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Abstract. This paper presents a novel class of A-Bernstein operators, wherein the parameter A € [-1,1].
An approximation theorem of the Korovkin type is explored, a local approximation theorem is established
and an asymptotic formula of the Voronovskaja type is derived. In addition, the bivariate tensor product
operators are built, some approximation properties are discussed, including an asymptotic theorem of
the Voronovskaja type and the order of convergence in relation to Peetre’s K-functional. Finally, for
certain continuous functions, numerical examples and plots to demonstrate our newly defined operators’

convergence behavior are provided and there are also provided in comparison with the classical Kantorovich
operators in terms of the approximation error.

1. Introduction

Bernstein polynomials and various structures derived from them are used in fields such as computer
graphics, numerical analysis and approximation theory. Considering approximation theory, the first knowl-
edge that comes to mind is that a new function approximating a continuous function C defined on [0, 1]
can be obtained by using Bernstein polynomials, and one of the most important results of this obtaining
process is that the reconstructed function uniformly converges to this function C. Due to the widespread
use, simplicity, and useful properties of Bernstein polynomials, they have attracted a lot of attention from re-
searchers, as a result, it has contributed to the emergence of many studies and continues to do so. Inspired
by Bernstein polynomials, numerous operators have been introduced and their convergence properties
have been examined, you may refer to studies [3, 4, 12, 13, 18, 21, 24, 26, 28, 31-33, 36, 37, 42, 44]. Besides,
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these numerous operators’ generalizations also have been developed and studied, sometimes by using
the parameter A (see [2, 6, 8-10, 14, 16, 19, 30, 34, 45]) and other times by creating of their g-analogues
(see [20, 25, 38, 40]). Additionally, the following papers that define and analyze operators on two-variable
function spaces are also worth reviewing:[1, 5, 7, 17, 22, 35, 39, 43]. Let us give brief information about
some of them in particular. In [5], the authors have introduced the univariate and bivariate Bernstein-
Schurer-type operators. They have presented the degree of convergence, Korovkin-type approximation
theorem, and Voronovskaja-type asymptotic theorem for the univariate Bernstein-Schurer-Type operators;
then they have given the order of convergence and the Voronovskaja-type asymptotic theorem for the
bivariate of it. In [1], the bivariate extension of the Bernstein-Chlodovsky operators has been introduced.
Weighted approximation properties for continuous functions in the weighted space have been explored by
the researchers.

Now, let us explain the definition of famous Bernstein operators [11]. It is commonly known that the
definition of Bernstein operators for C € C[0,1] and n € N is as follows:

BuGY) = ) bu)C (%) yelo1], M
=0
where
bui(y) = ( h )y’(l —y', 1=0,1,.m. @

A type of A-Bernstein operators was proposed by Cai et al. [16] in 2018. It was constructed using the
following A-Bézier basis:

B0 = buo(y) = basna(v),
B () = buiy) + A (" 2Lp () — 22 b (), 1 <I<n=1), 3)
n,n(]/) nn(y) n+1 n+1,n(y)/

where A € [-1,1] and b, ,(y) are defined in (2).
Very recently, Zhou et al. [45] discovered a novel class of A-Bernstein operators, which are as follows:

BNGy) = Zb y)C( ) yelo 1], 4)

where the new A-Bézier basis functions b” () are provided by
nl

bﬁ/o(y) by, O(y) n+1 b 1(y)
bﬁ’[(y) n,l(]/) + o n+1 (bn+1,l(y) bn+1,l+1(y))/ (1 <l<n- 1, Ae [_1r 1])/ (5)
b;;\,n(y) = bua(y) + ﬁbnﬂ,n(]/)-

Obviously, this new A-Bézier basis function is formally simpler than the original A-Bézier basis function.
They obtained that for some values of A, the convergence effect of new operators (4) is better than that of
the original A-Bernstein operators defined in [16], including the classical Bernstein operators (1).

