ E + r maps Zn × E (t)

n into E (t)
n . It can be

seen that the group Zn acts on the set E (t)
n partitioning it into Zn-orbits, where E1,E2 ∈ E (t)

n are in the same
orbit if and only if E1 + r = E2 for some r ∈ Zn.We define [E] to be {E+ r : r ∈ Zn},which we refer to as the
Zn-orbit of E. If S ⊆ E (t)

n and r ∈ Zn, let S + r = {E + r : E ∈ S }. By clicking S , we shall mean replacing
S with S + 1.
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Let H be a subhypergraph of K(t)
n , where V(K(t)

n ) = Zn and let Γ be a H-decomposition of K(t)
n . Then Γ

is said to be cyclic if Γ is closed under clicking. Thus if Hi ∈ Γ, then Hi + 1 ∈ Γ. If we partition E (t)
n into

k distinct Zn-orbits each of size n and if H is a subhypergraph of K(t)
n consisting of one edge from each k

distinct Zn-orbits, then Γ = {H + i : i ∈ Zn} is a cyclic H-decomposition of K(t)
n .

Petecki [22], showed that K(t)
n admits a cyclic Hamilton cycle decomposition if and only if 1.c.d.(n, t) = 1

and λ = min {d > 1 : d |n} > n
t .

The necessary condition for the existence of TC(t)
n |K

(t)
n is n |

(n
t
)

and t |
(n−1

t−1
)
. The problem of determining

the existence of a TC(3)
n -decomposition of K(3)

n was first investigated by Bailey and Stevens in [2]; also proved
that for n ∈ {7, 8, 9, 10, 11, 16}.Meszka and Rosa [21] obtained TC(3)

n |K
(3)
n , for all admissible n ≤ 32. Huo et

al. [14], obtained TC(3)
n |K

(3)
n , for all admissible 32 < n ≤ 46 and n , 43.

A 1-factor of a hypergraph F is a spanning subhypergraph I of F, in which each of the n vertices of F has
degree 1 in I.We denote the complete t-uniform hypergraph on n vertices, less a 1-factor I, by K(t)

n − I. K(t)
n − I

is
((n−1

t−1
)
− 1
)
-regular and it has

(n
t
)
−

n
t edges.

If K = K(t)
n − I, then the necessary conditions for the existence of:

BC(t)
m -decomposition of K(t)

n − I are n ≥ m and m |
((n

t
)
−

n
t

)
;

LC(t)
m -decomposition of K(t)

n − I are n ≥ (t − 1)m and m |
((n

t
)
−

n
t

)
;

TC(t)
m -decomposition of K(t)

n − I are n ≥ m, m |
((n

t
)
−

n
t

)
and t |

((n−1
t−1
)
− 1
)
.

Verrall [25] proved that the necessary condition for BC(3)
n | (K

(3)
n − I) is sufficient. (The necessary condition

n |
((n

3
)
−

n
3

)
is n ≡ 0 or 3 (mod 6).)

Keszler et al. [16] showed that TC(3)
6 | (K

(3)
n − I) if and only if n ≡ 0, 3 or 6 (mod 12); also proved that

TC(3)
9 | (K

(3)
n − I) if and only if n is a multiple of 3.

Jordon et al. [15] proved that the necessary conditions are sufficient for the existence of a BC(3)
4 -

decomposition of K(3)
n . In [18, 19], Lakshmi and Poovaragavan proved that the necessary conditions are

sufficient for the existence of a BC(3)
6 -decomposition of K(3)

n and for the existence of a BC(3)
p -decomposition

of K(3)
n , for p ≥ 5 is prime.

In [6], Bryant et al. proved that there exists an LC(3)
3 -decomposition of K(3)

n if and only if n ≡ 0, 1 or 2
(mod 9). Bunge et al. [10] shown that there exists an LC(3)

4 -decomposition of K(3)
n if and only if n ≡ 0, 1, 2, 4

or 6 (mod 8) and n < {4, 6}. In [9], Bunge et al. shown that there exists a LC(4)
3 -decomposition of K(4)

n if and
only if n ≡ 1, 2, 3 or 6 (mod 9) and n ≥ 9.

Meszka and Rosa [21] introduced the idea of TC(3)
m -decompositions of K(3)

n for m , n; also obtained a
TC(3)

5 |K
(3)
n , for all admissible n ≤ 17, and for all n = 4m + 1, m a positive integer. It is noted in [21] that as

a consequence of Hanani’s classical result on the existence of Steiner quadruple systems [13], there exists
a TC(3)

4 -decomposition of K(3)
n if and only if n ≡ 2 or 4 (mod 6). In [1], Akin et al. shown that there exists

a TC(3)
6 -decomposition of K(3)

n if and only if n ≡ 1, 2, 10, 20, 28 or 29 (mod 36). Bunge et al. [8] proved
that there exists a TC(3)

9 -decomposition of K(3)
n if and only if n ≡ 1 or 2 (mod 27). For t ∈ {5, 7}, TC(3)

t -
decomposition of K(3)

n is studied in [12, 20]. For t ∈ {5, 7}, the problem of finding a TC(3)
t -decomposition of

K(3)
n is still open.

A hypergraph F is simple if no edge appears more than once in E(F). If F is a simple hypergraph and if λ
is a positive integer, then the λ-fold of F, denoted λF, is the multi-hypergraph obtained from F by repeating
each edge exactly λ times.

If L is a subhypergraph of M with edge set E(L) and ∆ is a H-decomposition of M \ E(L), then ∆ is called
a H-packing of M with leave L. Such a H-packing is maximum if no other possible H-packing of M has a
leave of a smaller size than that of L. Clearly, if |E(L)| < |E(H)|, then the H-packing is maximum. Moreover,
a H-decomposition of M can be viewed as a maximum H-packing with an empty leave.
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In [7], Bunge et al. studied maximum LC(3)
3 -packings of λK(3)

n and showed that if λ and n ≥ 6 are
positive integers, then there exists a maximum LC(3)

3 -packing of λK(3)
n where the leave has two or fewer

edges. In [11], Bunge et al. studied LC(3)
5 decompositions, pacings and coverings of λK(3)

n .

In this paper, we prove the following results:

Theorem 1.1. Let m ≥ 3 be an odd integer and n ≥ 2m be an integer with n ≡ 0, 1 or 2 (mod m). If LC(3)
m |K

(3)
2m,

LC(3)
m |K

(3)
2m+1, LC(3)

m |K
(3)
2m+2, LC(3)

m |K
(3)
3m, LC(3)

m |K
(3)
3m+1 and LC(3)

m |K
(3)
3m+2, then LC(3)

m |K
(3)
n .

Theorem 1.2. LC(3)
7 |K

(3)
n if and only if n ≥ 14 and n ≡ 0, 1 or 2 (mod 7).