Now, motivated by the studies mentioned above, for C € C[0,1], v € [0,1], we define a new kind of
A-Bernstein-Kantorovich operators as follows,

l+l
KNGy) = (n+1) Z b, (y) f C(bdt, A € [-1,1], 6)
where bﬁ/l(y) is defined in (4). Apparently, when A = 0, the operators given by (6) reduce to the classical

form proposed by Kantorovich [27]. The structure of this document is as follows: In section 2, moments
and central moments are determined for the operators in (6); in section 3, we create a Korovkin type
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theorem, a local approximation theorem, and a Voronovkaja type asymptotic formula by first providing
some essential definitions; in section 4, we define bivariate tensor product operators, we present the
moments and central moments, we examine convergence properties via the Volkov theorem, obtain the
Voronovkaja type asymptotic theorem, and compute the rate of convergence by using Peetre’s K-functional
for these operators. To enhance the significance of the research for our paper, in section 5, we will compare
and analyze the approximation error of some continuous functions by the newly defined operators (6) with
the classical Kantorovich operators (the case when A = 0 for (6)) and the original A-Bernstein-Kantorovich
operators defined in the following:

41

RiGy =+ 1) By [ o,
1=0 n+l

where A € [-1,1] and El(y) are defined in (3).

2. Auxiliary results

Letei(t) =t,i€{0,1,..., 4} and W (t, y) = (- y)i, i €{0,1,2,4}. To validate our major findings, we require
the following lemmas.

Lemma 2.1. [45] Let y € [0,1], A € [-1, 1], n € IN.Then, we have the following equalities:

B, (eo;y) = 1,
1- yn+1 _ (1 _ ]/)n+1

A . —
Bn (61/]/) - y+/\ n(n+1) ’
i oo Y-y [2y(d-y) 1oyttt - -y
Biley) = vy +— +/\[ — T ,
32—y y-3p+27 [32(1-y") -y -y
A . _ 3
Bleiy) = v+ n " n? A n2 n3(n+1) ’
60 -y) Ty —183 + 11yt y—7y? + 1247 — 6y
BQ(%y):yﬂy( y) 7y 18y + 11y y -7y + 12y — by

n2 n3

4153 (1 = 2 2 _ g3 — pqyn+l 20 (1 = y" 1—y™1l — (1 = y)r+!
M[V( 3/)+6y y-2ym 2y(-y) 1-y™ -(1-y)

n2 n3 n* n*(n+1)

Lemma 2.2. Fory € [0,1], A € [-1,1], n € IN, Lemma 2.1 enables us to derive the following equalities:

Ky (eo;y) = 1, @)
1-— 2]/ 1-— yn+1 _ (1 _ y)n+1
Aoy —
Kilwy) = v+t n+ 1) / ®
2y-3y* 1-6y+6y> 2y(l—y")
A (. — 2
Kilay) = v +=3 * Surpe Mo ©)
Keny) = o OF — 12 Ty-27y2 422 1-14y+36y° - 247’
mae 2n+1) 2(n +1)2 4(n+1)3
Y 1=y sya-y 1oy -a-y
(n+1)? (n+1)> 2(n + 1) ’
813 —10y* 15y% — 48y +35y* 6y — 452 + 88> — 501
KM esy) = 4+y y+ Y y+y+y Yy~ + ooy Y

n+1 (n+1)2 (n+1)3
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1 —30y + 150y> — 240y° + 120y*
5(n+1)*

6y — 12y% + 8y> — 2"+
n+1)*

4(y-v") 1220-y)
m+1)2 (et 1y

Proof. By the definition of K}(C) in (6), we have

K}, (eo;y) = (n+1>sz(y)f dt = Zbl(y B} (e0; y) = eo(y)-

Similarly, we can obtain the following equalities,

Ay _ " opag,. 1
Gly) = b @+ gy
2
Ao _ n Ao n Ap . 1
Kn (ery) - (7’1+1)an (ery)"‘ (Tl+1 an (el’y)+ 3(7’l+1)2,
. n 3 2 1
Ao - " g A _on? A
1
e i Y

Then, by using Lemma 2.1 and some computations, we can get the desired results of Lemma 2.2. [

Lemma 2.3. Fory € [0,1], A € [-1,1], n € IN, we can get

1- Zy n+1 (1 y)n+1
Ky (Wit y)y) = vt I = an(y),
n n+1 n+1
A o yd-y  1-6y+6yt 2y(y Al O ) )
LWty = S5 Z3are A (n+ 1)
= Bu(y),
3y2 —6y> +3y* 5y —31y2 +52y° —26y*  1-—30y + 150> — 240> + 120y*
KiWab i) = =+ EESIE " 5+ 1)
[ara-y —ap -y Ay 1207 e85 -2 [y + v+ -y
- n+1)2 n+ 1) '

Proof. We can readily set up this lemma by using Lemma 2.2 and the linearity of the operators provided by
6). O

Owing to Lemma 2.3, we can easily obtain the following conclusion. Our purpose in presenting this
finding is to facilitate the proof of our theorems.

Corollary 2.4. Let y € [0,1], A € [-1,1], n € IN, so the following limits are hold.

1-2
lim nK ()i y) = —

lim nKy(Wa(t, y);y) = y(1 - y),
lim K5 (Wa(t, y); y) = 3y* — 6y +3y*.
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3. Approximation of the newly defined operators for univariate functions

In our consideration, the space of all continuous functions on the closed interval [0, 1] is represented by
the notation C[0, 1]. Also, C[0,1] is a normed space equipped with the norm

lIClico = sup{lC(y)l : y € [0,1]}.

Moreover, we use the symbol C?[0,1] to imply the space of functions C € C[0,1] such that (' and " also
belong to C[0, 1].
Now, we give other concepts related to our subject. For a function C € C[0,1], the first modulus of
continuity is defined by
W@ o) = sup [(y+h) -

0<h=s, ye[0,1]

and also the second order modulus of smoothness on the same interval is presented by

wy(C, V6) = sup sup |C(y +2h) — 20(y + ) + C(H)|-
0<h< Vo velo 1]

Additionally, the Peetre’s K—functional is given by
Ky(C, 8) = inf{l|C — gllcro11 + Ollg” llcpoy = 9,9, 9" € CIO, 1]}.

Firstly, we present a Korovkin type approximation theorem for the modified A-Bernstein-Kantorovich
operators K} (C; y).

Theorem 3.1. Suppose that C € C[0,1] and A € [-1,1]. Then, the operators K)(C; y) converge uniformly to this
function C.

Proof. By advantage of Korovkin theorem [29], it is adequate to demonstrate that
lim|IK} (ei; ) = Y'llcpo) = 0, fori=0,1,2.
n—oo

Thanks to the equalities given in (7), (8), and (9) of Lemma 2.2, it is easy to conclude that these conditions
are hold. Hence, the proof is finalized. [J

Secondly, we present a direct result for the operators KNG y). To do that, at the outset, we define a new

beneficial operator Kﬁ which facilitates our job. It is defined by
RalCiy) = KNG ) - CKME 1) + ). (10)
We give the following lemma, whose proof is ignored due to its prevalence.
Lemma 3.2. Based on the definition of K:, the subsequent equalities are obtained:
i) K, (eo; y) =1,
ii) Ky(evy) =y,
iii) Ky(W1(t,y);y) = 0.
Lemma 3.3. Let C € C2[0,1]. Then, it is obtained that

KQ(C; Y) — )| < 6T llcro.11,

where 6,(y) = % {ﬁn(]/) + a%(y)}-
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Proof. Let us take advantage of Taylor expansion given as
¢
0 =)+ it )@ + [ a0
y
Since Kz is linear, we can write

¢
KQ(C(f)} y)—Cy) = ﬁ (f Wit u)C" (u)du; y)
y

thanks to Lemma 3.2. By the Lemma 2.3 and the inequality

\IIZ(t/ ]/)
2 7

<N Nlepo,g

¢
f Wit u)C" (u)du
y

we obtain

t K} (e1;y)
K} ( f W (¢, 1) () ; y) - f (Ki(er;y) = u) O (u)etu
y y

||C"||2c[0,1] { KM (Wat, y); y) + [Kﬁ(‘lh(tr v); 3/)]2}

Ro(Gy) - )| <

<

Thus, we deduce the intended outcome. [

Theorem 3.4. For y € [0,1] and C € C[0, 1], we have
|K£(C; y) — C(y)| < 2Cwi(C, Vo () + w (C, an(y)),  (Cis a constant).

Proof. Using the definition of Kﬁ given in (10) , for any g € C2[0, 1], we acquire

K G) - C)] < [KalC = ) = € = D) + Ko ) = 90)] + [ €Ki ews ) — <o)

By using Lemma 3.3 and the modulus of continuity, we get

|K3(G ) = Cw)] < 21T = gllcioa) + a9 o + @ (T, (K er; y) — ).