Theorem 1.3. If ℓ ≥ 1, and m ∈ {8, 16, 20, 28, 32, 40, 44}, then TC(3)
m |K

(3)
2ℓm
.

2. Preliminaries

In what follows,N denote the set of positive integers.

2.1. Hypergraphs
For disjoint sets X and Y, the hypergraph with vertex set X ∪ Y and edge set consisting of all 3-sets

having at most 2 vertices in each of X and Y is denoted either by K(3)
X,Y or by K(3)

|X|,|Y|.We partition the edge set

of K(3)
X,Y into two sets one consisting of all 3-sets having exactly 2 vertices in X and the other consisting of all

3-sets having exactly 2 vertices in Y.We denote the subhypergraph induced by the former edge set by K(3)

X,Y

or by K(3)

|X|,|Y|
and the latter by K(3)

X,Y
or K(3)

|X|,|Y|
. Clearly, K(3)

X,Y = K(3)

X,Y
⊕ K(3)

X,Y
.

For pairwise disjoint sets X, Y and Z, the hypergraph with vertex set X ∪ Y ∪ Z and edge set consisting
of all 3-sets having exactly one vertex in each of X, Y and Z is denoted by K(3)

X,Y,Z or K(3)
|X|,|Y|,|Z|.

2.2. Graphs
Graphs Kn, Cn, Pn and Km,n, respectively, denote the complete graph with n vertices, the cycle with n

(n ≥ 3) vertices, the path with n vertices and the complete bipartite graph with partite sizes m and n.

We need the following:

Theorem 2.1. ([24]). Let m ≥ n and let one of the following conditions hold:
(1) m is even, n is odd and k divides 2n,
(2) m is odd, n is even and k divides n,
(3) m is odd, n is even, k < 2n and k divides m,
(4) m = n or m = n + 1 and k divides m,
(5) m and n are odd, m ≥ (3n + 1)/2 and k divides n.
Then Km,n has a decomposition into paths of length k.

3. Loose odd cycle decompositions

3.1. Decompositions of K(3)
m,n

Theorem 3.1. Let q, s,m ∈ N and m ≥ 3 be odd. If Cq |Km and s ≥ q, then LC(3)
q |K

(3)
m,s.

Proof. Let K(3)
m,s = K(3)

X,Y
, where X = {x1, x2, . . . , xm} and Y = {y0, y1, . . . , ys−1}. Here, the subscript of y is

expressed modulo s. By hypothesis, Cq |Km. Let C be a collection of q-cycles in a Cq-decomposition of Km.

For each q-cycle C in C , we produce s loose q-cycles in K(3)

X,Y
as follows: Suppose C := xi1 xi2 xi3 . . . xiq xi1 , then

the loose q-cycles are:
((xi1 , y j, xi2 ), (xi2 , y j+1, xi3 ), (xi3 , y j+2, xi4 ), . . . , (xiq−1 , y j+q−2, xiq ), (xiq , y j+q−1, xi1 )),

where j ∈ Zs. The collection of the resulting m(m−1)
2q s loose q-cycles yield the required decomposition.
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Corollary 3.2. Let s,m ∈ N and m ≥ 3 be odd. If s ≥ m, then LC(3)
m |K

(3)
m,s.

Proof. Follows from Theorem 3.1 (take q = m) since Cm |Km.

Theorem 3.3. Let q, s,m ∈ N and m ≥ 3. If Pq+1 |Km+1, q ≥ 3 and s ≥ q − 1, then LC(3)
q |K

(3)
m+1,s.

Proof. Let K(3)
m+1,s = K(3)

X,Y
, where X = {x1, x2, . . . , xm+1} and Y = {y0, y1, . . . , ys−1}. Here, the subscript of y is

expressed modulo s. By hypothesis, Pq+1 |Km+1. Let P be a collection of paths of order q + 1 in a Pq+1-
decomposition of Km+1. For each path P in P , we produce s loose q-cycles in K(3)

X,Y
as follows: Suppose

P := xi1 xi2 xi3 . . . xiq+1 , then the loose q-cycles are:
((y j, xi1 , xi2 ), (xi2 , y j+1, xi3 ), (xi3 , y j+2, xi4 ), . . . , (xiq−1 , y j+q−2, xiq ), (xiq , xiq+1 , y j)),

where j ∈ Zs. The collection of the resulting (m+1)m
2q s loose q-cycles yield the required decomposition.

Corollary 3.4. Let s,m ∈ N and m ≥ 3 be odd. If s ≥ m − 1, then LC(3)
m |K

(3)
m+1,s.

Proof. Follows from Theorem 3.3 (take q = m) since Pm+1 |Km+1.

3.2. Decompositions of K(3)
m,n

Replacing s by m in Corollary 3.2, we have: if m ≥ 3 is an odd integer, then LC(3)
m |K

(3)
m,m. This together

with K(3)
m,m = K(3)

m,m ⊕ K(3)
m,m and K(3)

m,m � K(3)
m,m imply the following:

Corollary 3.5. Let m ≥ 3 be an odd integer. We have LC(3)
m |K

(3)
m,m.

Replacing s by m + 1 in Corollary 3.2 and s by m in Corollary 3.4, we have, respectively: if m ≥ 3
is an odd integer, then LC(3)

m |K
(3)

m,m+1
and LC(3)

m |K
(3)
m+1,m. This together with K(3)

m,m+1 = K(3)

m,m+1
⊕ K(3)

m,m+1 and

K(3)
m+1,m � K(3)

m,m+1 imply the following:

Corollary 3.6. Let m ≥ 3 be an odd integer. We have LC(3)
m |K

(3)
m,m+1.

3.3. Decompositions of K(3)
m,n,s

Theorem 3.7. Let m,n, r, s ∈N. If Pm+1 |Kr,s, m ≥ 3 and n ≥ m − 1, then LC(3)
m |K

(3)
r,s,n.

Proof. Let K(3)
r,s,n = K(3)

X,Y,Z, where X = {x1, x2, . . . , xr}, Y = {y1, y2, . . . , ys} and Z = {z0, z1, . . . , zn−1}. Here, the
subscript of z is expressed modulo n. By hypothesis, Pm+1 |Kr,s. Let P be a collection of paths of order m+ 1
in a Pm+1-decomposition of Kr,s. For each path P in P ,we produce n loose m-cycles in K(3)

X,Y,Z as follows:
Case 1. m is odd.

Then, P := xi1 yi2 xi3 yi4 . . . xim yim+1 . The loose m-cycles are:
((z j, xi1 , yi2 ), (yi2 , z j+1, xi3 ), (xi3 , z j+2, yi4 ), . . . , (yim−1 , z j+m−2, xim ), (xim , yim+1 , z j)),

where j ∈ Zn.
Case 2. m is even.