In light of Theorem 2.4 in [23], p.177, if we take the infimum over g € C[0, 1], we obtain the result

K (G ) = L) < 2C0 (T Vouly)) + (G an(y)).
Thus, we deduce the intended outcome. [
Now, we give the Voronovskaja-type asymptotic theorem.

Theorem 3.5. For any C € C?[0, 1], we have

1-2 1-
lim 7 (KAGy) - €)= C)—— + i 2 2

uniformly on C[0, 1].
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Proof. Let y € [0, 1] be fixed. According to Taylor formula, we have
7 ]' 144
L) =) + Wt y) + 5L W) Yalt ) + et y)Walt, y)
where €(t, ) represents the Peano form of the remainder. Since e(-,y) € C[0,1], it is guaranteed that

lim;,, e(t,y) =0
Considering that K} is linear, we have

K}t y) = Cy)Kr(eos y) + T (K (Ya(t, v); y) + %C”(y)KQ(‘I’z(t, y);y) + K (e(t, ) Walt, y); ).

Lemma 2.3 allows us to acquire

2 1— n+1 1 n+1
KMNL(t); y) - Uy) C(V){z(,ﬁ%” (n+(1) Y) }

+ = y(l_]/)+ 1_6y+6y2 _Azy(yn—y”+1_(1_y)11+1>
2f ®) n+1 3(n + 1) 1)y

+ KMe(t, y)Wa(t, v); y).

Following the application of Cauchy-Schwarz inequality to the final term of the right side, we obtain

lim 1 {K} (e(t, y)Walt, v); )} < \/ lim K} (€2(t, y); y) \/ lim n2 KX (Wy(t, y); v)-
Since lim, . K}(€%(t, y); y) = 0 and lim,,—,. 12 K} (Wa(t, y); y) is finite because of Corollary 2.4, we get
lim 1 {K} (e(t, y)W(t, y); )} = 0

Hence we conclude that

lim n(KNGy) —Cy) =T (y) +C"(y Ea—— ¥ y)

and the proof is completed. [

4. Approximation of the bivariate tensor product operators

Let D = [0, 1] x [0, 1], we use the symbol C(D) to state the set of all real-valued continuous functions on
D. For C € C(D), the usual norm is defined by

ICllcy = sup 1C(y, 2)I- (11)

(y,2)€D

Let us assume that

CXD) = {CeC(D) BLC aif eCD),i=1, 2}

For C € C*(D), this space is equipped with the norm as follows:

) .
o J

lICllc2py = IICllc)y + 2 ,( &CZ : ]

= co)

dzi

C(D)
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The usual modulus of continuity of C € C(D) are given as follows:

@(C, &) = sup {lC(SL t) = (52, 02)l & (51, 1), (52, 12) € C(D), V(51 = 82)% + (1 — h2)? < 5}.
In addition, the Peetre’s K-functional of C € C?(D) is given as follows:

K(C, &) = inf{IIC - glicey + Ellglicpy < 9 € CHD)},

where & > 0.
There exists a constant M > 0 such that

K(G, &) < M{@2(C, V&) +min(1, )lIClicp)) (12)

where @, denotes the second order modulus of continuity of C € C(D) (see [15]). The constant M is
independent of C and &.

For C € C(D), (y,z) € D,m,n € Nand Ay, A, € [-1, 1], we construct the following bivariate tensor product
operators,

i+1
m+1

Ky (Gy,2) = m+ Dn+1) Y Y b ()bl (2) f ,» f " L, o)dudo, (13)

i=0 j=0 m+1 n+1

where bi '(y) and bﬁzj (z) are defined in (5). We can say that the operators given in (13) are positive and linear.
Letejj(s,t) = s't), i,j €{0,1,...,4} and Wjj(s, t; y,z) = (s — y)'(t —z)/, 1,7 €{0,1,2,4}.

Lemma 4.1. For Ce C(D), (y,z) € D, m,n € N and A1, A, € [-1, 1], the following equations are valid:

K (eos y,2) = 1,
1-— 2]/ 1-— ym+1 _ (1 _ y)m+1
KMz (0100, = + +A ,
mmn (610 vy Z) y 2(1’}’l+1) 1 (m+1)2
1-2z 1-z"1— (1 -zt
KMz (g0, = z+ + A ,
mmn (601 vy Z) Z 2(7’[ T 1) 2 (1’1 T 1)2
Ky en;y,2) = K (ew; v, 20Kk o y,2),

2y —-3y* 1-6y+6y° 2y(1 —y™)
Mdag, . _ o2
Kni ey 2) = 0+ oy T B TN e

, 2z-3z2%2 1-6z+62° 2z(1 - z")

Ky enmsy,2) = 22+ Ty + St 17 + s Eer
K (e y,2) = Kpli(eao; y, 20Kyl eozs y,2),
Kﬁ};ﬁz (e30;¥,2) = 3 9y* - 12y° N 7y — 27y? + 22y° N 1 - 14y + 361> — 24y°
/ 2(m +1) 2(m + 1)? 4(m +1)3
Y 3y? (1 - yrH—l) 3yl -y) 1-y™—@1 -y } ’
(m +1)* (m +1)° 2(m + 1)
372 (1 - z”—l) 32(1-2) 1- 2+ _ 1- Z)"+1
a (n + 1) (n+1)3 2(n + 1)* ]/

s, 8y — 10y* s 15y — 4813 + 35y* . 6y — 45y + 881> — 50y*

Aq,A . —
Ky (ea;y,2) = m+ 1 (m + 1)? (m + 1)
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1-30y + 15002 - 240 + 120y*  [4 (v* -y L 1220 - y)
5(m + 1)* YT m+ 12 (m + 1)

. 6y — 12y + 8y° — Zym”]

(m+1)*
Koy 2) = 2+ 8z — 10z* N 1522 — 482° + 35z* 6z — 452% + 882% — 50z*
mn 04 Yo 2) = n+1 (n+1) (n+1)°

1 - 30z + 15022 — 2402> + 120z* . [4 (23 - Z””) 1222(1 — 2)
2

51+ 1) m+1)? 1)y
6z — 1222 + 823 — 27"*1
(n+1)*

Proof. Using Lemma 2.2 and the description of the bivariate operators in (13), It is clear that the previously
mentioned equalities hold. [

Corollary 4.2. Thanks to Lemma 4.1, the central moments of the operators Kf,‘;;fz are given as follows:

1-— 2y 1- ym+1 _ (1 _ y)m+1

Kpi2(Wio(s, £y, 2); y,2) = ,
mn - (W10(s, £, 2); Y, 2) 2m+1) + /41 m+ 1)
K2 (Wai(s, £ Y, 2); 9, 2) =Kp(Wao(s, £ 1, 2); 1, 2K (Wor 5, £ 1, 2); 1, 2),
1-2z 1-z"1 — (1 -z)"*!
K2 (Por(s, y,2);y,2) = + ,
m,n ( 01(5 Y Z) y Z) 2(7’1 + 1) 2 (71 + 1)2

Ky (Wao(s, £y, 2);y,2) =

y- ]/2 . 1-— 6]/ + 6y2 2ym+2 _ 2ym+1 + 2]/(1 _ y)m+1
(m+1) " 3m+17 ! (m + 1)? ’

z—2z*  1-6z+ 67 [ZZ"+2 — 271 4 27(1 - z)”“]
2 ,

A1,A2 . . _
ol (s 920 02) Tt B+ 12 (n+ 1)
312 — 613 + 314 5y — 3112 + 5213 — 2614
KN (Wao(s, £y, 2, 2) =208+ 3V | 5y = 3197 + 5247 = 26y

(m+1)2 (m+1)3
N 1 - 30y + 150y* — 240y° + 120y*
5(m + 1)*
o, | Ay -y -3y + 3y - i)
(m+1)2
LAy =127 48y - 2y + ™+ (L -y
(m+1)* ’
2 _ ¢34 nA 2 3 4
KyAn%AZ (Woa(s, 1, 2); 1, 2) :32 (né_fl; 3z N 5z 3lz(n++ 512; 26z
1 - 30z + 15022 — 24023 + 120z*
5(n +1)*
473(1 — z)"™1 — 4211 - 3z + 322 - 2°)
+ Az
(n+1)2
+4z — 1222 + 82% — 2z(z" + 2" + (1 — 2)™*))
(n+1)* '

Theorem 4.3. For any C € C(D), we have
lim [IK;5(C y,2) = (¥, 2)llew) = 0.
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Proof. Using Lemma 4.1 and the norm given in (11), for m,n — oo, we get
1K) (e0) — eoollcpy = 0;
K (e10) — erollcpy — 0;

A )
1K % (eo1) — eotllcpy — O;

||K31],h/\2(6’20 + eg2) — (e20 + €p2)llcpy = 0.
From the Volkov theorem [41], proof of the theorem is completed. [

Now, we will show following Voronovskaja-type theorem for these operators’ asymptotic approxima-
tion.