If P := xi1 yi2 xi3 yi4 . . . yim xim+1 , then the loose m-cycles are:
((z j, xi1 , yi2 ), (yi2 , z j+1, xi3 ), (xi3 , z j+2, yi4 ), . . . , (xim−1 , z j+m−2, yim ), (yim , xim+1 , z j)),

where j ∈ Zn.
Otherwise, P := yi1 xi2 yi3 xi4 . . . xim yim+1 , then the loose m-cycles are:

((z j, yi1 , xi2 ), (xi2 , z j+1, yi3 ), (yi3 , z j+2, xi4 ), . . . , (yim−1 , z j+m−2, xim ), (xim , yim+1 , z j)),
where j ∈ Zn.

The collection of the resulting rs
m n loose m-cycles yield the required decomposition.

Corollary 3.8. Let p,m,n ∈N. If m ≥ 3 and n ≥ m − 1, then LC(3)
m |K

(3)
pm,pm,n.
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Proof. Take r = s = pm in Theorem 3.7 and apply Theorem 2.1 (4) for its hypothesis.

Taking p = 1 in Corollary 3.8, we have:

Corollary 3.9. Let m,n ∈ N. If m ≥ 3 and n ≥ m − 1, then LC(3)
m |K

(3)
m,m,n, and so LC(3)

m divides both K(3)
m,m,m+1 and

K(3)
m,m,m.

Corollary 3.10. Let m,n ∈ N and m ≥ 3 be odd. If n ≥ m − 1, then LC(3)
m |K

(3)
m+1,m,n.

Proof. Take r − 1 = s = m in Theorem 3.7 and apply Theorem 2.1 (1) for its hypothesis.

3.4. More on decompositions of K(3)
r,s

Corollary 3.11. Let m ≥ 3 be an odd integer, r ≡ 0 (mod m) and s ≡ x (mod m), where x ∈ {0, 1, 2}, and
s ≥ 2m + x.We have LC(3)

m |K
(3)
r,s .

Proof. Then r = mp and s = mq + x for some integers p ≥ 1 and q ≥ 2, and therefore K(3)
r,s = K(3)

mp,mq+x = K(3)
X,Y,

where X = X1 ∪ X2 ∪ . . . ∪ Xp and Y = Y1 ∪ Y2 ∪ . . . ∪ Yq be pairwise disjoint union of sets X1,X2, . . . ,Xp
and Y1,Y2, . . . ,Yq, respectively, with |X1| = |X2| = · · · = |Xp| = m = |Y3| = |Y4| = · · · = |Yq|; and |Y1| = |Y2| = m,
if x = 0; |Y1| = m + 1 and |Y2| = m, if x = 1; |Y1| = |Y2| = m + 1, if x = 2.We consider three cases.
Case 1. x = 0.

Write K(3)
X,Y as an edge-disjoint union of K(3)

Xi,Y j
� K(3)

m,m, K(3)
Xi1 ,Xi2 ,Y j

� K(3)
m,m,m and K(3)

Xi,Y j1 ,Y j2
� K(3)

m,m,m, where
i, i1, i2 ∈ {1, 2, . . . , p}, i1 , i2 and j, j1, j2 ∈ {1, 2, . . . , q}, j1 , j2.
Case 2. x = 1.

Write K(3)
X,Y as an edge-disjoint union of K(3)

Xi,Y j
� K(3)

m,m, K(3)
Xi,Y1

� K(3)
m,m+1, K(3)

Xi1 ,Xi2 ,Y j
� K(3)

m,m,m, K(3)
Xi1 ,Xi2 ,Y1

�

K(3)
m,m,m+1, K

(3)
Xi,Y j1 ,Y j2

� K(3)
m,m,m, K

(3)
Xi,Y j,Y1

� K(3)
m,m,m+1, where i, i1, i2 ∈ {1, 2, . . . , p}, i1 , i2 and j, j1, j2 ∈ {2, 3, . . . , q},

j1 , j2.
Case 3. x = 2.

Write K(3)
X,Y as an edge-disjoint union of K(3)

Xi,Y j
� K(3)

m,m, K(3)
Xi,Yℓ

� K(3)
m,m+1, K(3)

Xi1 ,Xi2 ,Y j
� K(3)

m,m,m, K(3)
Xi1 ,Xi2 ,Yℓ

�

K(3)
m,m,m+1, K

(3)
Xi,Y j1 ,Y j2

� K(3)
m,m,m, K

(3)
Xi,Y j,Yℓ

� K(3)
m,m,m+1, K

(3)
Xi,Y1,Y2

� K(3)
m,m+1,m+1, where i, i1, i2 ∈ {1, 2, . . . , p}, i1 , i2 and

ℓ ∈ {1, 2}, j, j1, j2 ∈ {3, 4, . . . , q}, j1 , j2.
By Corollaries 3.5, 3.6 and 3.9, LC(3)

m |K
(3)
m,m, LC(3)

m |K
(3)
m,m+1 and LC(3)

m divides both K(3)
m,m,m and K(3)

m,m,m+1. By

Corollary 3.10, LC(3)
m |K

(3)
m+1,m,m+1, and so LC(3)

m |K
(3)
m,m+1,m+1. Hence, in all the three cases, LC(3)

m |K
(3)
r,s .

3.5. Decompositions of K(3)
n - Proof of Theorem 1.1

Proof. Assume that m ≥ 3 is an odd integer, n ≥ 2m is an integer, n ≡ 0, 1, 2, m, m + 1 or m + 2 (mod 2m),
and for t ∈ {2m, 2m + 1, 2m + 2, 3m, 3m + 1, 3m + 2}, LC(3)

m |K
(3)
t . Then, n = 2mk + x for some integer k ≥ 1,

where x ∈ {0, 1, 2,m,m + 1,m + 2}. Therefore K(3)
n = K(3)

2mk+x = K(3)
X , where X = X1 ∪ X2 ∪ · · · ∪ Xk be pairwise

disjoint union of sets X1,X2, . . . ,Xk with |X1| = 2m + x and |X2| = |X3| = · · · = |Xk| = 2m. Write K(3)
X as an

edge-disjoint union of K(3)
X1
� K(3)

2m+x, K(3)
Xi
� K(3)

2m, K(3)
Xi,X1

� K(3)
2m,2m+x, K(3)

Xi1 ,Xi2
� K(3)

2m,2m, K(3)
Xi1 ,Xi2 ,X1

� K(3)
2m,2m,2m+x,

K(3)
Xi1 ,Xi2 ,Xi3

� K(3)
2m,2m,2m, where i, i1, i2, i3 ∈ {2, 3, . . . , k}, i1 , i2, i1 , i3 and i2 , i3. By hypothesis, LC(3)

m |K
(3)
2m+x;

by Corollary 3.11, LC(3)
m |K

(3)
2m,2m+x; and by Corollary 3.8, LC(3)

m |K
(3)
2m,2m,2m+x. Hence, LC(3)

m |K
(3)
n .