Theorem 4.4. If C € C*(D), then we get the following limit
lim [P €6 0, - Cw.2)] = G2G -0+ LA -2)
+2 {0, 1)+ Gl e - ).
Proof. Using the Taylor formula for any (y, z) € D, we obtain
Cs t) = Cy, 2) + Cy(y, 2)W10(s, £y, 2) + C(y, 2)Wou (S, £ y, 2)
+ % [Coy (0, 2D Wa0(s, £y, 2) + 2042y, a5, £ 1, 2) + Ly, 2)Wins, £, 2)] (14)

+ ¢, Y,2) VW0 (s, £y, 2) + Youls, 1y, 2)

for (s,t) € D, where ¢(., .; y,z) € C(D) and ¢(s, t; y,z) — 0 when (s, ) = (v, 2).
If we apply the K,Anl,,?z on (14), we yield

Ky (s, 1), 2)
= Uy, 2) + Gy, D)Kpm>(P1o(s, £ ,2) = 1, 2) + Gy, 2Ky (You (5, £ Y, 2); Y, 2)

1
+ E [ny(]// Z)Kﬁll,‘;r/}z (\IIZO (SI t/ yr Z)/ y/ Z) + ZCyZ(yl Z)Ki}:ll,;i/l\z (\Ijll(sr tr ]// Z)I y, Z)
+Cex (1, K> (Poals, £, 2); 9, 2)|
+ K2 (@G, £ 9, 2) V(Wao (5, £ 1, 2) + You(s, £ 1, 2); 4, 2).

Upon applying the Cauchy-Schwarz inequality to

KN2((s, £y, 2) V(Wao(s, £ ,2) + Wouls, £ Y, 2); 1, 2),

we have

m K 66 51,2 (Waals, 51,2) + Poals, 5,2),9,)

< K026, y,2) 1,2 |2 {Ki (Waos, 1,20 ,2) + Kl (0(Wos(s, £ 1,2, )

Taking into account Theorem 4.3 and ¢(-, -; y,z) € C(D), we have ¢(s,t; y,z) = 0 when (s,t) = (y,z). Then,
we yield
lim K2 (@G, 5, 2);9,2) = 0,

uniformly on D.
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Intercalarily, from Corollary 4.2, we obtain that

%12}0 msz‘mz(‘I/m(s ty,2;y,2) = 3yR(1-vy)?,

ny_r)rolo mszl,,?Z(\I’M(s ty,z);y,z) = 3z%(1 — 2)°.
Hence,

ﬂl}_r}r.}om{K"1 A2 (@(s £y, z) \/\I/4o(s Ey,z) + Wouls ty,2) Y,z )} . (15)
By Corollary 4.2, we obtain

lim m(K,A;,QZ(\I/n(s ty,z); y,z)) =0. (16)

m—00

Thanks to (15), (16), and Corollary 4.2, the proof of theorem is made as follows:
Tim m {Kji® (Lo, 1);,2) = Ly, D)) =Gy, z><2 y) + C(y, z)( —2)+3 {cjy<y, 2y = ¥ + Caly, )z - ).
Theorem 4.4 is proved. [

Theorem 4.5. Let C € Cz(D), then we obtain the following inequality:

Sy, Smn(Y, @
D) i, 02) ncum} T a0

K (s, 1) ,2) = Ly, 2)| < A_/I{w_z (C; > 1

where M > 0 is a constant, and it is independent of Cand &y .