4. Difference technique

Following ‘difference technique’ method was introduced by Gionfriddo et al. [12]. Assume that the
vertices of K(3)

n are 0, 1, . . . ,n − 1 and that they are arranged in a cyclic order. The distance between vertices
i and j is defined to be
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||i − j|| = min{|i − j|,n − |i − j|}.

Using this, define a difference triplet

ti, j,k = (||i − j||, || j − k||, ||k − i||)

to any three vertices i, j, k with 0 ≤ i < j < k ≤ n − 1.
Note that the ordering condition i < j < k is important in the definition. By taking t j,k,i = (|| j − k||, ||k −

i||, ||i− j||) and tk,i, j = (||k− i||, ||i− j||, || j−k||),we assume that ti, j,k = t j,k,i = tk,i, j for all choices of {i, j, k}.Moreover,
difference triplets are rotation-invariant, i.e. ti, j,k = ti+1, j+1,k+1 holds for all {i, j, k}.

From [12], we have: if n is not a multiple of 3, then there can occur two kinds of difference triplets:
• symmetric triplets: of the form (a, a, b),where 2a = b or 2a + b = n, and
• reflected triplets: of the form (a, b, c) or (a, c, b),where a + b = c or a + b + c = n, and a , b , c , a.
(If n is a multiple of 3, then we have an additional triplet ( n

3 ,
n
3 ,

n
3 ).)

In what follows, the decompositions in Lemmas 5.1 to 5.6 are obtained by using the method of difference
triplets; in particular, in Lemmas 5.3, 5.5 and 5.6, the decompositions are cyclic.

5. A loose 7-cycle decomposition of K(3)
n

Lemma 5.1. LC(3)
7 |K

(3)
14 .

Proof. Let V(K(3)
14 ) = Z14. Symmetric triplets are: (1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 6), (4, 5, 5) and (2, 6, 6), and

reflected triplets are: (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 4, 5), (1, 5, 4), (1, 5, 6), (1, 6, 5), (1, 6, 7), (1, 7, 6), (2, 3, 5),
(2, 5, 3), (2, 4, 6), (2, 6, 4), (2, 5, 7), (2, 7, 5), (3, 4, 7), (3, 7, 4), (3, 5, 6) and (3, 6, 5). Following LC(3)

7 ’s decompose
K(3)

14 :
For each i ∈ Z14, consider
i + [(0, 1, 4), (4, 9, 5), (5, 11, 6), (6, 13, 7), (7, 8, 2), (2, 3, 10), (10, 12, 0)]
(edges having difference triplets (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7), (1, 6, 5), (1, 7, 6), (2, 2, 4), respectively),
i + [(12, 7, 9), (9, 11, 3), (3, 10, 8), (8, 6, 13), (13, 1, 5), (5, 0, 4), (4, 2, 12)]
(edges having difference triplets (2, 3, 5), (2, 6, 6), (2, 7, 5), (2, 5, 7), (2, 4, 6), (1, 5, 4), (2, 6, 4), respectively) and
i + [(6, 3, 0), (0, 10, 7), (7, 12, 4), (4, 1, 5), (5, 9, 13), (13, 8, 2), (2, 11, 6)]
(edges having difference triplets (3, 3, 6), (3, 4, 7), (3, 5, 6), (1, 4, 3), (4, 4, 6), (3, 6, 5), (4, 5, 5), respectively).
In addition, for each j ∈ {0, 1}, consider
j + [(0, 1, 2), (2, 3, 4), (4, 5, 6), (6, 7, 8), (8, 9, 10), (10, 11, 12), (12, 13, 0)]
(each edge has difference triplet (1, 1, 2)),
j + [(1, 0, 3), (3, 2, 5), (5, 4, 7), (7, 6, 9), (9, 8, 11), (11, 10, 13), (13, 12, 1)]
(each edge has difference triplet (1, 2, 3)),
j + [(0, 1, 12), (12, 13, 10), (10, 11, 8), (8, 9, 6), (6, 7, 4), (4, 5, 2), (2, 3, 0)]
(each edge has difference triplet (1, 3, 2)),
j + [(0, 11, 2), (2, 13, 4), (4, 1, 6), (6, 3, 8), (8, 5, 10), (10, 7, 12), (12, 9, 0)]
(each edge has difference triplet (2, 5, 3)),
j + [(0, 3, 10), (10, 13, 6), (6, 9, 2), (2, 5, 12), (12, 1, 8), (8, 11, 4), (4, 7, 0)]
(each edge has difference triplet (3, 7, 4)).

Lemma 5.2. LC(3)
7 |K

(3)
15 .

Proof. Let V(K(3)
15 ) = Z15. Symmetric triplets are: (1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 7), (5, 5, 5), (3, 6, 6) and (1, 7, 7),

and reflected triplets are: (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 4, 5), (1, 5, 4), (1, 5, 6), (1, 6, 5), (1, 6, 7), (1, 7, 6),
(2, 3, 5), (2, 5, 3), (2, 4, 6), (2, 6, 4), (2, 5, 7), (2, 7, 5), (2, 6, 7), (2, 7, 6), (3, 4, 7), (3, 7, 4), (3, 5, 7), (3, 7, 5), (4, 5, 6) and
(4, 6, 5). Observe that there are exactly 5 edges, namely, (0, 5, 10), (1, 6, 11), (2, 7, 12), (3, 8, 13), (4, 9, 14) having
difference triplet (5, 5, 5).
Following LC(3)

7 ’s decompose K(3)
15 :

For each i ∈ Z15, consider
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i + [(2, 1, 5), (5, 6, 10), (10, 9, 0), (0, 8, 7), (7, 14, 13), (13, 4, 12), (12, 3, 2)]
(edges having difference triplets (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 7, 7), (1, 7, 6), (1, 6, 7), (1, 6, 5), respectively),
i + [(9, 0, 5), (5, 3, 12), (12, 14, 7), (7, 11, 13), (13, 10, 1), (1, 4, 6), (6, 2, 9)]
(edges having difference triplets (4, 6, 5), (2, 7, 6), (2, 7, 5), (2, 6, 4), (3, 3, 6), (2, 5, 3), (3, 7, 4), respectively), and
i + [(14, 11, 4), (4, 10, 1), (1, 6, 9), (9, 2, 13), (13, 0, 3), (3, 7, 12), (12, 5, 14)]
(edges having difference triplets (3, 5, 7), (3, 6, 6), (3, 7, 5), (4, 4, 7), (2, 3, 5), (4, 5, 6), (2, 6, 7), respectively).