Proof. We take advantage of the auxiliary operators defined by

K2 (s 050,2) = Ko (s, D3 y,2) + L, 2) = T (K (enols, £ 9,2), K eon (5, £); 9, 2)) -

From Lemma 4.1, we yield
Ky (eoo; y,2) = 1,
Khi(Who(s, £ y,2);,2) =
K> (Woi(s, y,2);4,2) = 0

Now, let € C3(D) and (s, ) € D. By the Taylor formula, we can obtain

oy,
6.~ 2 = 5wt )+ [ W )

N BC(ay, z)

2
J C(u Z) du

(17)
2
C(y, v) o

Woi(s, t; y,2) +f Woi(s, t; y,v)
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If we operate KA 12 on the Taylor formula given in (17), we obtain

KA2(T(s, D5 v,2) — L, 2K (eools, 1) 1, 2)

aC(y, 92
= C((;i/ )KA1 AZ(\I’lo(s ty,2);Y,2) +K311,;,A2 (f Wio(s, t; u, z) C( Z) Y,z )
a(y, 2,
+ Cgvz Z)KAl /\2(\1}01(5 t y/z) y,Z) +K?n1/;l)\2 (f \I/(n S t y, 'U) C(y ) , , )
Kml,n 2(610(S,f),y/2) 2
- fo” (f s 5095 Z) -, (Kh=enots, 07,2~ ) =D gy
y
Py, Kol o1 (5,),2) 2Ly,
+K’11 A2 ( f Wo(s, t; y,0) C(y )dv ;y,z) - f (Kﬁf/;ﬁz(em(s, 1), y,2) —v) Ca(Tyzv)dv,
so we get
(K22, 079,2) - C(w, 2)|
Pav K,,,l,, 2 (e10(s,1);y,2)
<Kl ( f it 10,2 | D sy, 2 ) [ K ero(s, 1y, 7) — |“9 o 2)|
y

(y, zJ) i

K (f [Woi(s, t; y,0)l

< lICllc2py
2
2
+Ky 2 (Woa(s, £ 1, 2); ¥, 2) + [Kpi (eon s, £, 2) — 2 } :

Knl,z Z(gol(s,t),y,z a )
'Y ,Z) +f |KA1 Az(em(s t) y,z) _ |‘ C(y, )
z

2
{Kfnl,h}\z (Wals, £y, 2);y,2) + [Kr}‘nl,h/\z(elo(& D;y,z) — y]

2 2
Let &y, 2) = [Kii 06 ;1,2 — v+ [Ki=en(s, 01,2 — 2], yuy) = VKR (Wanls, 9, 2);9,2),
and y,(z) = \/Kﬁf,?z (Woa(s, t; y,2); v, 2). If we choose

Sma(y,2) = va(y) + va@) + &y, 2),

then we get

IIC ||c D) ¢

Kot 1:9,2) =, 2)| < Sy, 2)- (18)

By the inequality (18), we reach the following result
K265, 79, 2) = Ly, D] = [Kni (€= )66, 9,2) — (€ - 9)(w,2)| + [Knia (g5, 07,2) - 9(3,2)
+ [C (K= ennts, 07y, 2), K Geon s, 17 ,2)) = . 2)

IICllc> _
< 2/C = gllew) + —5 = S, 2) + DG Emay, 2)-
Firstly, if we take over infimum on g € C*(D) and secondly use the inequality given in (12), we obtain
K06 15,9 - G2 < 2K (6222 4 TGt 2)

<M {aTz[C; NSmnly2) Z)] + min (1, Smnly,2)

; . )||C||CZ(D)} + DG Ena(v,2),
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which provides the evidence. [J

5. Graphical analysis

In this section, we present some numerical examples to illustrate the convergence properties of the
modified A-Bernstein-Kantorovich operators K}(C; y), we also compare the convergence effect with that of
A-Bernstein-Kantorovich operators K}(C; y) and the classical Bernstein-Kantorovich operators K,(C; y). In
accordance with this purpose, we choose some functions and test its convergence behavior for different
parameters. All experimental algorithms are coded using MATLAB R2019b.

Example 5.1. We take the test function C(y) = 1 — cos (4e). The graphs of K}(C;y) withn = 10 and A = —1,0,1
are shown in Figure 1. In Figure 2, we fix A = =1, operators K;(C; y) with n = 10,50,100 and (y) are shown. It
can be seen from Figure 2 that with the increase of n, the convergence effect of the operator on C(y) is getting better and
better. For comparison with A-Bernstein-Kantorovich operators and the classical form, Figure 3 shows the absolute

error of KNG y), KNG y) and K, (C; y) withn =10, A = 1 on {(y).