The set of edges having remaining difference triplets (1, 1, 2), (1, 2, 3), (2, 2, 4), (1, 3, 2), (1, 4, 3), (1, 5, 4),
(2, 4, 6), (2, 5, 7), (3, 4, 7) and (5, 5, 5) can be decomposed into LC(3)

7 as follows:
For each j ∈ {0, 1, . . . , 6}, consider
j + [(14, 0, 10), (10, 7, 11), (11, 12, 9), (9, 5, 3), (3, 1, 8), (8, 4, 6), (6, 2, 14)],
for each k ∈ {0, 1, 2}, consider
k + [(10, 11, 6), (6, 3, 7), (7, 8, 5), (5, 1, 14), (14, 12, 4), (4, 0, 2), (2, 13, 10)],
for each ℓ ∈ {0, 1}, consider
ℓ + [(0, 1, 3), (3, 2, 5), (5, 4, 7), (7, 6, 9), (9, 8, 11), (11, 10, 13), (13, 14, 0)],
ℓ + [(7, 8, 3), (3, 0, 4), (4, 5, 2), (2, 13, 11), (11, 9, 1), (1, 12, 14), (14, 10, 7)],
and
[(0, 14, 2), (2, 3, 4), (4, 5, 6), (6, 7, 8), (8, 9, 10), (10, 11, 12), (12, 13, 0)],
[(6, 7, 2), (2, 14, 3), (3, 4, 1), (1, 12, 10), (10, 5, 0), (0, 11, 13), (13, 9, 6)],
[(9, 10, 5), (5, 6, 2), (2, 7, 0), (0, 4, 13), (13, 11, 3), (3, 14, 1), (1, 12, 9)],
[(13, 14, 9), (9, 6, 10), (10, 11, 8), (8, 4, 2), (2, 12, 7), (7, 3, 5), (5, 1, 13)],
[(0, 10, 8), (8, 3, 13), (13, 12, 14), (14, 9, 4), (4, 7, 6), (6, 11, 1), (1, 2, 0)],
[(1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (9, 10, 11), (11, 12, 13), (13, 14, 1)].

Lemma 5.3. LC(3)
7 |K

(3)
16 .

Proof. Let V(K(3)
16 ) = Z16. Symmetric triplets are: (1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 8), (5, 5, 6), (4, 6, 6) and (2, 7, 7),

and reflected triplets are: (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 4, 5), (1, 5, 4), (1, 5, 6), (1, 6, 5), (1, 6, 7), (1, 7, 6),
(1, 7, 8), (1, 8, 7), (2, 3, 5), (2, 5, 3), (2, 4, 6), (2, 6, 4), (2, 5, 7), (2, 7, 5), (2, 6, 8), (2, 8, 6), (3, 4, 7), (3, 7, 4), (3, 5, 8),
(3, 8, 5), (3, 6, 7), (3, 7, 6), (4, 5, 7) and (4, 7, 5). Following LC(3)

7 ’s decompose K(3)
16 :

For each i ∈ Z16, consider
i + [(0, 1, 2), (2, 3, 5), (5, 6, 9), (9, 10, 14), (14, 4, 13), (13, 8, 7), (7, 15, 0)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 6, 7), (1, 5, 6), (1, 7, 8), respectively),
i + [(1, 0, 9), (9, 2, 8), (8, 13, 14), (14, 15, 10), (10, 11, 7), (7, 4, 6), (6, 3, 1)]
(edges having difference triplets (1, 8, 7), (1, 7, 6), (1, 6, 5), (1, 5, 4), (1, 4, 3), (1, 3, 2), (2, 3, 5), respectively),
i + [(2, 0, 4), (4, 6, 10), (10, 3, 5), (5, 13, 7), (7, 9, 1), (1, 15, 8), (8, 11, 2)]
(edges having difference triplets (2, 2, 4), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 8, 6), (2, 7, 7), (3, 7, 6), respectively),
i + [(0, 11, 2), (2, 14, 4), (4, 1, 6), (6, 9, 12), (12, 3, 15), (15, 7, 10), (10, 5, 0)]
(edges having difference triplets (2, 7, 5), (2, 6, 4), (2, 5, 3), (3, 3, 6), (3, 4, 7), (3, 5, 8), (5, 5, 6), respectively), and
i + [(0, 9, 3), (3, 6, 14), (14, 2, 5), (5, 13, 1), (1, 12, 8), (8, 15, 4), (4, 10, 0)]
(edges having difference triplets (3, 6, 7), (3, 8, 5), (3, 7, 4), (4, 4, 8), (4, 5, 7), (4, 7, 5), (4, 6, 6), respectively).

Lemma 5.4. LC(3)
7 |K

(3)
21 .

Proof. Let V(K(3)
21 ) = Z21. Symmetric triplets are: (1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 8), (5, 5, 10), (6, 6, 9), (7, 7, 7),

(5, 8, 8), (3, 9, 9) and (1, 10, 10), and reflected triplets are: (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 4, 5), (1, 5, 4),
(1, 5, 6), (1, 6, 5), (1, 6, 7), (1, 7, 6), (1, 7, 8), (1, 8, 7), (1, 8, 9), (1, 9, 8), (1, 9, 10), (1, 10, 9), (2, 3, 5), (2, 5, 3), (2, 4, 6),
(2, 6, 4), (2, 5, 7), (2, 7, 5), (2, 6, 8), (2, 8, 6), (2, 7, 9), (2, 9, 7), (2, 8, 10), (2, 10, 8), (2, 9, 10), (2, 10, 9), (3, 4, 7), (3, 7, 4),
(3, 5, 8), (3, 8, 5), (3, 6, 9), (3, 9, 6), (3, 7, 10), (3, 10, 7), (3, 8, 10), (3, 10, 8), (4, 5, 9), (4, 9, 5), (4, 6, 10), (4, 10, 6),
(4, 7, 10), (4, 10, 7), (4, 8, 9), (4, 9, 8), (5, 6, 10), (5, 10, 6), (5, 7, 9), (5, 9, 7), (6, 7, 8) and (6, 8, 7). Observe that there
are exactly 7 edges, namely, (0, 7, 14), (1, 8, 15), (2, 9, 16), (3, 10, 17), (4, 11, 18), (5, 12, 19), (6, 13, 20) having
difference triplet (7, 7, 7).
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Following LC(3)
7 ’s decompose K(3)