2 T T T
—((y) = 1 — cos(4e”)
—n=10, A=-1
—n=10, A=0
15 n=10, A=1
1k
0.5
O 1 1

Figure 1: The convergence of K} (C; ), K%,(C; ), Ki,(G; ) to L(y)

2 T T T
—((y) =1 — cos(de?)

—n=10, A= -1

n=50, A=—1

—n =100, A=-1

0.5

Figure 2: The convergence of K;(C; ), K5 (G ), Kio(G ) to L(y)
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0.45

0.4 -

0.35

0.25

Figure 3: Comparison of errors for Kj (), K%O(C) and Ko(Q) to C

Example 5.2. Taking function C(y) = 3yy§6;12 , Figure 4 and Figure 5 respectively show the approximation performance

of the operator when n is fixed and A takes different values, and the approximation error representation when n takes
10 and A takes 1.

0-5 T T T T
—Cy) =6y -2)/° +1)
—n=10,A=—-1
oll—n=10,x=0 /l
—n=10A=1
-0.5 - b
q+ i
-15rF b
2 I I I I 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: The convergence of K} (C; ), K),(C; y) and K] (C; y) to C(y)
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0.35
— () - KR (Gw)l by
03H ~ [¢(y) = K (¢ 9) '
-------- € ~ Kl w)
025+ n= 10, A= /,:_:':
0.2
0.15
0.1
0.05
0 I
0 1

Figure 5: Comparison of errors for Kj (), K%O(C) and Ko(Q) to C

4y, 0<y <02,
41+y)/3,02<y<0.5,
42-y)/3,05<y <038,
81-y), 08<y<1
Figure 6 and Figure 7 respectively show the approximation effect of the operator to the function C3(y) when A is fixed
and n takes different values, and the approximation error of the operator to the function C3(y) whenn = 10and A = 1.

Example 5.3. We take the piecewise continuous function C3(y) = as the test function,

2
151 b
4L N
0.5 —G(y) N
—n=10, A=-1
— =50, A=-1
— =100, A= -1
0 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: The convergence of K (Cs; v), K5, (Cs; y) and K (Gs; y) to Ga(y)
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04r

0.35 )

0.3

0.25

Figure 7: Comparison of errors for K] ((3), E%O(Q) and Ki(G3) to C3

Example 5.4. Now, we take the test function ((y) = (y — 0.5) sin(ny), Figure 8 shows the convergence of the oper-
ator with different values of n when A = —1, and Figure 9 shows the error graph of the operator with respect to the
approximated function whenn = 10and A = 1.

T T T
—((y) = (y — 0.5) sin(7y)
045 H—n=10, A=-1
—n =50, A\=—1
—n =100, A=—1

0.05

-0.05

-0.1

-0.15

Figure 8: The convergence of K, (C; ), K5 (G y) and K;(C; y) to C(y)



Q.-B. Cai et al. / Filomat 39:5 (2025), 1437-1456

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Figure 9: Comparison of errors for Kj (), K%O(C) and Ko(Q) to C

1453

Example 5.5. Finally, for the test function of binary operators, we choose C(y,z) = sin(4y) + cos(7z), Figure 10
and Figure 11 respectively show the approximation behavior of binary operators on function C(y, z) and the partial

representation display.

Il ((y, 2) = sin(4y) + cos(7z)
WK Gy, 2)
|

Figure 10: The convergence of K;:é(l; Y,2), E;:;(C; y,z) and Ks5(C; v, 2) to C(y, z)
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(v, 2) = sin(dy) + cos(72)

—
0.9

Figure 11: A partial representation of Figure 10

Judging by the performance of above numerical examples, it should be said that the convergence
behavior of the newly defined operators and the original A-Bernstein-Kantorovich type operators has
advantages depending on the value of A, but the newly defined operators will be simpler in form than the
original ones.

6. Conclusion

This study explores a kind of modified A-Bernstein-Kantorovich operators adopting the new A-Bézier
basis. It covers various aspects of the newly defined operators, including approximation properties,
convergence rate and Voronovskaja-type asymptotic formula. The adaptability and convergence of the
proposed operators are vital aspects of the study and depend on the choice of parameter A. It explores
how different values of A impacts the performance of operators. The graphs are also used to dream up
the performance of operators under various selections of n and A. Graphs provide a more instinctive
understanding of how A affects the behavior of proposed operators.
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