21 :
For each i ∈ Z21, consider
i + [(0, 9, 1), (1, 11, 2), (2, 13, 3), (3, 15, 4), (4, 17, 5), (5, 19, 6), (6, 7, 0)]
(edges having difference triplets (1, 8, 9), (1, 9, 10), (1, 10, 10), (1, 10, 9), (1, 9, 8), (1, 8, 7), (1, 7, 6), respectively),
i + [(0, 1, 16), (16, 15, 11), (11, 7, 10), (10, 13, 12), (12, 14, 17), (17, 19, 2), (2, 4, 0)]
(edges having difference triplets (1, 6, 5), (1, 5, 4), (1, 4, 3), (1, 3, 2), (2, 3, 5), (2, 4, 6), (2, 2, 4), respectively),
i + [(0, 2, 7), (7, 5, 13), (13, 4, 6), (6, 16, 8), (8, 10, 19), (19, 17, 9), (9, 11, 0)]
(edges having difference triplets (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 10), (2, 10, 8), (2, 10, 9), respectively),
i + [(2, 0, 14), (14, 12, 6), (6, 11, 13), (13, 15, 9), (9, 7, 4), (4, 1, 8), (8, 5, 2)]
(edges having difference triplets (2, 9, 7), (2, 8, 6), (2, 7, 5), (2, 6, 4), (2, 5, 3), (3, 4, 7), (3, 3, 6), respectively),
i + [(16, 11, 8), (8, 5, 14), (14, 7, 4), (4, 12, 1), (1, 19, 10), (10, 2, 13), (13, 6, 16)]
(edges having difference triplets (3, 5, 8), (3, 6, 9), (3, 7, 10), (3, 8, 10), (3, 9, 9), (3, 10, 8), (3, 10, 7), respectively),
i + [(0, 12, 4), (4, 8, 17), (17, 7, 3), (3, 9, 13), (13, 18, 1), (1, 11, 6), (6, 16, 0)]
(edges having difference triplets (4, 8, 9), (4, 9, 8), (4, 10, 7), (4, 10, 6), (4, 9, 5), (5, 5, 10), (5, 6, 10), respectively),
i + [(0, 5, 12), (12, 7, 20), (20, 6, 11), (11, 17, 1), (1, 10, 16), (16, 2, 8), (8, 14, 0)]
(edges having difference triplets (5, 7, 9), (5, 8, 8), (5, 9, 7), (5, 10, 6), (6, 6, 9), (6, 8, 7), (6, 7, 8), respectively), and
for each j ∈ {0, 1, . . . , 19}, consider
j + [(6, 3, 18), (18, 15, 10), (10, 14, 17), (17, 13, 0), (0, 4, 9), (9, 19, 2), (2, 12, 6)]
(edges having difference triplets (3, 9, 6), (3, 8, 5), (3, 7, 4), (4, 4, 8), (4, 5, 9), (4, 7, 10), (4, 6, 10), respectively).

The set of edges having remaining difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7),
(1, 7, 8), and (7, 7, 7) together with the set of remaining edges {(5, 2, 17), (17, 14, 9), (9, 13, 16), (16, 12, 20),
(20, 3, 8), (8, 18, 1), (1, 11, 5)} can be decomposed into LC(3)

7 as follows:
For each k ∈ {0, 1, . . . , 11}, consider
k + [(13, 14, 15), (15, 18, 16), (16, 17, 20), (20, 19, 3), (3, 9, 4), (4, 11, 5), (5, 6, 13)],
for each ℓ ∈ {0, 1, 2, 3}, consider
ℓ + [(5, 6, 7), (7, 10, 8), (8, 9, 12), (12, 11, 16), (16, 1, 17), (17, 3, 18), (18, 19, 5)],
for each m ∈ {0, 1}, consider
m + [(9, 10, 11), (11, 14, 12), (12, 16, 13), (13, 6, 20), (20, 5, 0), (0, 7, 1), (1, 2, 9)],
and
[(4, 5, 6), (6, 9, 7), (7, 11, 8), (8, 1, 15), (15, 0, 16), (16, 2, 17), (17, 18, 4)],
[(12, 13, 14), (14, 17, 15), (15, 19, 16), (16, 9, 2), (2, 8, 3), (3, 10, 4), (4, 5, 12)],
[(5, 2, 17), (17, 14, 9), (9, 13, 16), (16, 15, 20), (20, 3, 8), (8, 18, 1), (1, 11, 5)],
[(11, 12, 13), (13, 16, 14), (14, 15, 18), (18, 17, 1), (1, 7, 2), (2, 9, 3), (3, 4, 11)],
[(10, 3, 17), (17, 0, 16), (16, 20, 12), (12, 5, 19), (19, 2, 18), (18, 4, 11), (11, 15, 10)].

Lemma 5.5. LC(3)
7 |K

(3)
22 .

Proof. Let V(K(3)
22 ) = Z22. Symmetric triplets are: (1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 8), (5, 5, 10), (6, 6, 10), (7, 7, 8),

(6, 8, 8), (4, 9, 9) and (2, 10, 10), and reflected triplets are: (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 4, 5), (1, 5, 4),
(1, 5, 6), (1, 6, 5), (1, 6, 7), (1, 7, 6), (1, 7, 8), (1, 8, 7), (1, 8, 9), (1, 9, 8), (1, 9, 10), (1, 10, 9), (1, 10, 11), (1, 11, 10),
(2, 3, 5), (2, 5, 3), (2, 4, 6), (2, 6, 4), (2, 5, 7), (2, 7, 5), (2, 6, 8), (2, 8, 6), (2, 7, 9), (2, 9, 7), (2, 8, 10), (2, 10, 8), (2, 9, 11),
(2, 11, 9), (3, 4, 7), (3, 7, 4), (3, 5, 8), (3, 8, 5), (3, 6, 9), (3, 9, 6), (3, 7, 10), (3, 10, 7), (3, 8, 11), (3, 11, 8), (3, 9, 10),
(3, 10, 9), (4, 5, 9), (4, 9, 5), (4, 6, 10), (4, 10, 6), (4, 7, 11), (4, 11, 7), (4, 8, 10), (4, 10, 8), (5, 6, 11), (5, 11, 6), (5, 7, 10),
(5, 10, 7), (5, 8, 9), (5, 9, 8), (6, 7, 9) and (6, 9, 7). Following LC(3)

7 ’s decompose K(3)
22 :

For each i ∈ Z22, consider
i + [(0, 1, 2), (2, 3, 5), (5, 4, 8), (8, 7, 12), (12, 18, 13), (13, 14, 21), (21, 6, 0)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 7, 8), (1, 6, 7), respectively),
i + [(0, 1, 9), (9, 18, 8), (8, 20, 19), (19, 6, 7), (7, 16, 15), (15, 4, 14), (14, 21, 0)]
(edges having difference triplets (1, 8, 9), (1, 9, 10), (1, 10, 11), (1, 10, 9), (1, 9, 8), (1, 11, 10), (1, 8, 7),
respectively),
i + [(16, 0, 1), (1, 18, 2), (2, 20, 3), (3, 5, 6), (6, 9, 10), (10, 12, 14), (14, 19, 16)]
(edges having difference triplets (1, 7, 6), (1, 6, 5), (1, 5, 4), (1, 3, 2), (1, 4, 3), (2, 2, 4), (2, 3, 5), respectively),
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i + [(9, 13, 7), (7, 5, 12), (12, 4, 6), (6, 15, 8), (8, 18, 10), (10, 0, 20), (20, 11, 9)]
(edges having difference triplets (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 10, 10), (2, 9, 11), respectively),
i + [(2, 0, 13), (13, 11, 3), (3, 5, 18), (18, 16, 10), (10, 17, 15), (15, 19, 21), (21, 4, 2)]
(edges having difference triplets (2, 11, 9), (2, 10, 8), (2, 9, 7), (2, 8, 6), (2, 7, 5), (2, 6, 4), (2, 5, 3), respectively),
i + [(0, 3, 6), (6, 9, 13), (13, 8, 5), (5, 2, 11), (11, 14, 1), (1, 4, 12), (12, 15, 0)]
(edges having difference triplets (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 9, 10), (3, 8, 11), (3, 7, 10), respectively),
i + [(0, 3, 13), (13, 10, 2), (2, 5, 17), (17, 4, 1), (1, 20, 15), (15, 11, 18), (18, 14, 0)]
(edges having difference triplets (3, 10, 9), (3, 11, 8), (3, 10, 7), (3, 9, 6), (3, 8, 5), (3, 7, 4), (4, 4, 8), respectively),
i + [(0, 4, 9), (9, 15, 5), (5, 1, 12), (12, 20, 8), (8, 21, 17), (17, 3, 7), (7, 11, 0)]
(edges having difference triplets (4, 5, 9), (4, 6, 10), (4, 7, 11), (4, 8, 10), (4, 9, 9), (4, 10, 8), (4, 11, 7), respectively),
i + [(14, 10, 4), (4, 21, 8), (8, 13, 18), (18, 7, 12), (12, 17, 2), (2, 11, 19), (19, 5, 14)]
(edges having difference triplets (4, 10, 6), (4, 9, 5), (5, 5, 10), (5, 6, 11), (5, 7, 10), (5, 9, 8), (5, 8, 9), respectively),
and
i + [(0, 5, 15), (15, 21, 4), (4, 10, 16), (16, 3, 9), (9, 17, 1), (1, 8, 14), (14, 7, 0)]
(edges having difference triplets (5, 10, 7), (5, 11, 6), (6, 6, 10), (6, 7, 9), (6, 8, 8), (6, 9, 7), (7, 7, 8),
respectively).

Lemma 5.6. LC(3)
7 |K

(3)
23 .

Proof. Let V(K(3)
23 ) = Z23. Symmetric triplets are: (1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 8), (5, 5, 10), (6, 6, 11), (7, 7, 9),

(7, 8, 8), (5, 9, 9), (3, 10, 10) and (1, 11, 11), and reflected triplets are: (1, 2, 3), (1, 3, 2), (1, 3, 4), (1, 4, 3), (1, 4, 5),
(1, 5, 4), (1, 5, 6), (1, 6, 5), (1, 6, 7), (1, 7, 6), (1, 7, 8), (1, 8, 7), (1, 8, 9), (1, 9, 8), (1, 9, 10), (1, 10, 9), (1, 10, 11), (1, 11,
10), (2, 3, 5), (2, 5, 3), (2, 4, 6), (2, 6, 4), (2, 5, 7), (2, 7, 5), (2, 6, 8), (2, 8, 6), (2, 7, 9), (2, 9, 7), (2, 8, 10), (2, 10, 8),
(2, 9, 11), (2, 11, 9), (2, 10, 11), (2, 11, 10), (3, 4, 7), (3, 7, 4), (3, 5, 8), (3, 8, 5), (3, 6, 9), (3, 9, 6), (3, 7, 10), (3, 10, 7),
(3, 8, 11), (3, 11, 8), (3, 9, 11), (3, 11, 9), (4, 5, 9), (4, 9, 5), (4, 6, 10), (4, 10, 6), (4, 7, 11), (4, 11, 7), (4, 8, 11), (4, 11, 8),
(4, 9, 10), (4, 10, 9), (5, 6, 11), (5, 11, 6), (5, 7, 11), (5, 11, 7), (5, 8, 10), (5, 10, 8), (6, 7, 10), (6, 10, 7), (6, 8, 9) and
(6, 9, 8).

Following LC(3)
7 ’s decompose K(3)

23 :
For each i ∈ Z23, consider
i + [(0, 1, 2), (2, 3, 5), (5, 6, 9), (9, 10, 14), (14, 20, 15), (15, 16, 22), (22, 7, 0)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7), (1, 7, 8), respectively),
i + [(1, 0, 9), (9, 10, 19), (19, 20, 7), (7, 6, 18), (18, 4, 5), (5, 15, 16), (16, 2, 1)]
(edges having difference triplets (1, 8, 9), (1, 9, 10), (1, 10, 11), (1, 11, 11), (1, 10, 9), (1, 11, 10), (1, 9, 8),
respectively),
i + [(0, 1, 16), (16, 15, 9), (9, 5, 7), (7, 8, 2), (2, 3, 21), (21, 17, 20), (20, 22, 0)]
(edges having difference triplets (1, 8, 7), (1, 7, 6), (2, 2, 4), (1, 6, 5), (1, 5, 4), (1, 4, 3), (1, 3, 2), respectively),
i + [(0, 2, 5), (5, 3, 9), (9, 7, 14), (14, 6, 8), (8, 1, 22), (22, 11, 13), (13, 15, 0)]
(edges having difference triplets (2, 3, 5), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 9, 11), (2, 8, 10), respectively),
i + [(0, 2, 12), (12, 1, 22), (22, 8, 10), (10, 20, 18), (18, 16, 11), (11, 3, 9), (9, 7, 0)]
(edges having difference triplets (2, 10, 11), (2, 11, 10), (2, 11, 9), (2, 10, 8), (2, 7, 5), (2, 8, 6), (2, 9, 7),
respectively),
i + [(2, 0, 19), (19, 17, 14), (14, 8, 11), (11, 4, 7), (7, 10, 15), (15, 6, 9), (9, 22, 2)]
(edges having difference triplets (2, 6, 4), (2, 5, 3), (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), respectively),
i + [(0, 3, 11), (11, 8, 20), (20, 7, 10), (10, 13, 1), (1, 4, 16), (16, 19, 9), (9, 6, 0)]
(edges having difference triplets (3, 8, 11), (3, 9, 11), (3, 10, 10), (3, 11, 9), (3, 11, 8), (3, 10, 7), (3, 9, 6),
respectively),
i + [(0, 18, 3), (3, 22, 6), (6, 10, 14), (14, 5, 9), (9, 13, 19), (19, 8, 12), (12, 4, 0)]
(edges having difference triplets (3, 8, 5), (3, 7, 4), (4, 4, 8), (4, 5, 9), (4, 6, 10), (4, 7, 11), (4, 8, 11), respectively),
i + [(4, 0, 13), (13, 22, 3), (3, 18, 7), (7, 11, 1), (1, 17, 5), (5, 10, 14), (14, 9, 4)]
(edges having difference triplets (4, 9, 10), (4, 10, 9), (4, 11, 8), (4, 10, 6), (4, 11, 7), (4, 9, 5), (5, 5, 10),
respectively),
i + [(0, 11, 5), (5, 17, 10), (10, 20, 2), (2, 7, 16), (16, 1, 6), (6, 13, 18), (18, 12, 0)]
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(edges having difference triplets (5, 6, 11), (5, 7, 11), (5, 8, 10), (5, 9, 9), (5, 10, 8), (5, 11, 7), (5, 11, 6),
respectively), and
i + [(6, 0, 12), (12, 18, 2), (2, 8, 16), (16, 1, 7), (7, 14, 20), (20, 4, 13), (13, 21, 6)]
(edges having difference triplets (6, 6, 11), (6, 7, 10), (6, 8, 9), (6, 9, 8), (6, 10, 7), (7, 7, 9), (7, 8, 8),
respectively).

Proof of Theorem 1.2.
The proof of necessity is obvious, and we prove the sufficiency. By Theorem 1.1, it is enough to find a

loose 7-cycle decomposition of K(3)
r , r ∈ {14, 15, 16, 21, 22, 23}; this follows from Lemmas 5.1 to 5.6.

6. Tight cycle decompositions

We use [0, 1, 2, . . . ,m− 1] to denote any hypergraph isomorphic to TC(3)
m with vertex setZm and edge set

{{i, i + 1, i + 2} : i ∈ Zm}.

Lemma 6.1. If r ≥ 4 and s ≥ 4 are even integers and if Cr |Ks,s, then TC(3)
2r |K

(3)
2s,2s.

Proof. Consider K(3)
X,Y � K(3)

2s,2s with X = {x1, x2, . . . , x2s} and Y = {y1, y2, . . . , y2s}.We have to find 2 s2

r (2s − 1)

edge-disjoint TC(3)
2r ’s in K(3)

2s,2s. Let {L1,L2, . . . ,L2s−1} and {M1,M2, . . . ,M2s−1} be 1-factorizations of the com-
plete graphs KX � K2s and KY � K2s, respectively. For each i ∈ {1, 2, . . . , 2s − 1}, consider the pair
(Li,Mi). The number of such pairs is 2s − 1. For convenience, let Li = {x1x2, x3x4, x5x6, . . . , x2s−1x2s} and
Mi = {y1y2, y3y4, y5y6, . . . , y2s−1y2s}. Denote the edges x2q−1x2q and y2q−1y2q by new vertices uq and vq,
respectively, where q ∈ {1, 2, . . . , s}. Consider the complete bipartite graph K{u1,u2,u3,...,us},{v1,v2,v3,...,vs} � Ks,s. By
hypothesis, Cr |Ks,s. Let Ci = {Ci1,Ci2, . . . ,Ci s2

r
} be the collection of r-cycles in the decomposition of Ks,s.

Now, corresponding to each Ci j in Ci, we construct two edge-disjoint TC(3)
2r ’s, say C′i j and C′′i j , of K(3)

2s,2s as

follows, where j ∈ {1, 2, . . . , s2

r }: without loss of generality, let

Ci j = u1v1u2v2u3v3 . . . u r
2
v r

2
u1.

Then C′i j is
[x1, x2, y1, y2, x3, x4, y3, y4, x5, x6, y5, y6, . . . , xr−3, xr−2, yr−3, yr−2, xr−1, xr, yr−1, yr]

and C′′i j is
[x2, x1, y2, y1, x4, x3, y4, y3, x6, x5, y6, y5, . . . , xr−2, xr−3, yr−2, yr−3, xr, xr−1, yr, yr−1].

To complete the proof consider the collection {C′i j} ∪ {C
′′

i j }.

Next, we use the following characterization of isomorphic cycle decompositions of complete bipartite
graphs.

Theorem 6.2. ([23]) The complete bipartite graph Ka,b can be decomposed into 2k-cycles if and only if a and b are
even, a ≥ k, b ≥ k, and 2k divides ab. In particular, C2k|Ka,a if and only if a is even, a ≥ k, and 2k divides a2.

Lemma 6.3. If r ≥ 4 and s ≥ 4 are even integers, s ≥ r
2 , and r divides s2, then TC(3)

2r |K
(3)
2s,2s.

Proof. Follows from Lemma 6.1 and Theorem 6.2.

Since,
K(3)

2(2p) = K(3)
2p ⊕ K(3)

2p,2p ⊕ K(3)
2p ,

K(3)
2(22p) = K(3)

22p ⊕ K(3)
22p,22p ⊕ K(3)

22p,

K(3)
2(23p) = K(3)

23p ⊕ K(3)
23p,23p ⊕ K(3)

23p,

...
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K(3)
2(2ℓ−1p)

= K(3)
2ℓ−1p

⊕ K(3)
2ℓ−1p,2ℓ−1p

⊕ K(3)
2ℓ−1p
,

we can write, for ℓ ≥ 2,
K(3)

2ℓp
= (K(3)

2ℓ−1p,2ℓ−1p
⊕ 2K(3)

2ℓ−2p,2ℓ−2p
⊕ 22K(3)

2ℓ−3p,2ℓ−3p
⊕ . . . ⊕ 2ℓ−4K(3)

23p,23p ⊕ 2ℓ−3K(3)
22p,22p ⊕ 2ℓ−2K(3)

2p,2p)

⊕ ( K(3)
2p ⊕ K(3)

2p ⊕ · · · ⊕ K(3)
2p︸                     ︷︷                     ︸

2ℓ−1 times

).

By Lemma 6.3, if p ≥ 4 is an even integer, then we have the following decompositions: TC(3)
2p |K

(3)
2p,2p,

TC(3)
2p |K

(3)
22p,22p, TC(3)

2p |K
(3)
23p,23p, . . . , TC(3)

2p |K
(3)
2ℓ−3p,2ℓ−3p

, TC(3)
2p |K

(3)
2ℓ−2p,2ℓ−2p

, TC(3)
2p |K

(3)
2ℓ−1p,2ℓ−1p

.Consequently, if TC(3)
2p |K

(3)
2p

for some even integer p ≥ 4, then TC(3)
2p |K

(3)
2ℓp
, for each ℓ ≥ 1. Thus, we collect known results on such

decompositions.
Consider the decomposition TC(3)

m |K
(3)
m . If 8 ≤ m ≤ 48, then admissible m’s for the existence of such

decomposition with m ≡ 0 (mod 4) are 8, 16, 20, 28, 32, 40 and 44. For each such m,TC(3)
m |K

(3)
m (see [2, 14, 21]).

Hence, we have:

Lemma 6.4. ([2, 14, 21]). For m ∈ {8, 16, 20, 28, 32, 40, 44}, TC(3)
m |K

(3)
m .

Proof of Theorem 1.3.
Take m = 2p to complete the proof.
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